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Abstract

We study a network creation game recently proposed by
Fabrikant, Luthra, Maneva, Papadimitriou and Shenker. In
this game, each player (vertex) can create links (edges) to
other players at a cost ofα per edge. The goal of every
player is to minimize the sum consisting of (a) the cost of
the links he has created and (b) the sum of the distances to
all other players.

Fabrikant et al. conjectured that there exists a constant
A such that, for anyα > A, all non-transient Nash equilibria
graphs are trees. They showed that if a Nash equilibrium
is a tree, the price of anarchy is constant. In this paper
we disprove the tree conjecture. More precisely, we show
that for any positive integern0, there exists a graph built
by n ≥ n0 players which contains cycles and forms a non-
transient Nash equilibrium, for anyα with 1 < α ≤

√
n/2.

Our construction makes use of some interesting results on
finite affine planes. On the other hand we show that, for
α ≥ 12ndlog ne, every Nash equilibrium forms a tree.

Without relying on the tree conjecture, Fabrikant et al.
proved an upper bound on the price of anarchy ofO(

√
α),

whereα ∈ [2, n2]. We improve this bound. Specifically,
we derive a constant upper bound forα ∈ O(

√
n) and for

α ≥ 12ndlog ne. For the intermediate values we derive an
improved bound ofO(1 + (min{α2

n , n2

α })1/3).
Additionally, we develop characterizations of Nash

equilibria and extend our results to a weighted network cre-
ation game as well as to scenarios with cost sharing.
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1 Introduction

Network design is a fundamental problem in computer sci-
ence and operations research. This line of research assumes
a central authority that constructs the network and has var-
ious optimization criteria to fulfill. In practice, however,
many networks are actually formed by selfish players who
are motivated by their own interests and their own objective
function. For instance, the Internet, networks for exchanging
goods and social networks are all formed by many players
and not by a single authority. This motivates the research of
network creation by multiple selfish players.

In this work we focus on the later model and allow indi-
vidual users to decide which edges to buy. The appropriate
concept for studying such a scenario is that of Nash equilib-
ria [19], where no user has the incentive to deviate from his
strategy. We analyze the performance of the resulting net-
work architectures using theprice of anarchy, introduced by
Koutsoupias and Papadimitriou in their seminal paper [17].
Recently, Nash equilibria and their associated price of anar-
chy have been studied for a wide range of classical computer
problems such as job scheduling, routing, facility location
and, last but not least, network design and creation, see e.g.
[1, 2, 3, 7, 6, 8, 11, 10, 13, 15, 17, 21]. This also includes
variants of the price of anarchy, called the price of stabil-
ity [1, 2, 6].

In this paper we study a network creation game intro-
duced by Fabrikant et al. [10]. The game is defined as fol-
lows, there aren players, each of which is associated with a
separate network vertex. These players have to build a con-
nected, undirected graph. Each player may lay down edges
to other players. Once the edges are installed, they are re-
garded as undirected and may be used in both directions.
The resulting network is the set of players (vertices) and the
union of all edges laid out. The cost of each player consists
of two components. Firstly, a player pays an edge building
cost equal toα times the number of edges laid out by him,
for someα > 0. Secondly, the player incurs a connection
cost equal to the sum of the shortest path distances to other
players. This game models scenarios in which peers wish to
communicate and transfer data. Each peer incurs a hardware
cost and pays for the communication delays to other players.

Formally, we represent the set of players by a vertex set
V = {1, . . . , n}. A strategy, for a playerv ∈ V , is a set
of verticesSv ⊆ V \ {v} such thatv creates an edge to



everyw ∈ Sv. (Note that we consider only pure strategies
of the players.) Given a joint strategy~S = (S1, . . . , Sn),
the resulting graphG(~S) = (V, E) consists of the edge set
E =

⋃
v∈V

⋃
w∈Sv

{v, w}. In our analysis it will sometimes
be convenient to assume that the edges have a direction. A
directed edge(v, w) indicates that the playerv built an edge
to w. The cost of a playerv under ~S is C ost(v, ~S) =
α|Sv| +

∑
w∈V,w 6=v δ(v, w), whereδ(v, w) is the length of

the shortest path betweenv andw in G(~S).
A joint strategy~S forms a Nash equilibrium if, for any

player v ∈ V and any other joint strategy~U that differ
from ~S only in v’s strategy,Cost(v, ~S) ≤ C ost(v, ~U).
The induced graphG(~S) is called the equilibrium graph.
~S is a strongNash equilibrium if, for every playerv, strict
inequalityCost(v, ~S) < Cost(v, ~U) holds. Otherwise, it
is a weakNash equilibrium. In a weak Nash equilibrium
at least one player can change its strategy without affecting
its cost. We will also use the notion oftransient Nash
equilibria [10]. A transient Nash equilibrium is a weak
equilibrium from which there exists a sequence of single-
player strategy changes, which do not change the deviator’s
cost, leading to a non-equilibrium position.

For a joint strategy ~S, let Cost(~S) =∑
v∈V C ost(v, ~S) be the total cost of all players. Let

C ost(OPT ) be the cost of the social optimum that achieves
the smallest possible value. The price of anarchy is the
worst-case ratioCost(~S)/Cost(OPT ), taken over all Nash
equilibria ~S.

