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ABSTRACT
In this work we show how to use efficient online trading al-
gorithms to price the current value of financial instruments,
such as an option. We derive both upper and lower bounds
for pricing an option, using online trading algorithms. Our
bounds depend on very minimal assumptions and are mainly
derived assuming that there are no arbitrage opportunities.

General Terms
Algorithms, Theory, Economics

Categories and Subject Descriptors
I.2.6 [Learning]; F.2.2 [Nonnumerical Algorithms]; J.4
[Economics]
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1. INTRODUCTION
Options have been used from the time of Ancient Romans,

Grecians, and Phoenicians for risk management. A call op-
tion is a contract between two parties (buyer and seller, or
writer) that provides the buyer with insurance against ap-
preciation in the price of a risky asset. It is used to hedge
risk associated with financial assets (such as equities and
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currencies) as well as non-financial assets (commodities such
as oil).

A (European) call option on a risky asset gives you the
right but not the obligation to buy a risky asset on a pre-
specified date, T , at a pre-specified price, K, referred to as
the strike price. For example, a T = 1-year call option on
IBM with a strike price K = $100 gives you the right but
not the obligation to buy an IBM share from the writer of
the option for a price of $100. If we denote the value of the
risky asset at time t by St then at time T the payoff of the
call option is given by:

max{ST − K, 0}.

A fundamental question in finance is to determine the value
of such an option today. This research question (which has
many practical implications) has been a source of one of
the main achievements in economics. Black and Scholes [3]
studied this question in a path breaking paper that was later
recognized by the 1997 Noble Prize. They show how one
can replicate the payoff of an option using a dynamic trad-
ing strategy; based on this they provide an exact current
valuation of the option. Their approach uses a no arbitrage
condition and is based on the assumption that the logarithm
of the stock price follows a certain continuous time version
of a random walk1. They also assume that the stock and a
risk free bond can be traded continuously.

Our bounds use a no arbitrage assumption, which implies
the following. If there are two securities A1 and A2, such
that the payoff of A1 always dominates the payoff of A2 (on
any future outcome), then the current value of A1 is at least
that of A2. (Intuitively, one can always buy A1 rather than
A2 and guarantee at least the same payoff.)

The Black and Scholes assumption on the stock price
process is an important limitation of the Black and Scholes
model. In practice share prices exhibit behavior that is not
consistent with the simple random walk assumption made
by the Black and Scholes model. Most importantly, trading
is discrete and the price paths are discontinuous and include
price jumps. Since Black and Scholes, there has been much
research both in extending the results to alternative stock
price processes, and in examining the empirical performance
of the resulting valuation models. (We review briefly some
of the related finance research in the Appendix.) The main
goal of our work is to provide robust upper and lower bounds
for European call options. The bounds we provide are ro-
bust in the sense that we do not restrict the form of the

1More specifically they assume geometric Brownian motion
with a drift; for more details see, for example, [12].



stock price process, we do not require continuous trading,
and we allow for price jumps.

At this point it would be worthwhile to define our nota-
tion. We assume that the risky asset at time t is valued at
St = St−1(1 + rt), and that the returns rt are bounded by
some constant M , i.e., |rt| ≤ M . We call the sequence of
rt’s the price path. Let C(K, T ) be the current price of an
option with a strike price K that matures at time T , i.e., at
time T the option payoff is max{ST −K, 0}. We also assume
a risk free asset is available and it pays a constant interest
rate rf . For convenience, we normalize the interest rate to
be zero (and later show how to relax this assumption).

We make two assumptions regarding the price path. Our
main assumption bounds the quadratic variation of the risky
asset, i.e.,

P
t r2

t . Specifically for our upper bound on the
option price we use an assumption of the form: 2

TX
t=1

r2
t < Q.

We make an additional assumption regarding to the maxi-
mal single-period return of the stock by restricting |rt| ≤ M .
However this bound is weak and has a very mild effect on our
price bounds for the option. (Black and Scholes effectively
restrict M = 0 as they require continuous price paths.)

Unlike the Black and Scholes model, in our case we make
no further assumptions on the underlying process, and al-
low for both price jumps and discreteness in trading. The
advantages of our bounds is that they apply in a very ad-
versarial setting, where the only restriction on the adversary
is regarding the maximum quadratic variation and maximal
single-period return. Another advantage is that the bounds
are dependant on the quadratic variation in discrete time,
which imply that if we make the trading less frequent our
bounds do not deteriorate significantly.

When examining our bound it is important to note that
without bounding the quadratic variation there is little we
can say about the value of the call option. As Merton [27]
shows one can only say that the value of a call option cannot
be higher than the current share price S0 and cannot be
negative or lower than the difference between the current
share price and the strike price. Hence, the bound for the
value of a call option is given by:

C(K, T ) ∈ [max {0, S0 − K} , S0] .

The above bound is based on an arbitrage condition; if the
price of the call option is outside this range then one can
construct an arbitrage strategy that is guaranteed to make
money. These bounds are tight as there does not exist an
arbitrage for prices in this set if we do not put any restric-
tion on the price path of the risky asset. In this work we
demonstrate that it is possible to significantly improve on
these bounds by assuming an upper bound on the quadratic
variation and the maximal single-period return.

Our approach is based on online algorithms and in par-
ticular the best expert problem [26, 5, 19, 1, 6] and regret
minimization ideas [17, 18, 20, 25]. To illustrate our ap-
proach consider the following example. Suppose the current
2The quadratic variation is closely related to the volatil-
ity parameter in the Black and Scholes model. In the
Black-Scholes setting the quadratic variation converges to
the stock’s volatility when we observe the stock price at
finer and finer time increments; hence, in practice quadratic
variation is often used to estimate volatility.

