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Abstract

A strong equilibrium (Aumann 1959) is a pure Nash equilib-

rium which is resilient to deviations by coalitions. We define

the strong price of anarchy to be the ratio of the worst case

strong equilibrium to the social optimum. In contrast to

the traditional price of anarchy, which quantifies the loss

incurred due to both selfishness and lack of coordination,

the strong price of anarchy isolates the loss originated from

selfishness from that obtained due to lack of coordination.

We study the strong price of anarchy in two settings, one

of job scheduling and the other of network creation. In the

job scheduling game we show that for unrelated machines

the strong price of anarchy can be bounded as a function of

the number of machines and the size of the coalition. For

the network creation game we show that the strong price of

anarchy is at most 2. In both cases we show that a strong

equilibrium always exists, except for a well defined subset of

network creation games.

1 Introduction.

Much of the classical work in scheduling and optimiza-
tion has been centered on finding efficient algorithms,
in the sense that they optimize a certain global func-
tion (also called social optimum). The recent inter-
est in computational game theory is based, in part, on
the recognition that the agents involved may be selfish,
meaning that they are motivated by optimizing their
own utilities rather than reaching the social optimum.
Therefore, one cannot assume that the social optimum
can be enforced on the selfish agents.

A natural concern is quantifying the efficiency loss
incurred due to selfish behavior. A metric that is
widely accepted in the computer science literature is
the ratio between the worst possible solution reached
with selfish agents and the social optimum. The Price
of Anarchy (PoA) [15, 18] quantifies this loss as the
ratio between the cost of the worst Nash equilibrium and
the social optimum, and has been extensively studied in
the contexts of the contexts of selfish routing [19], job
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scheduling [15, 7], network formation [9, 1, 6], and more.
In a Nash equilibrium no agent can improve its own
utility by unilaterally changing its action. This notion
thus accounts for two properties, namely, selfishness and
lack of coordination.

We adopt the solution concept of strong equilibrium,
proposed by Aumann [3]. In a strong equilibrium, no
coalition (of any size) can deviate and improve the
utility of every member of the coalition (while possibly
lowering the utility of players outside the coalition)1.
Clearly, every strong equilibrium is a Nash equilibrium,
but the converse does not hold. In cases where a strong
equilibrium exists, it seems to be a very robust notion.
Considering strong equilibrium allows us to separate the
effect of selfishness (which remains in strong equilibria)
from that of lack of coordination (which disappears,
since a strong equilibrium is resilient to deviations in
coalitions).

We define the strong price of anarchy (SPoA) to
be the ratio of the worst strong equilibrium and the
social optimum. In contrast to the traditional PoA,
which quantifies the loss incurred due to both selfishness
and lack of coordination, the SPoA isolates the loss
that is incurred due to selfishness. The SPoA metric
is well defined only when a strong equilibrium exists.
Unfortunately, most games do not admit any strong
equilibrium (even if mixed strategies are allowed2).
Thus, in order to analyze the SPoA, one must first prove
that a strong equilibrium exists in the specific setting
at hand.

In cases where the SPoA yields substantially better
results than the PoA, it suggests that coordination can
significantly improve the efficiency loss. If, on the other
hand, the SPoA and PoA yield similar results, the
efficiency loss, as quantified by the PoA, is derived from
selfishness alone, and coordination will not help. We
will see examples of both cases in the games we study.

1The strong equilibrium solution concept does not require that
the deviation itself will be resilient to further deviations. A
related, yet weaker, solution concept is a coalition-proof Nash
equilibrium [5] requiring that the deviation by the coalition is
itself resilient to further deviations by subsets of the coalition.
This implies that the coalition-proof Nash equilibrium includes
any strong equilibrium but rules out many Nash equilibria.

2This is in contrast to Nash equilibrium, which exists (perhaps
in mixed strategies) in every finite game.



In our definition we also consider the size of the
coalition as a parameter and define k-SPoA to be the
ratio of the worst Nash equilibrium which is immune
to coalitions of size up to k and the social optimum.3

This is a natural restriction in many settings, where the
ability to coordinate may be limited.

A related, yet different, notion of coalitions has been
studied recently by [12], where a coalition is assumed to
be fixed and acts as a new selfish player, attempting
to maximize its utility. Coalitions have been also
considered from the point of view of mechanism design,
where it is desired to design truthful mechanisms that
are resilient to the formation of coalitions, known as
group-strategyproof mechanisms [17, 11].

In this work we consider two different sets of games.
The first is derived from job scheduling, where each
player controls a single job and selects the machine on
which the job is run. The cost to the player is the load
on the machine it selected while the social cost is the
makespan (the maximal load on any machine). The
second game is a network creation game [9, 1]. In this
game the players can be viewed as nodes in a graph.
Each player (node) buys links (to other nodes) at the
cost of α per link. The set of edges in the resulting
graph is the union of the links that the players (nodes)
bought. The cost to the player is the cost of the links
it bought plus the sum of the distances to all the nodes
(players) in the resulting graph. The social cost is the
sum of the players’ costs (the social welfare).

For the job scheduling game, we consider mostly the
model of unrelated machines (namely, the load of a job
is a function of the machine it is scheduled on). While
it is rather simple to show that for unrelated machines
the PoA is unbounded (see [4]), we show that the SPoA
is bounded as a function of the number of players and
machines. More specifically, we show that: (1) For m
machines the worst-case SPoA is at most 2m − 1 and
at least m (and for 2 machines the SPoA is 2.) (2)
For m machines and n players the worst-case k-SPoA is
at most O(nm2/k) and at least Ω(n/k). Moreover, we
show that a strong equilibrium always exists, and some
optimal solution is also a strong equilibrium.