The main interest of Fabrikant et al. [10] was to analyze
the price of anarchy of the game. They observed that, for
α < 2 andα > n2, it is constant. Their main contribution
is an upper bound ofO(

√
α) for α ∈ [2, n2]. This upper

bound can be as large asO(n) when α = n2. Fabrikant
et al. pointed out that in their constructions as well as
in experiments they performed they only found tree Nash
equilibria. The only exception was the Petersen graph that
represents a transient Nash equilibrium. This fact motivated
them to formulate atree conjecturestating that there exists a
constantA such that, for anyα > A, all non-transient Nash
equilibria are trees. In other words, every Nash equilibrium
that has a cycle in the underlying graph is transient and, in
particular, weak. They proved that if the tree conjecture
holds, the price of anarchy is constant, for anyα.
Our contribution: In this paper we first show that the tree
conjecture is incorrect, and show that the possible resulting
equilibria can have a rich and involve structure. We prove
that, for any positive integern0, there exists a graph built by
n ≥ n0 players that contains cycles and forms a strong Nash
equilibrium, for anyα with 1 < α ≤

√
n/2. The graphs we

construct aregeodetic, i.e. the shortest path between any two
vertices is unique, and have a diameter of2. These properties
are crucial in showing that the Nash equilibrium is indeed

strong. If a player deviates from its original strategy and
builds less edges or edges to different players, then — since
the original graph was geodetic — the shortest path distance
cost increases substantially. If a player decides to build
more edges, then — since the graph has diameter2 — the
cost saving is negligible. Our construction resorts to some
concepts from graph theory and geometry. In particular,
we use results on finite affine planes. To the best of our
knowledge, these concepts have never been used in game
theoretic investigations and might be helpful when studying
other graph oriented games.

We proceed and give improved upper bounds on the
price of anarchy. Our main result here is a constant upper
bound on the price of anarchy for bothα ∈ O(

√
n) and

α ≥ 12ndlog ne and a worst case bound ofO(n1/3) instead
of O(n). More precisely, we prove that ifα ≥ 12ndlog ne,
the price of anarchy is not larger than 1.5 and goes to1
asα increases. Interestingly, the proof shows that ifα ≥
12ndlog ne, any Nash equilibrium is indeed a tree. For any
α, we prove an upper bound ofO(1 + (min{α2

n , n2

α })1/3).
Thus, ifα ∈ O(

√
n), the price of anarchy is again constant.

For α ∈ [
√

n, n] the value increases, reaching a maximum
of O(n1/3) at α = n. For α > n, the price of anarchy is
decreasing.

Furthermore, we analyze the structure of Nash equilib-
ria, investigating solutions with short induced cycles. We
prove that any Nash equilibrium that forms a chordal graph
having induced cycles of length three is indeed transient. We
show that such equilibria do exist for alln. Furthermore, we
show that ifα < n/2, then the only tree that forms an equi-
librium is the star and that there exists Nash equilibria graphs
of n vertices which are not trees.

Additionally, we study a weighted network creation
game in which playerv wishes to send a certain amount of
traffic to playeru, for any v and u. In the cost of player
v, the shortest path distance tou is multiplied by this traffic
amount. We provide an upper bound on the price of anarchy.
Our bound in the weighted case is such, that when the traffic
amounts are uniform, the bound is asymptotically equal to
that of the unweighted game.

Finally, we consider settings with cost sharing where
players can pay for a fraction of an edge. The edge exists
if the total contribution by all players is at leastα. We show
that in both the unweighted and weighted games part of our
upper bounds on the price of anarchy carry over. We also
prove that there exist strong Nash equilibria with cycles in
which the cost is split evenly among players.

Due to lack of space some of our proofs are omitted and
can be found in the complete version of the paper available
on the web.
Related work: There exists a large body of previous work
on other network design problems. Anshelevich et al. [1] in-
vestigate a network design problem where players, in a given



graph, have to connect desired terminal pairs. They analyze
the quality of the best Nash equilibrium under Shapley cost
sharing. Anshelevich et al. [2] consider connection games
where each player has to connect a set of terminals and
present algorithms for computing approximate Nash equi-
libria. Further work on cost sharing in network design in-
cludes [12, 15, 20, 16]. Bala and Goyal [3] study a network
formation problem in which players incur cost but also ben-
efit from building edges to other players. They tradeoff the
costs of forming links against the potential reward from do-
ing so. Haller and Sarangi [13] build on this work and allow
player heterogeneity.

In a recent work Corbo and Parkes [5] study the price
of anarchy in the model introduced by Fabrikant et al. with
a (crucial) variation that the edges are not bought by a single
player but by both players at the end points of the edge. In a
recent unpublished note, independent of our work, Lin [18]
shows that forα = O(

√
n) andα = Ω(n3/2) the price of

anarchy is constant.
Social and economic networks in which each player

is a different vertex in the graph play a major role in the
economic literature. For a recent and detailed review of
social and economics models see [14].

2 Disproving the tree conjecture

We will present a family of graphs that form strong Nash
equilibria and have induced cycles of length three and five.
To construct these graphs, we have to define affine planes,
see e.g. Mac Williams and Sloane [22].

DEFINITION 1. An affine plane is a pair(A,L), whereA is
a set (of points) andL is a family of subsets ofA (of lines)
satisfying the following four conditions.

• For any two points, there is a unique line containing
these points.

• Each line contains at least two points.

• Given a pointx and a lineL that does not containx,
there is a unique lineL′ that containsx and is disjoint
fromL.

• There exists a triangle, i.e. there are three distinct points
which do not lie on a line.

If A is finite, then the affine plane is called finite.

Two lines areparallel, in signs‖, if the lines are disjoint or
if they are equal. Given a pointx and a lineL, we denote
by (x‖L) the unique line that is parallel toL and containsx.
Parallelism defines an equivalence relation on the lines, and
the equivalence class ofL is denoted by[L].