IBM share price is $100 and the risk free interest rate is zero.
Assume that we have an online trading algorithm such that
if we start with $100 then at time T our payoff will exceed
max {80, 0.8ST }, where ST denotes IBM share price at time
T . (This can be viewed as a loss of not more than 20% com-
pared to the best asset in hindsight, namely max {100, ST }.)
By scaling our online trading algorithm we can conclude that
starting with $125 our algorithm would have a payoff that
exceeds max {100, ST }. If we borrow $100 to initiate our
online algorithm, then after paying off our (zero interest)
loan, the final payoff of our online algorithm would exceeds
max{0, ST − 100}, which is identical to the payoff of a call
option on IBM with a strike price of $100. Thus, to avoid
arbitrage, the value of the call option cannot exceed the
upfront cost of $25 of the online trading algorithm.

In the above example the quality of our bound is deter-
mined by the loss of our online trading algorithm relative
to best static decision (which is either to buy the stock or
not to buy it). A loss of 20% translated into a bound of $25
and a better guarantee would translate into a lower loss and
hence better (i.e., lower) upper bound. In our analysis we
use online algorithms to minimize the loss given a bound on
the quadratic variation of the risky asset.

As a first step in constructing our upper bound, we derive
an online trading algorithm generic that has a relatively
small loss. The generic online trading algorithm, assuming
that the quadratic variation is bounded by Q, ends with
value GT , and has a guarantee of

ln(GT ) ≥

max{ln(ST ) − 1

η
ln

1

w
− (η − 1)Q ,−1

η
ln

1

1 − w
} ,

where we normalize S0 = 1, and both w ∈ (0, 1) and η ≥ 1
are parameters of the algorithm.

Given the generic online trading algorithm we derive the
upper bound for the price of the call option. By varying
the parameters of the algorithm, we are able to produce
upper bounds for the entire range of possible strike prices.
We also show how to incorporate non-zero interest rates in
our model. Furthermore, we show that we can integrate
other assumptions to get improved bounds, for example by
assuming an upper or lower bound on the final risky asset
price ST . Finally, we discuss and compare our bounds to
that of Black and Scholes.3

We study the optimal bound that one can derive for a
given maximal single-period return M and a quadratic vari-
ation bounded by Q. We model the optimal bound as a
finite horizon zero-sum game. Using basic properties from
game theory, as well as the no arbitrage condition, we are
able to significantly simplify it. Using a dynamic program-
ming approach for the simplified form, we derive a polyno-
mial time approximation for this optimal bound (given M ,
Q and T ). The optimal bound is interesting both from a
finance perspective and a computational perspective. From
the finance perspective it allows us to compare the result-
ing bound with existing evaluations, most importantly the
Black and Scholes one. From a computational perspective it
gives us a meaningful benchmark for our online algorithm.

3One of the main advantage of our bounds is that since
they depend on the quadratic variation, they allow for a
very natural comparison to the standard literature in finance
which uses volatility.



We also derive a universal lower bound on the price of
an option. Specifically, we show that if the price path is
guaranteed to have a quadratic variation of at least Qmin,
then the value of the option must exceed this lower bound.4

In order to derive the lower bound we need to demonstrate
an online trading strategy that would have a “guaranteed
loss”, regardless of the future outcomes. Based on such an
online trading strategy and the no arbitrage assumption, we
derive our lower bound. Note that our lower bound is not
limited to a specific instance of prices but rather provides a
no-arbitrage lower bound.

As mentioned earlier, our research builds on existing re-
sults in online learning and in particular regret minimization.
The regret minimization problem has been extensively stud-
ied in the computational learning theory community and
tight bounds have been derived on its behavior [26, 5, 19,
1]. In a nutshell, one can reach almost the gain of the best
action, assuming that we are allowed to output a linear com-
bination of the actions (or alternatively allowed to use ran-
domization). More precisely, if the gain of the best action
is G, then there exists an online algorithm whose gain is at
least G − O(

√
G log N + log N).

Common to much of the previous computer science work
on online trading algorithms is the goal of beating the mar-
ket. To do so requires designing an online algorithm that can
have a guarantee of performing very well in the market, even
under adversarial conditions. Much of the Finance literature
assumes that assets are priced fairly, and at the very least
assumes that there are no arbitrage opportunities, which
implies that no online algorithm can “beat the market”. A
significant conceptual contribution of our work, to the com-
puter science view point, is that efficient online algorithms
can play an important role even if we assume no arbitrage
in the market prices. Our goal is much more modest, we try
to price fairly a given financial instrument, and to this end
we do need to design efficient online algorithms. Another
observation is regarding the static adversary in the online
model. Essentially, an option is an “insurance” contract to
get the performance of a static adversary, which in hind-
sight selects between the risky and risk free asset. While in
much of the competitive online literature a static adversary
is viewed as an extremely limited adversary, in the finance
setting it has both a very natural interpretation and very
significant applications.

We briefly outline the main research direction in online al-
gorithms regarding financial problems. The universal port-
folio, proposed by [9] and latter studied in [4, 24, 33, 21, 10,
11, 35], has been one of the well studied finance problem in
the information theory and computer science literature. In
this setting the aim is to devise an online trading algorithm
that is competitive against any constant rebalancing port-
folio. Another finance-motivated problem that has received
considerable attention is the one-way trading problem, first
studied in [14], and latter in [7, 13, 22]. In this problem
one needs, for example, to change a fixed amount of Yen to
Dollars. The aim is to compare well with any trading strat-
egy, even one that knows the future prices and trades at the
best price. The results derive competitive online trading
algorithms, and are highly related to search problems. Ex-

4Note that there are two types of lower bounds. The first
exhibits some scenario for the lower bound, while the second
type claims that in any scenario the lower bound holds. Our
universal lower bound is of the second type.

tensions of the one way trading to two way trading appear in
[30, 7, 23], where various limitations are assumed regarding
the adversary. (Part of the assumptions are aimed at either
bounding the offline benefit or guaranteeing that the online
algorithm will not lose any money.)

