next up previous
Next: is a fixed point Up: The Solution of the Previous: The Solution of the

   
Existence of a limit $ \vec{v^*}$


\begin{eqnarray*}\Vert\vec{v}_{n+m}-\vec{v}_n\Vert & = &
\Vert\sum_{k=0}^{n-1}\...
...\lambda^n(1-\lambda^m)}{1-\lambda}\Vert\vec{v}_1-\vec{v}_0\Vert
\end{eqnarray*}


Since the coefficient decreases as n increases, $\forall
\epsilon
> 0\ \ \exists N
> 0$ such that $\forall n \geq N, \Vert\vec{v}_{n+m}-\vec{v}_n\Vert <
\epsilon$
Thus the series $\vec{v}_n$ has a limit.

Let us call this limit $ \vec{v^*}$ and show that $ \vec{v^*}$ is a fixed point of the operator T.

Yishay Mansour
1999-11-24