If q is a prime power, then for the fieldF = GF (q) the
setsA = F 2 andL = {a + bF | a, b ∈ A, b 6= 0} are
an affine plane of orderq, denoted byAG(2, q). The plane

containsq2 points and
(
q2

2

)
/
(
q
2

)
= q(q + 1) lines. There

areq + 1 equivalence classes (q − 1 real slopes, horizontal

and vertical lines). Each class hasq lines and each such line
containsq points.

We are now ready to describe the graphs representing
strong Nash equilibria. The graphs were also constructed by
Blokhuis and Brouwer [4] as instances of geodetic graphs.
For an affine planeAG(2, q) we define a graphG = (V, E)
with V = A ∪ L. In the following, when we refer to a point
or a line, we often mean the corresponding vertex or player.
The edge setE is specified as follows.

• A point and a line are connected by an edge if and only
if the line contains the point.

• Two lines are connected by an edge if and only if they
are parallel.

• No two points are connected by an edge.

There are no self-loops or multiple copies of an edge. We
have to give orientations to these edges. Every equivalence
class of a lineL defines a complete subgraphKq of G. Let
r(L) and s(L) denote the indegree and outdegree ofL in
Kq, respectively. One can easily show by induction that
there exists an orientation of the edges ofKq such that,
for every line L in Kq, |r(L) − s(L)| = 0 if q is odd
and |r(L) − s(L)| = 1 if q is even. In order to define an
orientation for the edges between points and lines, we choose
a representative lineLi, 0 ≤ i ≤ q, for each of theq + 1
equivalence classes. The lines of[Lq] = {Lq

0, . . . , L
q
q−1}

do not build edges to their points; rather the existing edges
are built by the points. As for the other equivalence classes,
a line L ∈ [Li], 0 ≤ i ≤ q − 1, builds edges to the two
points L ∩ Lq

i and L ∩ Lq
i+1(mod q). All the other edges

are built by the points. Every pointx is contained in a line
(x ‖ Lq) =: Lq

j and has exactly two incoming edges from

the lines(x ‖ Lj) and(x ‖ Lj−1(mod q)). For q = 2, we
obtain the Petersen graph.

Figure 1 shows the graph structure relative to a line
L 6∈ [Lq]. Let x1, . . . , xq be theq points contained in
L. We number these points such thatL builds edges to
x1 and x2. Let L1, . . . , Lq−1 be theq − 1 lines parallel
to L. We number these lines such that the firstr = r(L)
lines build edges toL while L builds edges to the remaining
q − 1 − r lines. For any pointxi, 1 ≤ i ≤ q, we denote
by Lxi

1 , . . . , Lxi
q the otherq lines that containxi. These

sets ofq lines are disjoint for differentxi since for every
pair of points there is a unique line containing this pair.
Furthermore these lines are different fromL1, . . . , Lq−1.
For any lineLi, 1 ≤ i ≤ q − 1, let xi

1, . . . x
i
q be theq

points contained inLi. Again these point sets are disjoint
for differentLi and are also different fromx1, . . . , xq since
the linesL and L1, . . . , Lq−1 are parallel. IfL ∈ [Lq],
then the structure of the graph is the same except that the
edges betweenL and its points are all built by the points.
If L 6∈ [Lq] then the cost of the player representingL is
(2 + s)α + (2q − 1) + 2(2q − 1)q = (s + 2)α + 4q2 − 1,
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Figure 1: The distances with respect to a lineL.
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Figure 2: The distances with respect to a pointx.

wheres = s(L) = q − 1 − r. If L ∈ [Lq], then the cost is
sα + 4q2 − 1.

Figure 2 depicts the graph structure relative to a point
x. LinesLx

1 , . . . , Lx
q+1 are theq + 1 lines containingx. For

a line Lx
i , 1 ≤ i ≤ q + 1, let xi

1, . . . , x
i
q−1 be the other

q − 1 points ofLx
i and letLi

1, . . . , L
i
q−1 be theq − 1 lines

parallel toLx
i . These sets ofq−1 points and lines are disjoint

for different i. Thus the cost of the player representingx is
(q−1)α+(q+1)+2(q+1)(2(q−1)) = (q−1)α+4q2+q−3.

LEMMA 2.1. Letq > 10. For α in the range1 < α < q+1,
no player associated with a lineL has a different strategy
that achieves a cost equal to or smaller than that ofL’s
original one. Forα in the range1 ≤ α ≤ q + 1, L has
no strategy with a smaller cost.

Proof. We prove the lemma for a lineL 6∈ [Lq], which builds
two edges to points. This implies that the lemma also holds
for lines L′ ∈ [Lq] which do not build edges to points.
For, if a line L′ ∈ [Lq] had a different strategy with the
same or a smaller cost, then any lineL 6∈ [Lq] could adopt
the same strategy change while maintaining the two edges
built to points. This would result in the same or a smaller
cost, respectively. As we will show in the following, this is
impossible.

Fix a line L 6∈ [Lq]. We consider all possible strategy
changes. First, ifL builds l > s + 2 edges, then at best
there arel − s − 2 + 2q − 1 vertices at distance1 while
the other vertices are at distance2 from L. In L’s original
strategy there are2q−1 vertices at distance1 while all other
vertices are at distance2. Thus,L’s original strategy has a

L
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Figure 3: Strategy changeS0.

cost which is at leastα(l− s− 2)− (l− s− 2) smaller than
that ofS, and this expression is strictly positive forα > 1.
Thus buying more thans + 2 edges does not pay off.