For the network creation game, we show that for
most values of α there is some strong equilibrium.
Specifically, for α ∈ (0, 1] we show that the clique
is a strong equilibrium and for α ≥ 2 the star is a
strong equilibrium. For α ∈ (1, 2) we show that there
is no strong equilibrium in general. More specifically,
we show that there is no strong equilibrium when the
coalition size is at least 3 and the number of players is

3Namely, no coalition of at most k players can coordinate a
deviation and improve the utility of every player in the coalition.

at least 6. We show that for either a smaller number of
players (four or less) or smaller coalitions (size at most
2) there always exists a strong equilibrium.

Previous work has already bounded the PoA of the
network creation game [9, 1]. Roughly, for α = O(

√
n)

and α = Ω(n log n) the PoA is constant. For α ∈ [
√

n, n]
the PoA is O(α2/3/n1/3) and for α ∈ [n, n log n] the PoA
is O(n2/3/α1/3). We show that for any α ≥ 2 the SPoA
is at most 2.

The Price of Stability (PoS) [2] is the ratio of the
best Nash equilibrium to the social optimum. Similarly,
one can define the Strong Price of Stability (SPoS)
as the ratio of the best strong equilibrium and the
optimum. Our existence results show that for both
job scheduling and network creation the SPoS is 1,
since there exists an optimal solution which is a strong
equilibrium.

The vast literature on strong equilibrium has fo-
cused both on pure strategies and pure deviations (e.g.,
[13, 14, 16, 5]). This has been mainly motivated by the
fact that the strong equilibrium is already a solution
concept that does not exist in many cases and allowing
mixed deviations would only further reduce it. The only
exception is [20] where correlated deviations are consid-
ered. We show that in the job scheduling setting, once
we allow mixed deviations by coalitions, in many cases
no strong equilibrium exists (in contrast to pure devi-
ations, where always some strong equilibrium exists).
More specifically, in the case of mixed strategies and
deviations, for m ≥ 5 identical machines and n > 3m
identical jobs, there is no mixed strong equilibrium with
respect to mixed deviations.

2 Model.

In this section we provide general notations and defini-
tions, while in Sections 3.1 and 4.1 we provide the no-
tations and definitions for the specific games we study.

A game is denoted by a tuple G =< N, (Si), (ci) >,
where N is the set of players, Si is the finite action space
of player i ∈ N , and ci is the cost function of player i.

We denote by n = |N | the number of players. The
joint action space of the players is S = ×n

i=1Si. For a
joint action s ∈ S we denote by s−i the actions of players
j 6= i, i.e., s−i = (s1, . . . , si−1, si+1, . . . , sn). Similarly,
for a set of players Γ we denote by s−Γ the actions of
players j 6∈ Γ. The cost function of player i maps a joint
action s ∈ S to a real number, i.e., ci : S → R.
Nash Equilibrium (NE): A joint action s ∈ S is a
pure Nash Equilibrium if no player i ∈ N can benefit
from unilaterally deviating from his action to another
action, i.e., ∀i ∈ N ∀a ∈ Si : ci(s−i, a) ≥ ci(s).
Resilience to coalitions: A pure joint action of a
set of players Γ ⊂ N (also called coalition) specifies an
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Figure 1: Illustration of the k-SE hierarchy (the set k-SE
represents all the NE which are also k-SE).

action for each player in the coalition, i.e., γ ∈ ×i∈ΓSi.
A joint action s ∈ S is not resilient to a pure deviation
of a coalition Γ if there is a pure joint action γ of Γ
such that ci(s−Γ, γ) < ci(s) for every i ∈ Γ (i.e., the
players in the coalition can deviate in such a way that
each player reduces its cost). A pure Nash equilibrium
s ∈ S is resilient to pure deviations of coalitions of size
k, if there is no coalition Γ of size at most k, such that
s is not resilient to a pure deviation by Γ.

Definition 2.1. A k-strong equilibrium (k-SE) is a
pure Nash equilibrium that is resilient to pure deviations
of coalitions of size at most k.

Clearly, a k-SE is a refinement of NE. Let Φ(G, k)
be the set of k-strong equilibria of the game G. By
definition, for any k, Φ(G, k) ⊆ Φ(G, k − 1) (see
Figure 1). Note that Φ(G, 1) coincides with the set of
NE, and Φ(G, n) coincides with the classical notion of
a strong equilibrium introduced by Aumann in [3].

Note that while in Nash equilibria we can restrict
attention to pure deviations, this is not true for k-strong
equilibrium, when k ≥ 2. The conceptual reason is that
we need to guarantee that each player in the coalition
would benefit from the deviation. In Section 3.4 we
show an example in which a coalition can benefit from
a mixed deviation, yet in any pure deviation some
player in the coalition does not benefit. (We defer the
definition of a mixed deviation to the above section.)

In order to study the strong price of anarchy we
need to define the social cost of a game G. Abstractly,
there is a function fG such that the social cost of
s ∈ S is fG(s). The optimal social cost is OPT (G) =
mins∈S fG(s). In the cases discussed in this paper
the social cost is a simple function of the costs of
the players. More specifically, we discuss the linear
case, i.e., fG(s) =

∑n
i=1 ci(s), and the maximum, i.e.,

fG(s) = maxn
i=1 ci(s). Next we define the strong price

of anarchy (SPoA) and strong price of stability (SPoS).