2. MODEL
We consider a discrete-time finite-horizon model in which

time is denote by t ∈ {0, 1, . . . , T}. There is a risky asset
(e.g., stock) whose value (price) at time t is given by St. We
normalize the initial value to one, S0 = 1, and assume that
the asset does not pay any dividends. We denote by rt the
return between t − 1 and t so that St = St−1(1 + rt). We
call r1, . . . , rT the price path .

In addition to the risky asset we have a risk free asset (e.g.,
bond). We denote the price of the risk free asset at time t
by Bt, where B0 = 1. We assume that the risk free asset
carries a fixed interest rf , i.e., Bt+1 = Bt(1+rf ) = (1+rf )t.
Unless otherwise stated, we assume that the risk free rate is
zero, i.e., rf = 0, which implies that Bt = 1 for all t.

A financial security X has for each price path r1, ..., rT

a payoff of X(r1, ..., rT ). For example, an option can be
described as a financial security.

An online trading algorithm starting with $c in cash, has
initial value G0 = c. At each period it distributes its current
value Gt, between the assets, investing a fraction xt in the
risky asset and 1−xt in the risk free asset. Since we assume
zero interest rate, at time t+1 its value is Gt+1 = (xtGt)(1+
rt)+(1−xt)Gt = Gt(1+xtrt). Its final value is GT . We refer
to a fixed portfolio when the online trading algorithm sets
its investments at time t = 0, and does not trade anymore.
Formally, it implies that xt+1 = xt(1 + rt)/(1 + xtrt), since
the value of the risky asset changes.

Let C(K, T ) be the value, at time t = 0, of an option
whose strike price is K that matures at time T . This is the
present value (at t = 0) of a time T call option with strike
price K. At time T the payoff of the call option is given by
max{0, ST − K}.

A price path r1, . . . , rT is a (Q, M) price path if
PT

t=1 r2
t

< Q and |rt| < M . In the case of a risky asset and a risk
free asset, a (Q,M) price path means that both the price
paths, of the risky asset and the risk free asset, are (Q, M)
price path. (For the risk free asset this means that r2

fT < Q
and rf < M , which holds trivially for rf = 0.) We call Q
the maximum realized quadratic variation of the risky asset
and M the maximal single period return.
No Arbitrage Assumption: We assume that there is no
arbitrage in the prices. Namely, for any two online trading
algorithms (or financial securities) A1 and A2, that start
with cash $c1 and $c2, if for any price path the future payoff
of A1 is always at least that of A2, then c1 ≥ c2. (If this were
not true and c1 < c2, assuming that one can sell short assets
(and strategies), there would be an arbitrage opportunity:
Investing in A1 and shorting A2 would lead to a time 0 gain
of c2 − c1 without the possibility of loss in the future.)

We will use the no arbitrage assumption on a restricted
set of price paths, such as (Q, M) price paths. This implies
that any price path which is not in the set is impossible, and
the prices reflect this knowledge.

3. AN ONLINE TRADING STRATEGY
In this section we introduce an online trading algorithm



generic. The online algorithm will trade using N different
assets, and its goal is to have its value approximate the value
of the best asset.5 Later we shall see how a simple applica-
tion of generic indeed yields the desired upper bound on
the price of the option.
Notation: We denote by Vi,t the price of asset i at time t.
We normalize the initial value of each asset to be one, i.e.,
Vi,0 = 1. The value at time t satisfies Vi,t = Vi,t−1(1 + ri,t),
where ri,t ∈ [−M, +M ] is the immediate return of asset i at
time t.
Online Trading Algorithm: Our online trading algo-
rithm, called generic, maintains weights, {wi,t}. InitiallyP

i wi,0 = 1, where the exact setting is a parameter of the
algorithm. The algorithm uses the update rule wi,t+1 =
wi,t(1 + ηri,t), for some parameter η ≥ 0. At time t the
algorithm forms a portfolio where the fraction of investment
in asset i is xi,t = wi,t/Wt where Wt =

P
i wi,t.

Algorithm’s Value: The value of the assets that the online
trading algorithm generic holds at time t is denoted by
Gt. Initially, G0 = 1, and Gt = Gt−1(1 + rG,t), where
the immediate return on our portfolio at time t is rG,t =PN

i=1 xi,tri,t. Another way of describing the evolution of the

value is: Gt =
PN

i=1(xi,tGt−1)(1 + ri,t) = Gt−1(1 + rG,t).
The following theorem, whose proof appears in the Appen-

dix, summarizes the performance of our online algorithm,
generic.

Theorem 1. The online trading algorithm generic, with

parameters: η ∈
h
1, 1

M
(1 − 1

2(1−M)
)
i
, and {wi,0}, whereP

i wi,0 = 1, guarantees that for any asset i,

ln(GT ) ≥ ln(Vi,T ) − 1

η
ln

1

wi,0
− (η − 1)Qi ,

where Qi =
PT

t=1 r2
i,t, and |ri,t| < M < 1 −

√
2/2 ≈ 0.3.

Our option pricing results will rely on an application of
the above theorem to a setting with two assets: a risky asset
and a risky free asset. With a slight abuse of notation we
let w0 denote the amount invested in the risky asset and
assume that we invest 1−w0 in the risk free asset. Since we
assume a zero interest rate we have Qf = 0 for the risk free
asset and conclude that:

Corollary 2. The online trading algorithm generic,
given parameters: η ∈ [1, 1

M
(1 − 1

2(1−M
)], and w0 ∈ (0, 1),

when applied to a risky asset and a risk free asset, guarantees
that

ln(GT ) ≥ max{ln(ST ) − 1

η
ln

1

w0
− (η − 1)Q ,

−1

η
ln

1

1 − w0
} ,

where Q =
PT

t=1 r2
t , and |rt| < M < 1 −

√
2/2 ≈ 0.3.