In the remainder of this proof we study the case thatL
builds at mosts + 2 edges and start with the strategyS0 in
whichL does not build any edges at all. The resulting short-
est path tree ofL is given in Figure 3. LinesLr+1, . . . , Lq−1

are a distance of2 away fromL since these lines are con-
nected toL1, . . . , Lr. Lines Lx1

i and Lx2
i , 1 ≤ i ≤ q,

are a distance of3 away fromL because they do not con-
tain x3, . . . , xq and are not parallel toL1, . . . , Lr but are
connected to one line fromLxj

1 , . . . , L
xj
q , for any j with

3 ≤ j ≤ q, and are also connected to one point from
xj

1, . . . x
j
q, for any j with 1 ≤ j ≤ r. Pointsxi

1, . . . , x
i
r,

with r + 1 ≤ i ≤ q − 1, are a distance of3 away because
they are not contained inL1, . . . , Lr but are connected to one
line fromL

xj

1 , . . . , L
xj
q , for any3 ≤ j ≤ q. Finally pointsx1



andx2 are a distance of4 away fromL because these points
are only contained in linesLx1

1 , . . . , Lx1
q andLx2

1 , . . . , Lx2
q ,

respectively, at distance3. The cost difference betweenS0

andL’s original strategy is−(s+2)α+ s(q +1)+2q +6 =
(q +1−α)(s+2)+4 > 0 and henceS0 is a worse strategy.

Next suppose thatL does build edges. The edges can be
of six different types:L builds an edge to (a) a lineLxi

j for
some3 ≤ i ≤ q and1 ≤ j ≤ q; (b) a pointxi

j , for some
1 ≤ i ≤ r and1 ≤ j ≤ q; (c) an edgeLx1

j or Lx2
j , for some

1 ≤ j ≤ q; (d) a pointxi
j , for somer + 1 ≤ i ≤ q − 1 and

1 ≤ j ≤ q; (e) a lineLi, for somer + 1 ≤ i ≤ q − 1; (f) a
point x1 or x2. In the following we investigate all of these
cases, which are also depicted in Figure 4.

(a) L

Lxi
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? Lx2

?
xr+1

? xq−1
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x1 x2

...
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x1

Lx1
1 Lx1

q

...

Figure 4: The effect of edges of types (a – f).

Case (a): The lineLxi
j is connected to one line from

Lx1
1 , . . . , Lx1

q , which is linked tox1, and to one line from
Lx2

1 , . . . , Lx2
q , which is linked tox2. Additionally Lxi

j is
connected to one point fromxk

1 , . . . , xk
q , for any r + 1 ≤

k ≤ q − 1. Thus, setting a link toLxi
j , line L can save a cost

of at mosts + 5 relative toS0. HenceL can save a cost of
at mosts + 5 no matter how other links are laid out byL. In
other words, removing the edge toLxi

j results in an increase
in the shortest path distance cost of at mosts + 5.

Case (b): Point xi
j is connected to one line from

Lx1
1 , . . . , Lx1

q and to one line fromLx2
1 , . . . , Lx2

q . From there
x1 and x2 can be reached. By laying out an edge toxi

j ,
line L saves a shortest path distance cost of5 relative toS0

and hence a value of at most5 relative to any other strat-
egy. Again, removing this link can increase the shortest path
distance cost by at most5.

Case (c): Assume w.l.o.g. that an edge toLx1
j is built.

The analysis of a link toLx2
j is similar. LineLx1

j is linked
to x1 and to one line fromLx2

1 , . . . , Lx2
q . FurthermoreLx1

j

is linked to one point fromxi
1, . . . , x

i
q, for anyr + 1 ≤ i ≤

q − 1. Relative toS0 the shortest path distances decrease by
s + 5. Removing the edge results in an increase of at most
s + 5.

Case (d): Point xi
j is connected to one line from

Lx1
1 , . . . , Lx1

q and to one line fromLx2
1 , . . . , Lx2

q . From there
x1 andx2 can be reached. Building an edge toxi

j saves a
shortest path distance cost of6 relative toS0. Not building
this edge results in an increase of at most6.

The last two cases are studied under the condition that
the other edges built byL are also of type(e) or (f).

Case (e): If L builds only edges of type(e) and (f),
then pointsxi

1, . . . , x
i
q are still at distance3 and by setting a

link to Li the shortest path distance cost reduces byq + 1.
Case (f): Again, assume thatL builds only edges of type

(e) and(f). Without an edge tox1, linesLx1
1 , . . . , Lx1

q are
a distance of3 away fromL andx1 is a distance of4 away.
Building an edge tox1 reduces the shortest path distance cost
by q + 3.

With the above case distinction (a–f) we are able to
finish the proof. Recall thatL builds at mosts + 2 edges.
If S contains edges of types (a–d), then we simultaneously
replace all of these edges by edges of type(e) or (f). Any
such edge replacement increases the shortest path distance
cost by at most6 or s+5 while the decrease is at leastq +1.
Since, forq > 10, we haveq + 1 > q/2 + 6 ≥ s + 5 ≥ 6,
strategyS is worse thanL’s strategy defined by graphG. So
suppose thatS only builds edges of types(e) or (f). If S
builds less thans + 2 edges, then we introduce additional
edges of types(e) or (f) until a total ofs + 2 edges are laid
out. For any additional edge, there is an edge building cost of
α while the shortest path distance cost decreases by at least
q + 1. If α < q + 1, there is a net cost saving andS is worse
thanL’s original strategy given byG. If α = q + 1, thenL’s
original strategy is at least as good. 2

LEMMA 2.2. For α in the range1 < α ≤ q + 1, no
player associated with a pointx has a different strategy that
achieves a cost equal to or smaller than that ofx’s original
strategy. Forα = 1, no player associated with a point has a
strategy that achieves a smaller cost.

The above two lemmata yield the main result of this section.