Definition 2.2. Let Φ(G, k) be the set of k-strong
equilibria of the game G. If Φ(G, k) 6= ∅ then:

1. the k-strong price-of-anarchy (k-SPOA) is
the ratio between the maximal cost of a k-

strong equilibrium and the social optimum, i.e.,
(maxs∈Φ(G,k) fG(s))/OPT (G).

2. the k-strong price-of-stability (k-SPoS) is
the ratio between the minimal cost of a k-
strong equilibrium and the social optimum, i.e.,
(mins∈Φ(G,k) fG(s))/OPT (G).

We denote by SPoA the n-SPoA, and by SPoS the
n-SPoS, allowing any size of a coalition. (Note that
both SPoA and SPoS are defined only if some strong
equilibrium exists.)

Due to space limitations, some of the proofs are only
sketched in the appendix, and all the proofs appear in
the full version, which can be found in the authors’ web
sites.

3 Job Scheduling.

In our job scheduling scenario there are m machines
and n players (where each player controls a single job).
In the job scheduling terminology, we will focus on
unrelated machines, but also refer to identical machines.

3.1 Job Scheduling Model. A job scheduling set-
ting is characterized by the tuple < M, N, (wi(J)) >,
where M = {M1, . . . , Mm} is the set of machines,
N = {1, . . . , n} is the set of players (jobs) and wi(J)
is the weight of player J ∈ N on machine Mi ∈ M . A
job scheduling setting has identical machines if for every
Mi, Mi′ ∈ M and J ∈ N , we have wi(J) = wi′ (J). In
identical machine settings we will use w(J) to denote
the weight of J (on any machine).

A job scheduling game has N as the set of players.
The action space SJ of player J ∈ N are all the
individual machines, i.e., SJ = M . The joint action
space is S = ×n

J=1SJ . In a joint action s ∈ S player
J selects machine sJ as its action. We denote by Bs

i

the set of players on machine Mi in the joint action
s ∈ S, i.e., Bs

i = {J : sJ = Mi}. The load of a
machine Mi, in the joint action s ∈ S, is the sum of
the weights of the players that chose machine Mi, that
is Li(s) =

∑

J∈Bs

i

wi(J). For a player J ∈ N , let cJ(s)

be the load that player J observes in the joint action
s, i.e., cJ(s) = Li(s), where sJ = Mi. A job scheduling
game is characterized by a tuple < N, S, (cJ) >.

In job scheduling games the objective function (i.e.,
the social cost) is the makespan, which is the load on
the most loaded machines (or equivalently, the highest
load some player observes). Formally, makespan(s) =
maxJ cJ (s). A social optimum minimizes the makespan,
i.e., OPT = mins makespan(s). Thus, the strong price
of anarchy (SPoA) in job scheduling games is the ratio
between the makespan of the worst SE and the minimal
makespan.



Notation: We define wmin(J) = mini wi(J), and de-
note by min(J) the index of a machine on which player
J has weight wmin(J), i.e., min(J) = argmini wi(J) (if
there is more than one such machine then select an ar-
bitrary one). In addition, we denote by OPT (J) the
action of job J under a social optimum OPT .

3.2 Equilibrium Existence. In this section we
prove that in the job scheduling game, for any coalitions
of size k, there is a k-SE, i.e., there exists a NE that is
resilient to coalitions of size k (for any k ≤ n). Our
proof technique is similar to [10, 8], that proved that
any sequence of improvement steps, in a job scheduling
game, converges to a NE. We first define a complete
order on the joint actions.

Definition 3.1. A vector (l1, l2, . . . lm) is smaller than

(l̂1, l̂2, . . . l̂m) lexicographically if for some i, li < l̂i
and lk = l̂k for all k < i. A joint action s is
smaller than s′ lexicographically if the vector of machine
loads L(s), sorted in non increasing order, is smaller
lexicographically than L(s′), sorted in non increasing
order.

We prove that the lexicographically minimal assign-
ment is a k-SE.

Theorem 3.1. In any job scheduling game, the lexi-
cographically minimal joint action s is a k-SE equilib-
rium, for any k.�

An immediate corollary from the fact that a lexico-
graphically minimal joint strategy is a k-SE, is that the
k-Strong Price of Stability (k-SPoS) for job scheduling
games is 1.

It is shown in [8] that any job scheduling game is a
potential game. However, while Theorem 3.1 holds for
any job scheduling game, it does not hold in general
for any potential game. For example, the prisoner’s
dilemma game is a potential game, but the only NE in
this game (in which both players defect) is not resilient
to a coalition of both players cooperating. Thus, the
prisoner’s dilemma game has no SE.

The requirement that every member in a coalition
strictly benefits from the deviation is a crucial assump-
tion for the correctness of Theorem 3.1. If we relax the
condition and require only that some member improves
its cost and no other member of the coalition would lose
from the deviation, there are job scheduling games that
do not have any SE. 4

4For example, consider the following setting: there are two
identical machines, and three identical unit jobs. Clearly, in a
NE, a pair of jobs is on one machine and the third job is on the
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Figure 2: An example of an assignment (a) that is a Nash
equilibrium but not a strong equilibrium, since the jobs of
size {5, 5, 3, 3} all profit from the deviation demonstrated in
(b).

While the proof technique for the existence of k-
SE is similar to [10, 8], it is important to note that
there is no equivalence between deviation in coalitions
and unilateral deviations. In particular, already with
3 identical machines5, there exist NE assignments that
are not resilient to coalitional deviations, as illustrated
in Figure 2.