4. OPTION PRICING: UPPER BOUND
We define our upper bounds using an online trading algo-

rithm. Our bounds are based on an online trading algorithm
whose payoff always exceed the option payoff, provided we

5The algorithm and analysis is in the spirit of [6], however,
note that the model there is additive while the model here is
multiplicative, which requires a somewhat different analysis.

have a (Q,M) price path. The fact that this derives an up-
per bound on the price of an option would follow from the
no arbitrage assumption.

Definition 3. We say that c = Cu(K, Q,M, T ) is an
upper bound if there exists an online trading algorithm that
starts with $c and for all possible (Q,M) price paths its final
payoff, GT , satisfies: GT ≥ max {0, ST − K}.

As we shall discuss next, we actually examine an equiva-
lent guarantee as follows:

Definition 4. An online trading algorithm has an (α, β)
guarantee, if for any (Q,M) price path its final payoff, GT ,
satisfies GT ≥ max {α, βST }.

To gain some intuition it is better to first examine a very
simple trading strategy. Suppose we decide to use a buy
and hold strategy in which we invest a fraction β in the
risky asset and α = 1 − β in the risk free asset (and do not
trade anymore). The future payoff of this fixed portfolio,
GT , is

GT = α + βST ≥ max {α, βST }
This implies that we implemented an (α, β) guarantee for
β = 1 − α. Compare the above to the payoff of a fixed
portfolio of β call options each with a strike price of K = α

β
combined with α invested in the risk free asset. Such a
fixed portfolio yields at time T a payoff of exactly HT =
α + β max{0, ST − (α/β)} = max {α, βST }. By definition,
the current price of this fixed portfolio is α+βC(α

β
, T ). Since

HT ≤ GT , by the no arbitrage assumption, we have,

α + βC(
α

β
, T ) ≤ 1 ⇒ C(

α

β
, T ) ≤ 1 − α

β
= 1 = S0

As mentioned before, S0 is a simple known upper bound
on the option price. Our goal is to construct online trading
algorithm that starts with $1 and yields a future payoff that
exceeds: max {α, βST } , for some α + β > 1. Such an algo-
rithm yields a non trivial bound, as stated in the following
claim,

Claim 5. Assume all price paths are (Q,M) price paths.
An online trading algorithm with an (α, β) guarantee ensures
that for a call option with strike price K = α

β
, we have that

Cu(K, Q, M, T ) ≤ 1−α
β

= 1
β
− K.

We will use the generic online trading algorithm to gen-
erate our upper bounds for the value of the options. The
main feature of the generic algorithm is that it tries to
match the best of the underlying assets, which intuitively,
is what we need to generate our bound. From Corollary 2,
for a fixed quadratic variation bound Q, we have,

GT ≥ max {α (w0, η) , β (w0, η)ST }

for α(w0, η) = (1 − w0)
1/η and β(w0, η) = w

1/η
0 e−(η−1)Q.

Now consider the bound for a given strike price K. We
obtain this by solving:

β∗ (K) = max
η,w0

β (w0, η)

such thatα(w0,η)
β(w0,η)

= K and η ∈
h
1, 1

M
(1 − 1

2(1−M)
)
i
. One

can simplify this problem by using α(w0,η)
β(w0,η)

= K to solve for
w0:

w0 (η, K) =
1

1 + Kηe−η(η−1)Q
.



Hence, we need to solve the following maximization,

β∗ (K) = max
η

w0 (η, K)1/η e−(η−1)Q

such that η ∈
h
1, 1

M

�
1 − 1

2(1−M)

�i
Theorem 6. Assume that all price paths are (Q,M) price

paths and let β∗(K) be the solution to the above optimiza-
tion, then

C(K, T ) ≤ Cu(K, Q,M, T ) ≤ 1

β∗ (K)
− K

In order to gain better intuition and understanding re-
garding our upper bound we derived the following corollary
for the case of K = 1 (also referred to as an “at the money”
call option).

Corollary 7. Assume all price paths are (Q,M) price
paths, where M =

√
Q/6, then C(1, T ) ≤ Cu(1, Q, M, T ) =

Θ(
√

Q)

The lower bound is derived even in the case of one trading
period (i.e., T = 1 and r1 = ±M), while the upper bound
is derived from Theorem 6. In the Appendix we discuss
extensions of Theorem 6 to the case of positive interest rates
and (known) maximum and minimum prices.

5. OPTIMAL BOUNDS
In this section we sketch very briefly our results for de-

riving the optimal bound of an option given that the price
path is a (Q,M) price path. We start by modeling the opti-
mal bound as a zero-sum game between an investor (option
underwriter) and an adversary (the market). The investor
selects a strategy (buying and selling of shares) while the
adversary selects a (Q,M) price path. The cost to the in-
vestor is the difference between the payoff of the option on
the selected price path, and the payoff of its strategy. (The
investor would like to minimize its cost, while the adversary
would like to maximize it.)

While the game can be described as a one-shot game it
is more convenient to consider a dynamic (extensive form)
representation. In the start of each period the investor de-
cides how many shares to buy, ∆ (which can be also nega-
tive, meaning that it sells shares short), then the adversary
chooses the period return, r (or more precisely a random
variable r̃).