THEOREM 2.1. Let q > 10. The graphG is a strong Nash



equilibrium, for1 < α < q + 1, and a Nash equilibrium, for
1 ≤ α ≤ q + 1.

3 Improved bounds for the price of anarchy

We first consider the case thatα ≥ 12ndlog ne, proving a
constant price of anarchy. Then we address the remaining
range ofα. In both cases, for a given equilibrium graph
G(~S), we need the concept of a shortest path tree rooted at a
certain vertexu. The root ofT (u) is vertexu and this vertex
representslayer 0 of the tree. Given vertex layers 0 toi− 1,
layer i is constructed as follows. A nodew belongs to layer
i if it is not yet contained in layers 0 toi − 1 and there is a
vertexv in layeri−1 such that there is an edge connectingv
andw, i.e.{v, w} ∈ E. We add this edge to the shortest path
tree. We emphasize that ifw is linked to several vertices
of layer i − 1, only one such edge is added to the tree at
this point. Suppose that all vertices ofV have been added to
T (u) in this fashion. The edges inserted so far are referred to
astree edges. We now add all remaining edges ofE to T (u)
and refer to these edges asnon-tree edges. Essentially,T (u)
is just a layered version ofG with distinguished tree edges.

3.1 Constant price of anarchy forα ≥ 12ndlog ne
In order to establish a constant price of anarchy, we prove

that if α ≥ 12ndlog ne, then every Nash equilibrium graph
is a tree. This implies an upper bound of5 on the price of
anarchy [10]. However, we here give an improved upper
bound of1.5 for the considered range ofα.

Our proof has the following structure. Given an equilib-
rium graph whose girth (i.e., the length of the minimal cycle
in the graph) is at least12dlog ne, we prove that the graph
diameter is bounded by6dlog ne. The proof is by contradic-
tion. We assume that there exists a vertexu with eccentricity
at least6dlog ne and examine its shortest path treeT (u). We
show that the maximal depth ofT (u) is less than6dlog ne.
This immediately implies that the equilibrium graph is a tree,
given the bound on the girth. Also, since we have chosen
an arbitrary vertex this implies that the diameter is at most
6dlog ne. We complete the proof by showing that for high
edge costs the graph has a high girth.

We classify the vertices of the equilibrium graph accord-
ing to their location in the treeT (u). We refer to the vertices
at depth exactly6dlog ne as vertices in theBoundarylevel.
We classify the vertices in the levels before the Boundary
level according to the number of descendent their children
have in the Boundary level. We have three types of vertices.
The first areExpanding verticeswhich lead to an exponential
growth, the second, and the most problematic, areNeutral
verticesthat do not lead to a growth but have descendants
in the Boundary level, and the third areDegenerate vertices
that have no descendants in the Boundary level. The ver-
tices of the Boundary level, and at levels of larger depth, are
unclassified. We now give the formal definition.

Exapnding 

Neutral 

Degenerated 

(Boundary level)

u

1

2

3

...

0

6dlog ne − 1

6dlog ne

Figure 5: A classification of the vertices of T(u).

DEFINITION 2. Let G(~S) be an equilibrium graph and let
u ∈ V . Let T (u) be a shortest path tree rooted atu. We
say that a vertexv ∈ V , at a depth smaller than6dlog ne in
T (u), is:

• Expanding - If v has at least two children with at least
one descendent in the Boundary level.

• Neutral - If v has exactly one child with at least one
descendent in the Boundary level.

• Degenerate- If v does not have any descendent in the
Boundary level.

An example to this classification is given in Figure 5.
Note that vertices at level6dlog ne (the Boundary level) and
higher levels are not classified. Our target is to show that
there aren vertices in the Boundary level. This implies
that there are no vertices in levels higher than6dlog ne. It
is important to note that since the graph has girth at least
12dlog ne, there is a unique treeT (u) up to level6dlog ne
(the Boundary level).

In the next Lemma we show that Degenerate children of
a Neutral vertexv and their descendants are connected only
throughv to vertices out of the subtree ofv in T (u).

LEMMA 3.1. LetG(~S) be an equilibrium graph whose girth
is at least12dlog ne. Let v be a Neutral vertex inT (u)
and let Du(v) be the set of its Degenerate children and
their descendants atT (u). Every path fromx ∈ Du(v) to
y ∈ V \Du(v) in G(~S) must go throughv.

Proof. Suppose that there is a path that does not go through
v then either it goes through a vertexz from the Boundary
level or the entire path does not cross the Boundary level.
However, x is Degenerate and wlogz is its descendant
and can not be in the Boundary level since it violates the
definition Degenerate vertex. Thus, it must be thatδ(u, z) <



6dlog ne. Now if every vertexz on the path fromx to y
satisfies thatδ(u, z) < 6dlog ne then there is a cycle of
length less than12dlog ne. We conclude that any path from
x to y must go throughv. 2

Lemma 3.1 shows that Neutral vertices have a crucial
role in connecting Degenerate vertices. The next Lemma
will use this property to show that although many Neutral
vertices can be found in the tree, the number of times that
two Neutral vertices can appear consecutively on a path from
u is limited.

LEMMA 3.2. LetG(~S) be an equilibrium graph whose girth
is at least12dlog ne. Let u = w0, w1, . . . , wl = v be a
shortest path fromu to v. An edge on the path is said to be
a Neutral edge if both of its endpoints are Neutral vertices.
The total number of Neutral edges is at most2dlog ne.

Proof. Let (wi−1, wi) be a Neutral edge on the path fromu
to v. There are two possible types of Neutral edges. Edges
which are bought by their tail (i.e.wi−1) or edges which are
bought by their head (i.e.wi). We assume w.l.o.g that the
number of edges which are bought by their tail is larger than
the number of edges which are bought by their head. We
bound the total number of such Neutral edges bylog n. This
gives the desired bound of2 log n.