3.3 Strong Price of Anarchy. In this section we
study the SPoA in scenarios with identical and unre-
lated machines. For identical machines, it is known
that PoA ≤ 2 [15], while for unrelated machines, the
PoA may be unbounded [4]. Consider the following mo-
tivating example for unrelated machines.

Example 3.1. Consider m ≥ 2 machines and n = m
jobs, where wi(Ji) = ǫ for all 1 ≤ i ≤ m, and wi(Jj) = 1
for all i 6= j. The joint action (1, 2, . . . , m) has a
minimal makespan of ǫ (and is also a NE). However,
the joint action (m, 1, 2, . . . , m − 1) is also a NE and
has a makespan of 1. Therefore, the PoA is at least 1/ǫ,
which can be arbitrarily large. However the only joint
action that is resilient to a coalition of all the players is
(1, 2, . . . , m), and therefore in this example the SPoA is
1, which is significantly smaller than the PoA.

Example 3.1 motivates using the SPoA solution con-
cept for unrelated machines. We now prove our main
results for the job scheduling games, showing that the
strong price of anarchy is bounded in the unrelated ma-

other. However, under the relaxed improvement requirement, no
equilibrium is 2-SE: The pair of jobs on the same machine can
form a coalition where one job migrates to the other machine,
while the other job does not change machines. After the deviation,
the migrating job remains with a load of 2, while the load observed
by the idle job in the coalition decreases from 2 to 1.

5In a job scheduling game with 2 identical machines, one can
verify that an assignment is NE if and only if it is SE.
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Figure 3: Illustration of Cm.

chine setting. We start with the following straightfor-
ward relationship between OPT and the weights.

Claim 3.1. For any job scheduling game with unrelated
machines, the following inequalities hold:

OPT ≥ max
J

wmin(J)(3.1)

OPT ≥ 1

m

∑

J

wmin(J)(3.2)

where OPT = mins∈S maxi Li(s).

We first bound the SPoA for games with two
machines.

Theorem 3.2. For any job scheduling game with 2
unrelated machines and n jobs, SPoA ≤ 2.

We next introduce some notations that will be
useful. For simplicity, for the rest of this section we will
assume WLOG that given a joint action s, the machine
indices are sorted in a non-decreasing order of the loads
under s, i.e., L1(s) ≤ · · · ≤ Lm(s).

Definition 3.2. We denote by Mi 7→s Mj, if there is
a job J such that Mj = min(J), sJ = Mi and i ≥ j.
Two machines Mi and Mj, i ≥ j, are connected under
the joint action s if ∃i′, j′, such that i′ ≥ i, j ≥ j′, and
Mi′ 7→s Mj′ . Let Cm(s) = {Mm, . . . , Mℓ} denote the
maximal suffix of machines, such that Mi+1 is connected
to Mi under joint action s. (See figure 3.)

By the definition of Cm(s) and the relation Mi 7→s

Mj we have,

Claim 3.2. For every job J such that sJ ∈ Cm(s) we
have min(J) ∈ Cm(s).

The following lemma bounds the difference between
loads of machines in Cm(s), under a NE s.

Lemma 3.1. Let s be a NE. If Mi 7→s Mj then Li(s) ≤
Lj(s)+OPT . In addition, for any i, j ∈ Cm(s) we have
Li(s) ≤ Lj(s) + (m − 1)OPT .

Proof. Since s is a NE, for each J ∈ Bs
i we have

Li(s) ≤ Lj(s) + wj(J). From the definition of Mi 7→s

Mj, there exists J ∈ Bs
i for which Mj = min(J).

From Inequality (3.1), wj(J) ≤ OPT , and we get:
Li(s) ≤ Lj(s) + OPT .

By consecutive applications of this argument, the
load of Mm and Mℓ, the least loaded machine in Cm,
cannot differ by more than (m − 1)OPT . Therefore,
for any two machines Mi and Mj in Cm, Li(s) ≤
Lj(s) + (m − 1)OPT . �

Theorem 3.3. For any job scheduling game with m
unrelated machines and n jobs, SPoA ≤ 2m − 1.

Proof. Let s be an arbitrary joint action that is a SE.
Recall that we assume WLOG that the machines are
sorted in a non-decreasing order of the loads.

If for some Mi ∈ Cm(s) we have Li(s) ≤ m · OPT
then by Lemma 3.1 Lm(s) ≤ (2m − 1) · OPT , and we
are done. Otherwise, ∀i ∈ Cm(s), Li(s) > m · OPT .
We will show that such a joint action s is not resilient
to a deviation of a coalition. Consider the joint action
s′, where for J ∈ Cm(s) we have s′J = min(J), and
for J /∈ Cm(s) we have s′J = sJ . This implies that
the coalition Γ includes all the jobs scheduled in s on
machines in Cm(s), i.e., Γ = ∪Mi∈Cm(s)B

s
i .

Recall that by Claim 3.2 we have min(J) ∈ Cm(s) .
By Inequality (3.2), Li(s

′) ≤ m · OPT < Li(s), for any
Mi ∈ Cm(s). Therefore, each job J ∈ Cm(s) is strictly
better off under s′. �

The following theorem shows that the SPoA might
be linear in the number of machines m.

Theorem 3.4. There exists a job scheduling game with
m unrelated machines for which SPoA ≥ m.�

Next, we derive bounds for coalitions whose size is
smaller than n. We first present a lower bound for two
machines.

Theorem 3.5. There exists a job scheduling game with
2 unrelated machines and n jobs, s.t. k-SPoA ≥ n

2k .