Formally, we consider the following recursive definition
for the function f(W,S, K, Q,M, T ), which bounds the in-
vestor’s cost when the investor starts with $W cash, the
stock price is S, the strike price is K, the maximum realized
quadratic variation is Q, the maximum single period return
is M , and the number of periods is T :
For T = 0: f(W,S, K, Q,M, 0) = max{S − K, 0} − W .
For T ≥ 1: f(W,S, K, Q,M, T ) = inf∆ supr̃∈Σ(Q,M)

E[f(W + r̃S∆, S(1 + r̃), K, Q − r̃2, M, T − 1)],
where ∆ ∈ R is the number of shares, r̃ is the random
variable that represents the next return, and Σ(Q, M) is
the set of random variables whose magnitude is bounded by
min(

√
Q, M).

We would like to simplify the definition of f both in order
to get a better insight and also in order to derive an efficient
algorithm for estimating f . (One problem is that the value

of ∆ is unbounded. To overcome this we would like to bound
∆, and in fact we will “eliminate” it.)

Our first step would be to show that the minimax theorem
applies to our game. For this we need to rely on a version of
the minimax theorem, due to Sion [34], and show that the
function f is continuous, quasi-concave in ∆ and r̃, and that
the space of distributions r̃ is compact under an appropriate
topology (C∗). This establishes the following,

f(W, S, K, Q, M, T ) = sup
r̃∈Σ(Q,M)

inf
∆

E[f(W + r̃S∆, S(1 + r̃), K, Q − r̃2, M, T − 1)] .

Next, we observe that f(W, S, K, Q, M, T ) = f(0, S, K, Q,
M, T ) − W and f(0, S, K, Q,M, T ) ∈ [0, S], which enables
us to show that the extremum values are in the domain, i.e.,

f(W, S, K, Q, M, T ) = max
r̃∈Σ(Q,M)

min
∆

E[f(0, S(1 + r̃), K, Q − r̃2, M, T − 1) − (W + r̃S∆)] .

We establish a martingale property for the adversary and
show that it has to select r̃ such that E[r̃] = 0. (Otherwise,
for any γ > 0 the investor can guarantee an increase of γ
in its portfolio value by setting ∆ = γ/E[r̃].) Notice that
once we have this martingale property, the influence of ∆
diminishes, and we have,

f(W, S, K, Q, M, T ) = max
r̃∈Σ(Q,M) s.t. E[r̃]=0

E[f(0, S(1 + r̃), K, Q − r̃2, M, T − 1) − W ] .

Additionally, it is sufficient to consider random variables r̃
whose support includes only two values, ru ∈ [0, min{M,√

Q}] and rd ∈ [−min{M,
√

Q}, 0]. This implies that the
value of f can be well approximated by discretization of
the values of ru and rd to O(T/ǫ) values. Using a dynamic
programming, on the discretized values of r̃, we establish,

Theorem 8. There exists an O(T 4/ǫ3) time algorithm A
such that |A(W,S, K, Q,M, T ) − f(W, S, K, Q,M, T )| ≤
ǫS.

6. A UNIVERSAL LOWER BOUND
In this section we derive a lower bound as a function of

the minimum realized volatility. It is rather straightforward
to derive a lower bound in a specific scenario with a given
volatility, an example is the Black and Scholes model pro-
vides such a bound since it derives the exact value of the
option given a specific stochastic model. In this section we
derive much stronger lower bounds. We derive a lower bound
for the price of an option assuming that every possible price
path has at least some minimum realized volatility Qmin.

Definition 9. We say that c = Cl(K, Qmin, M, T ) is a
lower bound for C(K, T ), if there exists an online trading al-
gorithm that starts with $c and its final payoff, GT , satisfies
GT ≤ max {0, ST − K}, for all possible price paths for the

risky asset that satisfy
PT

t=1 r2
t ≥ Qmin and maximal single

period return of M .

Again, we construct a strategy that provides an alterna-
tive but equivalent guarantee.

Claim 10. Assume that there exists an online trading al-
gorithm that starts with $1 and its final payoff is at most
max {α, βST }. Then C(α

β
, T ) ≥ Cl(α

β
, Qmin, M, T ) ≥ 1−α

β



Proof. Consider two online trading algorithms. Algo-
rithm A1, as stated in the claim, is an online trading al-
gorithm which starts with $1, and whose future payoff is
bounded by max{α, βST }. Algorithm A2 buys a fixed port-
folio of β call options each with a strike price K = α

β
plus $α

risk free asset. The future payoff of A2 is α+β ·max{0, ST −
(α/β)} = max{α, βST }. Since the payoffs of A2 dominates
the payoffs of A1, by the no arbitrage condition we have that
α + βC(α

β
, T ) ≥ 1, which proves the claim.

Our bound is interesting when it improves over the standard

lower bound, max{S0 − K, 0} = max
n
1 − α

β
, 0
o
; that is:

1 − α

β
> max{1 − α

β
, 0},

which holds when both α, β ∈ (0, 1). Note that one can
guarantee α = 0 and β = 1 by simply only investing in
the risky asset. It is our ability to guarantee that both
α < 1 and β < 1 simultaneously, that will generate interest-
ing bounds. Hence, the objective is very different from the
standard objective in online algorithms. We are interested
in guaranteeing a certain “loss” as opposed to guaranteeing
a maximal gain. In the Appendix we prove,

Theorem 11. Assume that the maximal single period re-
turn is M and that any price path has quadratic variation
at least Qmin, then

Cl(K = S0 = 1, Qmin, M, T ) ≥ 1 − α

α
,

where α = 1−(1−ρ/2)e−h(ρ,M)Qmin

1+(ρ/2)−e−h(ρ,M)Qmin
, h(ρ, M) = (1−ρ)2/ [2(1+

(1 − ρ)2)2(1 + M)2] ≤ 1/8 and ρ ∈ (0, 1).

An implication of the above theorem is the following lower
bound for a call option at the money (i.e., K = S0 = 1),

Corollary 12. Assume that the maximal single period
return is M = 0.25, and that any price path has quadratic
variation at least Qmin < 1, then C(1, T ) ≥ Cl(1, Qmin, M,
T ) = Qmin/10.