Let (wi1−1, wi1), (wi2−1, wi2), . . . , (wim−1, wim) be
the Neutral edges on the path which are bought by their
tail. We show thatm ≤ log n. Let Du(wij ) be the set
of all the Degenerate children ofwij and their descendants.
By Lemma 3.1 every path from a vertex inV \ Du(wij )
to a vertex inDu(wij ) goes throughwij . Let nj denote
the size ofDu(wij ). Now since we are in equilibrium the
benefit ofwij−1 from buying the edge(wij−1, wij ) is larger
than the benefit from buying the edge(wij−1, wij+1). Thus,
nj ≥ ∑m

k=j+1 nk. As a resultnj ≥ 2m−j−1 and m is
bounded bydlog ne. 2

Based on Lemma 3.2 we prove the main result of this
section. We show that every equilibrium graph whose girth
is at least12 log n must be a tree whose maximal depth is
6 log n.

PROPOSITION1. If G(~S) is an equilibrium graph whose
girth is at least12dlog ne then the diameter ofG(~S) is less
than6dlog ne andG(~S) is a tree.

Proof. For the sake of contradiction, we start by assuming
that the diameter is at least6dlog ne. Let u ∈ V be a
vertex on one of the endpoints of the diameter. We look on a
shortest path tree rooted atu. Sinceu is one of the diameter
endpoints our assumption implies thatu is either Neutral or
Expanding vertex. We show that the number of descendants
at the Boundary level (i.e. vertices at a depth ofexactly

6dlog ne) is at leastn. As it is not possible to haven vertices
in the Boundary level we reach to a contradiction. This
obviously implies that the maximal depth is at most6dlog ne
and that there are no cycles. Letv ∈ V , we denote with
d the depth ofv in T (u) and withb the number of Neutral
edges on the path fromu to v. We label a vertex by(d, b).
For example, the label for the rootu is (0, 0) becaused = 0
andb = 0. Let v be a non-Degenerate vertex whose label
is (d, b), and letN(d, b) be a lower bound on the number
of its descendants at the Boundary level. (Note that two
vertices might have the same label, but have different number
of descendants at the boundary level.) We claim for every

evend thatN(d, b) ≥ 2
6dlog ne−d

2 −(2dlog ne−b). This implies

for the root thatN(0, 0) ≥ 2
6dlog ne−0

2 −(2dlog ne−0) = n, thus
proving the claim will lead to the desired contradiction.

The proof will be by a backwards induction ond andb.
As for the induction basis we show thatN(6dlog ne, b) ≥
2−(2dlog ne−b) and N(d, 2dlog ne) ≥ 2

6dlog ne−d
2 . We

first show thatN(6dlog ne, b) ≥ 2−(2dlog ne−b). The
only descendent at the Boundary level is the vertex itself
and N(6dlog ne, b) = 1. Thus, we need to show that
2−(2dlog ne−b) ≤ 1. This follows directly from Lemma 3.2
sinceb ≤ 2dlog ne. Next, we prove thatN(d, 2dlog ne) ≥
2

6dlog ne−d
2 . The proof here is a bit more subtle and a sec-

ondary induction ond is needed. The basis for the secondary
induction,N(6dlog ne, 2dlog ne) ≥ 1, trivially holds. We

assume thatN(d′, 2dlog ne) ≥ 2
6dlog ne−d′

2 for every even
d′ > d and prove it for an evend. Let v be a vertex at
an even depthd with b = 2dlog ne which may be either Ex-
panding or Neutral. We show that in either casev has at least
two descendants at depthd + 2 which are either Expand-
ing or Neutral. For the case thatv is Expanding it follows
from the definition of Expanding vertex thatv has at least
two descendants at depthd + 2 which are either Expanding
or Neutral. For the case thatv is Neutral it follows thatv
cannot have a Neutral child sinceb = 2dlog ne and there
are at most2dlog ne Neutral edges by Lemma 3.2. Thus,v
must have an Expanding child which again has by definition
at least two children which are either Expanding or Neutral.
We conclude that in both cases, i.e.v is Expanding or Neu-
tral, it has at least two descendants at depthd + 2 which are
either Expanding or Neutral. The induction hypothesis holds
for these descendants ofv (recall that we assume it only for
even values ofd) and we get that:

N(d, 2dlog ne) ≥ 2N(d + 2, 2dlog ne)
≥ 2 · 2 6dlog ne−d−2

2

= 2
6dlog ne−d

2

This completes the proof of the basis of the primary
induction. We assume the induction hypothesis holds for
every evend′ ≥ d and everyb′ ≥ b (note that one inequality



must be sharp). Letv be a vertex at an even depthd with
b Neutral edges on the path fromv. Let w be a child ofv.
There are four possibilities: bothv andw are Expanding,v is
Expanding andw is Neutral,v is Neutral andw is Expanding
and bothv andw are Neutral. In the first three possibilities,
as we already discussed above,v has at least two descendants
at depthd+2 which are either Expanding or Neutral and thus
the induction hypothesis holds for them and we have:

N(d, b) ≥ 2N(d + 2, b)

≥ 2 · 2 6dlog ne−d−2
2 −(2dlog ne−b)

= 2
6dlog ne−d

2 −(2dlog ne−b)

In the fourth case in which bothv and w are Neutral
there is one more Neutral edge and we have

N(d, b) = N(d + 2, b + 1)

= 2
6dlog ne−d−2

2 −(2dlog ne−b−1)

= 2
6dlog ne−d

2 −(2dlog ne−b) 2

So far the only assumption that we used in our proofs
on the equilibrium graph is that its girth is of length at least
12dlog ne. The next lemma connects between the girth of an
equilibrium graph and the edge costα.