Proof. Consider the following job scheduling game. Let
w1(Ji) = 1 and w2(Ji) = 1/(n−1), for 2 ≤ i ≤ n, and let
w1(J1) = 2k and w2(J1) = n − 1 + k + ǫ. In this game
OPT (J1) = M1 and OPT (J2) = · · ·OPT (Jn) = M2,
which yields a cost of 2k. The joint action s1 = M2 and
s2 = · · · = sn = M1 is a k-SE. (To see that it is a k-SE
note that if J1 migrates to M1 the new load is n + 2k.
This implies that at least k+1 jobs have to migrate from
M1 in order that it will be beneficial for J1 to migrate
to M1). Therefore, k-SPoA ≥ n−1+k+ǫ

2k ≥ n
2k . �



Example 3.1 presents a NE for which the PoA is
unbounded. Since the same example is resilient to any
coalition of size at most m − 1, it implies that the
(m − 1)-SPoA is unbounded. The following theorem
bounds the k-SPoA for coalitions of size k ≥ m.

Theorem 3.6. For any job scheduling game with m un-
related machines and n jobs, for any k ≥ m, k-SPoA ≤
2nm

z + 4m, where z = ⌊k/m⌋.�

For identical machines, we show that the SPoA does
not improve on the PoA.

Theorem 3.7. There exists a job scheduling game with
m identical machines and n jobs, s.t. SPoA ≥ 2

1+ 1

m

.�

3.4 Mixed Deviations and Mixed Equilibrium.
A natural extension of the SE solution concept would be
to consider mixed strategies and deviations. A mixed
strategy is a distribution over the action space, and
similarly, a mixed coalition deviation assigns a new
mixed strategy to every player in the coalition.

If players are only allowed to deviate unilaterally
(as in NE), it is known that allowing mixed and pure
deviations is equivalent. In contrast to NE, a pure
SE might not be preserved when mixed deviations are
allowed.6 We will show that when mixed deviations are
allowed, many job scheduling games do not have a SE.

We will use the notation πJ(i) to denote the prob-
ability that player J chooses machine Mi and let the
joint strategy be π = (π1, . . . , πn). The following exam-
ple shows a pure SE, in a job scheduling game, which is
not preserved when mixed deviations are allowed:

Example 3.2. Consider 2 identical machines and 3
unit jobs, J1, J2 and J3. In any NE with pure strategies,
two jobs are assigned to one machine, while the third is
assigned to the other machine. Clearly, this is also a
SE. WLOG, we assume J1 and J2 are assigned to M1,
and J3 to M2 in s. Consider a coalition Γ consisting of
J1 and J2, where the mixed deviations are π1 = π2 =
(3
4 , 1

4 ). The original load on M1 in s is 2. After the
deviation, J1 and J2 observe an expected load of 1 7

8 .
Since both players improve their costs, there is no pure
NE that is a 2-SE.

Although Example 3.2 shows that there is no pure
SE when mixed deviations are allowed, in the above
example there is a mixed SE.7 However, in many cases

6Rozenfeld and Tennedholtz [20] consider an even stronger
solution concept of correlated equilibria, and have shown that in
a congestion game, it is possible that there is no strong correlated
equilibrium in mixed strategies.

7The SE has π1 = (1, 0), π2 = (0, 1) and π3 = (1/2, 1/2).

allowing mixed deviations by a coalition eliminates all
NE. The following theorem proves that this occurs even
for identical machines and unit size jobs.

Theorem 3.8. For m ≥ 5 identical machines and n >
3m unit jobs, there is no 4-SE when mixed deviations
are allowed.

Theorem 3.8 required that the coalitions would be of
size 4, in order to demonstrate deviations with unit size
jobs. The following theorem shows that with weighted
jobs, there are settings where even coalitions of size as
small as 2 eliminate all NE.

Theorem 3.9. There exists a job scheduling game with
2 identical machines and 3 jobs, where no joint mixed
strategy is a 2-SE, when mixed deviations are allowed.�

4 Network Creation.

In this section we study a network creation game which
was introduced by [9]. The game models the tradeoff
of the agents (nodes) between buying links (edges) and
reducing the distances to other nodes. In this section
we discuss both the existence of a SE and the SPoA.

4.1 Network Creation Model. In the network cre-
ation game, there are n players, each of which is asso-
ciated with a separate network vertex. The players buy
edges to other nodes and the resulting network is an
undirected graph. The cost of each player consists of
two components. First, a player pays a cost of α > 0
per edge it buys. Second, a player incurs a distance cost
equal to the sum of the distances to the other nodes.

Formally, we represent the set of players by a vertex
set V = {1, . . . , n}. For a player v ∈ V , an action
sv ∈ Sv is a subset of the edges that include v, i.e.,
sv ⊂ {(v, u)|u ∈ V \ {v}}. The action set of player v is
Sv, which is the union of all the possible actions sv.

Given a joint action s = (s1, . . . , sn), let the
resulting graph G(s) = (V, E) consist of the edge set
E =

⋃

v∈V sv. Let δs(v, w) be the length of the shortest
path between v and w in G(s).

The cost for a player v under joint action s is cv(s),
and is composed from two parts. The buying cost is
Bs(v) = α|sv|, which charges α for each edge v buys.
The distance cost is Dists(v) =

∑

w∈V δs(v, w). The
cost for player v is cv(s) = Bs(v)+Dists(v). When clear
from the context we will omit the subscript s and use
δ(v, w), B(v), and Dist(v) rather than δs(v, w), Bs(v),
and Dists(v), respectively.