7. BLACK-SCHOLES: COMPARISON
It is interesting to compare the upper bounds on the op-

tion price given by the generic algorithm (Theorem 6), the
optimal bound (Theorem 8) and the Black-Scholes valua-
tion. By definition, the generic algorithm bound is larger
then the optimal bound, which is larger then the Black
and Scholes pricing6, however, the main empirical focus
is whether they are qualitatively and quantitatively simi-
lar. In Figure 1 we show an empirical comparison of the
bounds (where our maximum realized quadratic variation
corresponds to the volatility parameter in Black and Sc-
holes). As we can see from the graph, both our bounds are
similar in shape to the Black and Scholes pricing, and the
optimal bound is very close to the Black and Scholes pricing.

We would also like to discuss a more theoretical compar-
ison of the models. Formally the Black and Scholes model
is not nested in our model. This is due to the fact that

6The fact that the Black and Scholes price is not an up-
per bound, even if one fixes the quadratic variation, can be
shown in simple examples, even with T = 2.
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Figure 1: Graph comparing our upper bounds to

Black and Scholes using Q = (0.15)2, and M = 0.1.

Black and Scholes is a continuous time model while we con-
sider a discrete time model. Nevertheless one can overcome
this technical difference using the fact the Black and Scholes
model is a limit of discrete time models. Black and Scholes
model with volatility σ2 can be expressed as the limit of
binomial trees where the quadratic variation is Q = σ2 and
the single period returns are rt = ±

p
σ2/T , as T goes to

infinity. Since the bounds we derive do not depend on the
number of periods we can conclude that the Black and Sc-
holes price with volatility σ2 is not higher then our upper
bounds when σ2 is a bound on the quadratic variation.

One may wonder about the restriction of the quadratic
variation in the context of Black and Scholes. When we
look at a geometric Brownian motion at discrete intervals,
the increments are normally distributed which may suggest
that we allow for unbounded quadratic variation. However,
in such a case the discrete Black and Scholes trading strat-
egy fails to replicate the option payoff; moreover, the loss
is unbounded. A different way of saying this is that while
we can define limits of different sequences of discrete time
processes, only particular sequences yield the Black and Sc-
holes equation: i.e. binomial trees. At the continuous time
limit almost surely the path is continuous and has a fixed
quadratic variation.
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APPENDIX

A. LITERATURE REVIEW: FINANCE
While the Black-Scholes is one of the most useful formu-

las in economics, several empirical regularities have been
observed. In recent years there has been an extensive em-
pirical research that tests whether this formula holds in the
data. In general the formula seems to generate prices that
are too low. This effect is more pronounced for call option
whose strike price, K, is low. This effect is often referred
to as the ‘volatility smile’. As a response to these find-
ings, there has been active research (e.g., [29], [16] and [15])
trying to modify the Black and Scholes setting. These pa-
pers typically examine different stochastic processes than
assumed by Black and Scholes. The modifications include
jump processes and stochastic volatility models. The result
of our study will complement this analysis. Rather than fo-
cusing on a specific formulation for the stochastic process
we rely on a generic trading strategy that works with any
evolution for the risky asset as long as it satisfies some re-
quirements regarding the quadratic variation.

As a result of both academic and practical interest there
are several papers that study what restrictions one can im-
pose on the price of options. These papers are similar in
spirit to our work as the goal is to provide a robust bound
by relaxing the specific assumption made by Black and Sc-
holes. Mykland [28] considers a stochastic process that is
more general than what Black and Scholes assume: dSt =



σtStdWt + µtStdt, where the volatility, σt, is allowed to be
stochastic. In this case the market need not be complete7

and we might be unable to replicate an option payoff. Still
he shows that one can use the Black-Scholes price as an
upper bound if we take the volatility parameter to be the
upper bound over all realizations of the average stochastic
volatility. The reason for this can be traced to Merton’s ar-
gument [27] that if volatility is a known function of time, the
Black and Scholes formula holds using the average volatil-
ity. While such bounds generalize Black and Scholes in a
significant way they still impose significant restriction on
the stochastic process. For example, the price path is as-
sumed to be continuous so the stochastic price has no jumps;
such jumps were shown to be empirically important [29, 16,
15]. For example, the Merton observation fails in a discrete
time version of Black and Scholes; the ability to trade con-
tinuously is critical. Still the fact that [28], similar to our
methodology, relies on an upper bound over the quadratic
volatility, can dramatically improve the bounds compared
to the case in which one assumes an upper bound over the
instantaneous volatility (see for example [32]).

An alternative approach to that taken here is developed
by [2, 8], who strengthen the no-arbitrage condition by using
an equilibrium argument. Specifically they assume bounds
for the risk-reward ratio that should be achievable in the
market. Based on these bounds and existing market prices,
they can then determine upper and the lower bounds for
new securities that may be introduced into the market.

In a non-stochastic setting, Shafer and Vovk [31] derive
the Black and Scholes formula under different set of as-
sumptions in which the probabilistic assumptions are being
replaced by the existence of an additional derivative whose
payoff is determined by the volatility of the stock.