LEMMA 3.3. Let G(~S) be an equilibrium graph andc be
any positive constant. Ifα > cndlog ne then the length of
the girth ofG(~S) is more thancdlog ne.
Proof. Suppose for the sake of contradiction that the size
of the minimal cycle iscdlog ne, and look on a vertexu on
the cycle that buys a cycle edge. The benefit ofu from this
edge is at most(cdlog ne − 1)n, which is strictly less than
cndlog ne = α the cost of an edge. Therefore, this is not an
equilibrium graph and we reach to a contradiction. 2

We are ready to state our main results, which is a
characterization of every Nash equilibrium and a constant
price of anarchy wheneverα ≥ 12ndlog ne.
THEOREM 3.1. For α ≥ 12ndlog ne the price of anarchy is
bounded by1 + 6ndlog ne

α ≤ 1.5 and any equilibrium graph
is a tree.

Proof. The fact that the graph is a tree follows form Lemma
3.3 and Proposition 1. Thesocial costof the optimum, a star
graph, isα(n−1)+2(n−1)2. By Proposition 1 we know that
every Nash equilibrium graph is a tree whose maximal depth
is 6 log n. Therefore, the cost of every equilibrium graph is
bounded byα(n− 1) + 6n2dlog ne and the price of anarchy
is bounded by

α(n− 1) + 6n2dlog ne
α(n− 1) + 2(n− 1)2

≤ 1 +
6n2dlog ne

αn + 2(n− 1)2 − α

≤ 1 +
6ndlog ne

α
2

3.2 Improved upper bound for α < 12ndlog ne
We give a new upper bound forα < 12ndlog ne. In fact,

the following theorem holds for anyα and is stated in this
general form so that it can be generalized to a weighted game
in Section 5. Furthermore, it implies a constant upper bound
for α = O(

√
n).

THEOREM 3.2. Let α > 0. For any Nash equi-
librium S, the price of anarchy is bounded by
15(1 + (min{α2

n , n2

α })1/3).

Sketch of proof: Consider an arbitrary Nash equilibrium~S
and letG(~S) = (V, E) be the corresponding equilibrium
graph. Given a shortest path treeT (u) and a vertexv, let
`(v) be the index of the layerv belongs to inT (u). We show

LEMMA 3.4. For anyT (u) and anyv, w ∈ V , the shortest
path betweenv andw in G consists of at least|`(v)− `(w)|
edges. 2

LetC ost(S) be the cost ofS and letCost(v) be the cost
paid by playerv ∈ V in S, i.e. Cost(S) =

∑
v∈V Cost(v).

The cost incurred byv consists of the cost for building edges
and Dist(v), the sum of the shortest path distances from
v to all the other vertices in the equilibrium graph. Fix an
arbitraryv0 ∈ V . We prove,

Cost(S) ≤ 2α(n− 1) + nDist(v0) + (n− 1)2.

The main part of the proof is to analyzeDist(v0) for
the case1 ≤ α ≤ n2. Let d be the depth ofT (v0), i.e.d is
the maximum layer numbermaxv∈V `(v). If d ≤ 9, we are
easily done so we restrict ourselves to the cased ≥ 10.

Determinec, 1/3 ≤ c ≤ 1, such thatα = n3c−1.
Let V ′ = {v ∈ V | `(v) ≤ b 2

5dc in T (v0)} be the set of
vertices of depth at mostb 2

5dc in T (v0). If |V ′| ≥ 2
3nc, then

consider a vertexw0 at depthd in T (v0). By Lemma 3.4, the
shortest path distance betweenw0 and any vertexv ∈ V ′

is at leastd 3
5de. If there was an edge betweenw0 and

v0, then the distance betweenw0 and v would be at most
b 2

5dc + 1. Sincew0 did not build an edge tov0 we have
α > |V ′| (⌈ 3

5d
⌉− ⌊

2
5d

⌋− 1
) ≥ 2

3nc
(

1
5d− 1

) ≥ 2
3nc 1

10d
and henced ≤ 15α

nc . On the other hand, if|V ′| < 2
3nc,

more involved calculations show thatd ≤ 15
√

α
n1−c . By the

choice ofc, both bounds ond are identical.
We finally determine the price of anarchy. We have

Dist(v0) ≤ (n − 1)15α/nc ≤ 15αn1−c, which implies
Cost(S) ≤ 2α(n− 1) + 15αn2−c + n2. Therefore, price of
anarchy is bounded by

2α(n− 1) + 15αn2−c + n2

α(n− 1) + n2
≤ 3 +

15αn2−c

α(n− 1) + n2
.

The theorem then follows by inspecting casesα ≤ n and
α > n, taking into account thatnc = (αn)1/3. 2
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Figure 6: A(6, 8) clique of stars graph, an equilibrium graph
which is not a tree.

The next theorem implies that the only critical part in
bounding the price of anarchy is the sum of the shortest path
distances between players.

THEOREM 3.3. In any Nash equilibriumS, the total cost
incurred by the players in building edges is bounded by twice
the cost of the social optimum. There exists a shortest path
tree such that, for any playerv, the number of non-tree edges
built byv is bounded by1 + b(n− 1)/αc.

4 Characterizations of Nash equilibria

We give further characterization of Nash equilibria. Our first
contribution is to show that, for anyn and anyα < n/2,
there exist transient Nash equilibria which are not trees. We
then show that every Nash equilibrium which is a chordal
graph is a transient Nash equilibrium. An undirected graph
is chordal if every cycle of length at least four has a chord,
i.e. has an edge connecting two non-adjacent vertices on the
cycle. Chordal graphs play a very important role in graph
theory, see e.g. [9]. Finally, we show that forα < n/2 every
Nash equilibrium which is a tree must be star.