For a joint action s ∈ S, let the social cost be the
total cost of all players, i.e., cost(s) =

∑

v∈V cv(s), and
the optimal social cost is OPT = mins∈S cost(s).



Remark: In our analysis it will sometimes be conve-
nient to assume that the edges have a direction. A di-
rected edge (v, w) indicates that player v buys an edge
to w.

4.2 Equilibrium Existence. It was shown in [9]
that for α < 1 the clique is the social optimum and
also the unique NE. For 1 < α < 2, the clique is the
social optimum, but it is no longer a NE, and the star
is the worst NE. Finally, for α ≥ 2, the star is the social
optimum, and also a NE, but not a unique one. In this
section we analyze the existence of SE for the different
values of α. Our main positive result is that for any
α ≥ 2 there is a SE.

Theorem 4.1. Let s∗ be a joint action where s∗r = ∅
and s∗v = {(v, r)}, for v 6= r (i.e., G(s∗) is a star in
which all the nodes buy edges to the root r). For α ≥ 2,
the joint action s∗ is a SE.

Proof. For contradiction, assume there exists a coalition
Γ and a deviation s′, in which all nodes in Γ strictly gain
from a deviation to s′. Clearly, r 6∈ Γ, since in s∗ the
root r has the lowest possible cost (it does not buy any
edges and enjoys the minimum possible distance cost,
i.e., distance of 1 to all nodes). For any node v ∈ Γ,
let xv denote the number of its new outgoing edges,
and yv denote the number of its new incoming edges.
Obviously, all the new edges originate from nodes in the
coalition. Thus, it must hold that

∑

v∈Γ xv ≥ ∑

v∈Γ yv.
We separate the analysis to two cases:

Case (a): There exists a node v for which xv > yv.
If v does not remove its original edge to r, the change
in v’s cost is αxv − (xv + yv) ≥ αxv − 2xv + 1 which
is positive for α ≥ 2 (which implies that the cost of v
increased). If v removes its edge to r, the change in v’s
cost is αxv − (xv + yv) − α + 1 ≥ αxv − 2xv + 2 − α =
(xv − 1)(α − 2) ≥ 0, since x ≥ 1 and α ≥ 2.

Case (b): For every v ∈ Γ, xv = yv. If v does not
remove its original edge to r, B(v) increases by αxv, and
Dist(v) decreases by xv +yv. Therefore, v’s cost change
is αxv − (xv + yv) = (α − 2)xv ≥ 0, since α ≥ 2. Thus,
if xv = yv, v may improve its cost only if it removes the
edge to r. However, if all the nodes in Γ remove their
edges to r, the only way for v to remain connected to
r (to prevent a distance cost of ∞) is to buy an edge
to a node u 6∈ Γ. In such a case,

∑

v∈Γ xv >
∑

v∈Γ yv,
hence, there exists a node v ∈ Γ for which xv > yv.
In each case, some v ∈ Γ does not strictly gain from
joining the coalition, and therefore s∗ is a SE. �

Theorem 4.1 shows that for α ≥ 2, there exists a
star that is a SE. Similarly, we can show that a star
in which the root buys edges to all the nodes is also a

SE. We conjecture that for α ≥ 2, any star is a SE,
regardless of how the edges are bought (we can prove
this conjecture only for α ≥ n − 2).

For α < 1, we establish the following:

Theorem 4.2. For α < 1, s is a SE iff G(s) is a clique.
For α = 1, if G(s) is a clique, then s is a SE.

Proof. For α < 1 every NE is a clique [9], which implies
that if s is a SE then G(s) is a clique. For the other
direction (which applies to α ≤ 1), consider a joint
action s such that G = G(s) is a clique. Suppose that
there exists a coalition Γ that deviates to s′, such that
the obtained graph is G′ = G(s′), which is possibly
not a clique. Let x denote the number of edges that are
“missing” from the clique, i.e., x = |EG|−|EG′ |. (If G′ is
a clique then x = 0.) For each missing edge, there exists
a node v ∈ Γ whose buying cost, B(v), decreased by
α ≤ 1. Thus

∑

v∈Γ B(v) decreased by exactly αx ≤ x.
However, for each missing edge, there exists at least one
node in Γ whose distance cost increased by 1. Thus,
∑

v∈Γ Dist(v) increased by at least x. Therefore, the
sum of the costs for nodes in the coalition has not
decreased. Therefore, there exists a node u ∈ Γ such
that B(u)+Dist(u) has not decreased. In contradiction
to the assumption that every v ∈ Γ gains from the
deviation to s′. �

An immediate corollary from Theorems 4.1 and 4.2
is that for any α /∈ (1, 2) we have SPoS = 1.

We next show that for α ∈ (1, 2) there is no SE
(even if we limit the coalition size to 3).

Theorem 4.3. For any α ∈ (1, 2), and any n ≥ 7,
there does not exist any 3-SE.

The proof of Theorem 4.3 is quite involved. In the
following, we will attempt to give a very high level
view of the proof. Consider a graph G(s) that has
an independent set of size at least 3. We can build a
coalition composed of three nodes from the independent
set, each buying one edge (and thus forming a triangle).
Each node paid α < 2 and its distance to the other two
nodes is reduced by at least 2. Therefore, all the three
nodes gain from this deviation. So our first observation
is that in any 3-SE there cannot exist an independent
set of size 3 (Lemma B.1). Next we show that there
cannot exist any triangle in G(s) (Lemma B.3). Based
on those two lemmas, we show that the degree of each
node must be at least n − 3 (Lemma B.4). Finally, we
show that in such a graph, the removal of any edge is
beneficial to its buyer.