B. PROOFS FROM SECTION 3
We first establish the following technical lemma.

Lemma 13. Assuming that M ∈ (0, 1), r > −M , and

η ∈
h
1, 1

M
(1 − 1

2(1−M)
)
i

then:

η ln(1 + r) ≥ ln(1 + ηr) ≥ η ln(1 + r) − η(η − 1)r2

Proof. For the first inequality define a function

f1(r) = η ln(1 + r) − ln(1 + ηr)

We have f1(0) = 0, and

f ′
1(r) =

η

1 + r
− η

1 + ηr
=

η(η − 1)r

(1 + r)(1 + ηr)

Hence, for r > 0 then f ′
1(r) > 0 and for r < 0 we have

f ′
1(r) < 0. Therefore 0 is a minimum point of f1.
For the second inequality we have:

f2(r) = ln(1 + ηr) − η ln(1 + r) + η(η − 1)r2

Again, f2(0) = 0 and

f ′
2(r) =

η

1 + ηr
− η

1 + r
+ 2η(η − 1)r

We use a similar argument as before and claim that for r > 0
then f ′

2(r) > 0 and for r < 0 we have f ′
2(r) < 0. To show

7A complete market is one in which the existing assets allow
all possible gambles on future outcomes.

this we only need to verify that:

(1 + r)(1 + ηr) ≥ 1

2

For r > 0 this clearly holds so we focus on r < 0. In this
case, since the minimum of the expression is when r = −M ,
it is sufficient to guarantee that (1 − M)(1 − ηM) ≥ 1/2.
Solving for η we get,

η ≤ 1/2 − M

M(1 − M)
=

1

M
(1 − 1

2(1 − M)
),

and in addition we need that M < 1.

We now can prove the Theorem.
Proof of Theorem 1: For each i = 1, . . . , N we get

ln
WT+1

W1
≥ ln

wi,T+1

W1
= ln wi,0 + ln

TY
t=1

(1 + ηri,t)

= ln wi,0 +
TX

t=1

ln(1 + ηri,t)

≥ ln wi,0 +

TX
t=1

(η ln(1 + ri,t) − η(η − 1)r2
i,t)

= ln wi,0 + η ln(Vi) − η(η − 1)Qi

where Vi,T is the value of asset i at time T , and Qi =PT
t=1 r2

i,t.
On the other hand, using ln(1 + ηz) ≤ η ln(1 + z),

ln
WT+1

W1
=

TX
t=1

ln
Wt+1

Wt

=
TX

t=1

ln
NX

i=1

(1 + ηri,t)xi,t

=

TX
t=1

ln(1 + η

NX
i=1

ri,txi,t)

=

TX
t=1

ln(1 + ηrG,t)

≤
TX

t=1

η ln(1 + rG,t)

= η ln(GT ) .

Combining the two inequalities and dividing by η ≥ 1, we
get

ln(GT ) ≥ ln wi,0

η
+ ln(Vi,T ) − (η − 1)Qi

C. UPPER BOUND: EXTENSIONS
In this Appendix we outline a few interesting extension

of the basic model, and sketch how to handle them in our
framework.
Positive interest rate: We have assumed so far that the
interest rate is zero, we now show how to handle positive
interest rates; specifically we assume that the risk free rate
is given by rf > 0. There are several possible ways to handle



this case and we sketch only the most straightforward one.
We can consider the risk free asset (e.g., bond) as a second
asset in generic with a fixed price change of rf and Qf =
r2

fT . This implies that now the value of α is,

α(w0, η) = (1 − w0)
1/ηe−(η−1)Qf (1 + rf )T ,

and now we need to make the optimization with the new
function of α(w0, η).
Maximum and minimum price: One can add another
reasonable assumption about the final price of the risky as-
set, i.e., ST . We can add an assumption that ST ∈ [Smin,
Smax]. A careful look at the proof of Theorem 1 for the
generic algorithm reveals that we can take such informa-
tion into account when generating our bound. We can show,
using Lemma 13, that

Sη
T ≥ wT ≥ Sη

T e−η(η−1)Q,

where wT is the final weight of the risky asset and Q =P
t r2

t . Using this we can modify Corollary 2, and show that
for rf = 0 we have,

ln(GT ) ≥ max{ln(ST ) − 1
η

ln 1
w0

− (η − 1)Q

+ 1−w0

S
η
max+1−w0

,− 1
η

ln 1
1−w0+w0S

η
min

+
S

η
min

e−η(η−1)Q

S
η
min

e−η(η−1)Q+1−w0
}.

As expected, the additional assumption can only improve
our upper bound, and for Smin = 0 and Smax = ∞ we re-
trieve the previous bound. In fact, we can slightly improve
the previous bounds by noting that given a bound on the
realized quadratic variation Q, or maximal single period re-
turn M , we can bound the final price of the risky asset ST .
However the improvements are very minor.

D. UNIVERSAL LOWER BOUND
In this appendix we give the derivation of our universal

lower bound from Section 6.

D.1 Combining online trading strategies
It would be helpful to develop an online trading algorithm,

where we have a certain guarantee conditional on a certain
event. Formally we denote by A a certain event that holds
for the price path and by Ac its complement. The following
definition formalizes what are the properties we like to have
when we condition on an event.

Definition 14. For a given αX , βX ∈ (0, 1) and an event
A, an online trading algorithm X that starts with $1 is said
to be bounded by (αX , βX) on A if (i) X yields a payoff that
is always smaller than max {1, ST }, and (ii) when A holds
X yields a payoff that is smaller than max {αX , βXST }.

Suppose that we have two trading strategies that work
on events that are complements. We can combine two on-
line trading algorithms, each is bounded on a complement-
ing event, to derive an online trading algorithm which is
bounded always.

Claim 15. Given an online trading algorithm X which
bounded by (αX , βX) on A and an online trading algorithm
Y is bounded by (αY , βY ) on Ac. We can generate an online

trading algorithm Z(γ) that is always bounded by max{αZ ,
βZST }, where

αZ = max {γαX + (1 − γ) , γ + (1 − γ)αY }

βZ = max {γβX + (1 − γ) , γ + (1 − γ)βY }
Proof. We construct a combined online trading algo-

rithm Z(γ) that runs X starting with $γ and runs Y with
$(1 − γ). If event A holds, then the payoff of Z(γ) is at
most γ max{αX , βXST } + (1 − γ) max{1, ST }. This im-
plies that Z(γ) payoff is bounded by max{α1, β2ST }, where
α1 = γαX + (1 − γ) and β1 = γβX + (1 − γ). A similar
bound holds for the case that Ac holds, using the guarantee
for Y .