THEOREM 4.1. For any integern and for any integer cost
α ≤ n/2, there exists a Nash equilibrium forming a non-tree
chordal graph onn vertices.

Proof. We start by describing our non-tree chordal equilib-
rium graph. A(k, `) clique of starsis a clique withk ver-
tices, where each vertex of the clique is a root of a star with
` vertices. A(6, 8) clique of stars is depicted in Figure 6.

We next prove that a(k, `) clique of stars is a Nash
equilibrium whenα = `. We show that the edges of each star
are bought only by its root, and the clique edges are bought
arbitrarily by one of their endpoints.

LEMMA 4.1. LetG(~S) be a(k, `) clique of stars. If the cost
of an edge equals tò and all the edges are bought by the
clique vertices (and no edge is bought twice), thenG(~S) is
an equilibrium graph.

Proof. We prove that a(k, `) clique of stars is an equilibrium
in this setting by showing that no player has an incentive to
deviate from her strategy. We denote withx1, . . . , xk the
vertices of the clique and withy1

i , . . . , y`−1
i the vertices of

the star rooted atxi.
We start by showing that the star vertices have no

incentive to deviate from their strategy of not buying any
edge. We look on an arbitrary star vertexyj

i . The edge
connecting it to the graph is bought byxi. The benefit
from buying the edge(yj

i , xp) for p 6= i is `, sinceyj
i is

getting closer by one only to the vertices of the star rooted at
xp. The cost of an edge is alsòtherefore the playeryj

i is
indifferent and will not deviate. The benefit from buying the
edge(yj

i , y
j′

i′ ) is only one and thusyj
i will have no incentive

to buy it. Since buying a set of edges is at most as beneficial
as the sum of their benefits in a connected graph,yj

i will not
deviate.

We now turn our attention to the clique vertices. We
take an arbitrary vertexxi. Its star vertices are connected
with an edge of the form(xi, y

j
i ). If xi does not buy one

of these edges the graph get disconnected and the cost ofxi

becomes infinity. Thus, these edges are necessary. Suppose
that the edge(xj , xi) is bought byxj , thenxj is indifference
of buying or not buying the edge, since without the edge the
distance to the star rooted atxi is at least2 while it is 1 with
the edge. The benefit from buying the edge is` which is also
the cost of an edge. Clearlyxj can not benefit from buying
an edge to a leaf of another star, sayyk

p , sinceα ≥ 1 and the
benefit is exactly1. Thus,xj has no incentive to change its
strategy and we conclude thatG(~S) is an equilibrium graph.
2

We now continue with the proof of Theorem 4.1. For
every n we have a family of(k, `) clique of stars with
k · ` = n and α = `. This implies that we can build a
non-tree equilibrium forα = n/3, n/4, . . . , 1. By a slightly
more complicated construction it is possible to extend the
(k, `) clique of stars construction and to derive the desired
theorem. The complete details are given in the full version
of the paper. 2

THEOREM 4.2. Let α > 1 and N be a Nash equilibrium
that has a cycle in the associated graphG = (V, E). If G is
chordal, thenN is transient.

THEOREM 4.3. For α < n/2, the star is the only Tree which
is an equilibrium graph.

We note that forα = n/2, the construction of Theorem 4.1
is an equilibrium graph which is also a tree with diameter3,
and as a result Theorem 4.3 is tight.



5 A weighted network creation game

So far, we have considered an unweighted network creation
game in which all players incur the same traffic. We now
study a weighted game in which playeru sends a traffic
amount ofwuv > 0 to playerv, with u 6= v. In the cost
of playeru, the shortest path distance betweenu andv is
multiplied by wuv. Let W = (wuv)u,v be the resulting
n× n traffic matrix. We usewmin = minu 6=v wuv to denote
smallest traffic entry andwmax = maxu 6=v wuv to denote the
largest one. LetW =

∑n
u=1

∑n
v=1 wuv be the sum of the

traffic values. We extend the upper bounds of Section 3 to
the weighted case. Again we assume that there are at least
n ≥ 2 players. The following theorem is a generalization of
Theorem 3.2. In the unweighted case we havewmin = 1 and
the bounds given in the next theorem are identical to that of
Theorem 3.2, up to constant factors.

THEOREM 5.1. a) Let 0 < α ≤ wminn2. For any
Nash equilibriumS, the price of anarchy is bounded by
60(1+min{(α2/(w2

minn))1/3,W/(wminn4α)1/3, n}).
b) Let wminn2 < α < wmaxn

2. Then the price
of anarchy is bounded by12 + 3 min{

√
α/wmin,

W/(
√

αwmin(n− 1)), n}.
c) Letwmaxn

2 ≤ α. Then the price of anarchy is bounded
by 4.

6 Cost sharing

We study the effect of cost sharing where players can pay for
a fraction of an edge. An edge exists if the total contribution
is at leastα. We first show that the bounds on the price
of anarchy developed in Section 3 and 5 essentially carry
over. We then prove that there exist strong Nash equilibria
containing cycles in which the cost is split evenly among
players.

THEOREM 6.1. a) In the unweighted scenario the bounds of
Theorem 3.2 hold. b) In the weighted scenario the bound of
Theorem 5.1 hold.

THEOREM 6.2. For n > 6 andα in the range1
6n2 + n <

α < 1
2n2 − n, there exist strong Nash equilibria withn

players that contain cycle an in which the cost is split evenly
among players.
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