To complete the analysis for α ∈ (1, 2), it is easy
to see that for n = 2 any single edge is a SE, and for



n = 3 any tree is a SE. In addition, one can verify that
for n = 4, any ring in which each node buys a single
edge is a SE. For n = 5, 6, we show that there does not
exist any SE. Interestingly enough, while coalitions of
size 3 or more excludes any SE, we show that 2-SE do
exist for any number of players.

4.3 Strong Price of Anarchy. In this section we
bound the SPoA for α ≥ 2. The analysis for smaller
values of α is trivial 8.

Similarly to [1], we first show that the PoA is
dominated by the distance cost.

Lemma 4.1. Let s be a NE. For any node v we have
cost(s) ≤ (n − 1)(2α + n − 1 + Dist(v)).�

Our main result is the following.

Theorem 4.4. For any α ≥ 2 and any n, we have
SPoA≤ 2.

The proof of Theorem 4.4 follows directly from the
next two lemmas.

Lemma 4.2. Let s be a NE. Assume that for every node
v, such that sv 6= ∅, we have that Dist(v) > 3n − 5.
Then s is not a SE.

Proof. Let Γ be the set of all nodes v that bought some
edge in s, i.e., Γ = {v|sv 6= ∅}. We will show that Γ can
deviate, such that all its members would benefit from a
deviation. In the deviation we build a tree T in which
each node in Γ buys at most the same number of edges
as in s and it strictly reduces the distances to other
nodes, i.e., every v ∈ Γ lowers its cost in the deviation.

Assume that there is some node r 6∈ Γ. Let T be
the following tree. The root of the tree is r. The nodes
in the first level are the nodes in Γ. The nodes in the
second level are the remaining n − |Γ| − 1 nodes. Each
node in Γ buys an edge to the root r and at most |sv|−1
edges to nodes in the second level (the leaves). Clearly
the number of edges that each node in Γ bought can
only decrease. To see that we have enough edges to
connect all the n − |Γ| − 1 leaves, note that in s at
least n − 1 edges are bought (otherwise some node is
disconnected, and all the nodes have infinite cost). We
need only n − 1 edges to connect all the nodes in T , so
we have a sufficient number of edges.

Fix a node v ∈ Γ. The distances Dist(v) in T is
at most 1 + 2(|Γ| − 1) + 3(n − |Γ| − 1) ≤ 3n − 5, since

8Recall that for α < 1 the clique is the only SE. For α = 1, it
is easy to see that PoA < 2, since in any NE the distance between
any two nodes cannot exceed 2. For α ∈ (1, 2) we do not have
any SE for n ≥ 5.

|Γ| ≥ 1. Hence, node v improved on its distance cost
in s and did not increase its buying cost. Therefore, in
this case, s is not a SE.

In the case in which there is no r 6∈ Γ we can select
any node to be the root and the remaining nodes will
buy an edge to it. Since all the nodes bought at least
one edge, the cost of buying edges can only decrease
per node. The distances of a node v is now at most
2(n − 2) + 1 ≤ 3n − 5 for n ≥ 2, hence v improved on
its distance cost in s.�

Lemma 4.3. Let s be a NE. Assume that for some node
v, such that sv 6= ∅, we have that Dist(v) ≤ 3n − 5.

Then cost(s)
cost(OPT ) ≤ 2.

Proof. By Lemma 4.1 we have that

cost(s) ≤ (n − 1)(2α + n − 1 + Dist(v))

≤ (n − 1)(2α + n − 1 + 3n− 5)

= 2(n − 1)(α + 2n − 3)

For OPT we have: cost(OPT ) = α(n − 1) + (n −
1) (2(n − 2) + 1)+(n−1) = (n−1)(α+2n−2) and the
ratio is at most 2.�
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A Job Scheduling.

Theorem 3.2 For any job scheduling game with 2
unrelated machines and n jobs, SPoA ≤ 2.

Proof. Let s be a SE and, WLOG, L2(s) ≥ L1(s).
In the case that for every J ∈ Bs

2 we have w2(J) ≤
w1(J), by Inequality (3.2), L2(s) ≤ 2OPT , and we are
done. Otherwise, there exists some J ∈ Bs

2 such that
w2(J) > w1(J). Since s is a SE, it is in particular a NE,
which means that no job on M2 can gain by unilaterally
migrating to M1. Therefore, L2(s) ≤ L1(s)+w1(J). By

Inequality (3.1), we get:

L2(s) ≤ L1(s) + OPT(1.3)

The following are the possible cases relating OPT , L1(s)
and L2(s):

1. if L1(s) ≤ L2(s) < OPT , this is impossible (a
contradiction to the minimality of OPT ).

2. if OPT < L1(s) ≤ L2(s), then s is not resilient to
a coalition of size n (since by deviating to OPT all
the players strictly gain).

3. If L1(s) ≤ OPT ≤ L2(s), then from Inequal-
ity (1.3), we get: L2(s) ≤ L1(s) + OPT ≤ 2OPT .

Taking the maximum over all cases, we get: SPoA ≤ 2.
�

Mixed Deviations. In the remainder of this appendix
we discuss the case of mixed deviations. We start with
the following lemma which greatly limits the structure
of a mixed SE.

Lemma A.1. Given a k-SE with mixed strategies π, for
some k ≥ 2, let J1 and J2 be two jobs with strictly mixed
strategies. The supports of π1 and π2 must be disjoint.�

Theorem 3.8 For m ≥ 5 identical machines and
n > 3m unit jobs, there is no 4-SE, if mixed deviations
are allowed.