D.2 Bounded trading strategies
We consider now an online trading algorithm which is a

variation of our online trading algorithm generic, which we
call square-momentum.

At time t square-momentum invests in the risky asset a

fraction of xt =
S2

t

1+S2
t

and in the risk free asset a fraction

of 1 − xt = 1
1+S2

t

in the risk free asset. Define the event

Aρ1,ρ2 = {∀t : St ∈ [1 − ρ1, 1 + ρ2]}, where we will specify
the parameters ρ1 and ρ2 latter. The following lemma de-
rives the performance of the square-momentum algorithm in
case the assumption holds.

Lemma 16. Assume that the maximal single period re-
turn is M . The square-momentum trading strategy guar-
antees that: (1) For every run GT ≤ max{1, ST }, (2) if
event Aρ1,ρ2 holds then GT ≤ max{α, βST }, for α = β =

e−h(ρ,M)Qmin , where h(ρ, M) = (1−ρ)2/ [2(1+(1−ρ)2)2(1+
M)2] ≤ 1/8 and ρ = max{ρ1, ρ2}.

Proof. Consider the ratio between the initial and final
weights, and recall that rG,t = xtrt. We have,

ln(
1 − x0

1 − xT
) = ln(

1 + S2
T

2
)

=
X

t

ln
1 + S2

t+1

1 + S2
t

=
X

t

ln((1 − xt) + xt(1 + rt)
2)

=
X

t

ln(1 + 2xtrt + xtr
2
t )

=
X

t

ln(1 + 2rG,t + xtr
2
t )

=
X

t

ln((1 + rG,t)
2 + xt(1 − xt)r

2
t )

The fact that xt < 1 implies that:

(1 + rG,t)
2 + xt(1 − xt)r

2
t = 1 + 2xtrt + xtr

2
t < (1 + rt)

2.

We first establish the following technical inequality, for
any A, B ≥ 0,

ln(A + B) ≥ ln(A) +
B

A + B
(1)

Since ln(1− x) ≤ −x, for x ∈ (0, 1), we can set x = B/(A +
B), and,

ln(A) − ln(A + B) = ln(
A

A + B
) ≤ − B

A + B
,



which establishes inequality (1).
Based on (1), we have:X

t

ln((1 + rG,t)
2 + xt(1 − xt)r

2
t )

≥
X

t

2 ln(1 + rG,t) +
xt(1 − xt)r

2
t

(1 + rt)2

≥ 2 ln(GT ) +
X

t

xt(1 − xt)r
2
t

(1 + rt)2

Since

ln(
1 + S2

T

2
) ≤ ln(max {ST , 1}2) = 2 ln(max {ST , 1}),

we conclude that

ln GT ≤ ln(max {ST , 1}) −
X

t

xt(1 − xt)r
2
t

2(1 + rt)2
.

This implies that, GT ≤ max {ST , 1} and concludes the first
part of the theorem.

For the second part of the theorem, we like to bound the
additional term when the event Aρ1,ρ2 holds. Let X(1−X)
be some lower bound for xt(1 − xt), that we derive using
the assumption that for every t, Aρ1,ρ2 holds. Specifically,
if Aρ1,ρ2 holds, i.e., ∀t : St ∈ [1 − ρ1, 1+ ρ2], then for any t

we have that xt ∈
h

(1−ρ1)2

1+(1−ρ1)2
, (1+ρ2)2

1+(1+ρ2)2

i
. This implies that

we can set

X =
(1 − ρ)2

1 + (1 − ρ)2

where ρ = max{ρ1, ρ2}. This implies that

lnGT ≤ ln(max {ST , 1}) − h(ρ, M)
X

t

r2
t

where h(ρ, M) = X(1−X)

2(1+M)2
. The lemma follows since

P
t r2

t ≥
Qmin.

We now define a trade-once online trading algorithm.
Initially it starts with x1 = 1/2 and does no trade as long as
St ∈ [1 − ρ1, 1 + ρ2]. Once the condition is first violated it
trades (and only once). If St > 1 + ρ2 it changes to xt = 1
(buys only the risky asset) and does not trade any more. If
St < 1 − ρ1 it changes to xt = 0 (buys only the risk free
asset) and does not trade any more.

Claim 17. The trade-once online trading strategy guar-
antees that: (1) For every run GT ≤ max{1, ST }, (2) if
Ac

ρ1,ρ2
holds then GT ≤ max{α, βST }, for α = 1 − 1

2
ρ1 and

β = ρ2+2
2(1+ρ2)

.

Proof. In case trade-once does not trade, we are left
with a payoff (1 + ST )/2 which is bounded by max{1 , ST }.
In case trade-once does trade, our payoff is bounded by

ρ2+2
2(1+ρ2)

ST = βST if the stock gains in value, and by 1 −
1
2
ρ1 = α if the stock loses in value.

A simple corollary, when ρ1 = ρ2 = ρ is the following.

Corollary 18. For the trade-once online trading strat-
egy, with ρ1 = ρ2 = ρ ∈ (0, 1), is bounded by (α, α) on Ac

ρ,
for α = 1 − 1

2
ρ.

Proof. Since ρ+2
2(1+ρ)

> 1 − 1
2
ρ for ρ ∈ (0, 1) we conclude

that the trade-once online trading algorithm is bounded by
(1 − 1

2
ρ, 1 − 1

2
ρ) on Ac

ρ.

Combining Lemma 16 and Corollary 18, and setting γ =
ρ/2

1+ρ/2−e−h(ρ,M)Qmin
, we derive Theorem 11.