Proof. We first consider equilibria with pure strategies.
Since all jobs are unit sized, the only equilibrium with
pure strategies is when the load on each machines is
either ⌊ n

m⌋ or ⌈ n
m⌉.

Let k = ⌈ n
m⌉. Since n > 3m, there exists a machine

with at least 4 jobs assigned to it. WLOG, assume M1

is one of these machines, and J1, J2, J3, J4 are four of
the jobs that chose it.

Consider the following mixed deviation of these
jobs:

π1 =

(

1

2
,
1

2
, 0, 0, 0, 0, . . . , 0

)

π2 =

(

1

2
, 0,

1

2
, 0, 0, 0, . . . , 0

)

π3 =

(

1

2
, 0, 0,

1

2
, 0, 0, . . . , 0

)

π4 =

(

1

2
, 0, 0, 0,

1

2
, 0, . . . , 0

)



The strategies of the remaining jobs are unchanged. In
the original joint strategy, the load observed by each of
these jobs is k. The expected load observed by each of

the first four jobs in π is at most 1 + (k−2.5)+k
2 = k − 1

4 .
Since all jobs in the coalition benefit from the deviation,
no pure NE in this setting is a 4-SE.

We now consider equilibria with mixed strategies.
Clearly, the expected load on each machine has to be
between k − 1 and k. By Lemma A.1, on each machine
there is at most one job that has a mixed strategy.

WLOG, assume M1 is the most loaded machine. If
there are 4 jobs that purely choose M1 as their strategy,
then the same deviation described for the pure case
holds for these jobs. Otherwise, k = 4 and there are 3
jobs that purely choose M1, and another job that has a
mixed strategy and M1 is in its support vector. WLOG,
assume J1 is the job on M1 that has a mixed strategy
and that M2 is one of the other machines in its support.
Let p denote the probability that J1 chooses M1. We
also assume that the other jobs that choose M1 are J2,
J3 and J4 (the expected load on M1 is 3 + p).

Consider the following mixed deviation π of these
jobs:

π1 =
(p

2
, 1 − p

2
, 0, 0, 0, 0, . . . , 0

)

π2 =

(

1

2
, 0,

1

2
, 0, 0, 0, . . . , 0

)

π3 =

(

1

2
, 0, 0,

1

2
, 0, 0, . . . , 0

)

π4 =

(

1

2
, 0, 0, 0,

1

2
, 0, . . . , 0

)

The strategies of the remaining jobs are unchanged.
In the original joint strategy, the load observed by
J1 is 4, and the deviation decreases it to 1 +
(

p
2 · (3 − 5

2 ) +
(

1 − p
2

)

3
)

= 4 − 3p
4 . As for the other

jobs in the coalition, in the original joint strategy, the
expected load observed by each job is 3 + p. In π,
the expected load observed by each job is at most

1+ (1+p/2)+(3+p)
2 = 3+ 3p

4 . Since all jobs in the coalition
benefit from the deviation, no mixed NE in this setting
is a 4-SE. �

B Network Creation.

Theorem 4.3 For any α ∈ (1, 2), and any n ≥ 7, there
does not exist any 3-SE.

Proof. We first establish the following sequence of lem-
mas.

u3

w2v

u1

u2

Figure 4: Sketch of the proof of Lemma B.3. By
Lemma B.2, nodes w2 and v must exist. By Lemma B.1,
there must exist an edge between v and w2. For α ∈ (1, 2),
it is beneficial for u2 to remove the edge (u2, u3).

Lemma B.1. For α ∈ (1, 2), in any 3-SE, there does
not exist any independent set of size 3 in G(s), where s
is a SE.�

Lemma B.2. For α ∈ (1, 2), in any NE s, if there exists
a set of nodes U that form a clique in G(s), then if
u1 ∈ U buys the edge to u2 ∈ U , there must exists a
node w2 that is directly connected to u2 but not to any
other node u ∈ U \ {u2}.�

We use the above lemma to prove that a 3-SE
cannot include triangles.

Lemma B.3. For α ∈ (1, 2), in any 3-SE s, there does
not exist any triangle in G(s).�

Using the above lemmas, we derive a lower bound
on the degree of each node in any 3-SE. Let deg(v, G)
be the degree of node v in the graph G.

Lemma B.4. For α ∈ (1, 2), in any 3-SE s, for every
v, we have deg(v, G(s)) ≥ n − 3.�

We now complete the proof of the theorem. By
Lemma B.4, the degree of each node in any 3-SE must
be at least n − 3. Then, for n ≥ 7, any edge removal
can strictly decrease the cost of the node that bought it.
Consider the edge (w, u). If w removes the edge, B(w)
decreases by α > 1. We claim that Dist(w) increases
only by 1 (i.e., the only effect is that δ(w, u) increases
from 1 to 2). To see this, note that for n ≥ 7, if the
degree of any node is at least n−3, then after removing
(w, u), their degrees are at least n − 4, and since for
any n ≥ 7, it holds that n − 4 + n − 4 > n − 2, they
must have a common neighbor. In addition, for any
node u′ 6= w, u, both w and u′ must have a common
neighbor, since n − 4 + n − 3 > n − 2 (where n − 3
and n − 4 are the minimal respective degrees of u′ and
w). Therefore, by removing the edge (w, u), Dist(w)
increases by 1, while B(w) decreases by α > 1, so w
strictly gains from the removal. �


