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Abstract 1 Introduction

We study a network creation game recently proposed Ngtwork design is a fundamental problem in computer sci-
Fabrikant, Luthra, Maneva, Papadimitriou and Shenker. énce and operations research. This line of research assumes
this game, each player (vertex) can create links (edgesptoentral authority that constructs the network and has var-
other players at a cost ef per edge. The goal of everyious optimization criteria to fulfill. In practice, however,
player is to minimize the sum consisting of (a) the cost afany networks are actually formed by selfish players who
the links he has created and (b) the sum of the distancesute motivated by their own interests and their own objective
all other players. function. For instance, the Internet, networks for exchanging

Fabrikant et al. conjectured that there exists a constgobds and social networks are all formed by many players
A such that, for any > A, all non-transient Nash equilibriaand not by a single authority. This motivates the research of
graphs are trees. They showed that if a Nash equilibriuretwork creation by multiple selfish players.
is a tree, the price of anarchy is constant. In this paper In this work we focus on the later model and allow indi-
we disprove the tree conjecture. More precisely, we shewlual users to decide which edges to buy. The appropriate
that for any positive integeng, there exists a graph builtconcept for studying such a scenario is that of Nash equilib-
by n > ng players which contains cycles and forms a nonia [19], where no user has the incentive to deviate from his
transient Nash equilibrium, for anywith 1 < o < /n/2. strategy. We analyze the performance of the resulting net-
Our construction makes use of some interesting resultswork architectures using th@ice of anarchyintroduced by
finite affine planes. On the other hand we show that, fidoutsoupias and Papadimitriou in their seminal paper [17].
a > 12n[logn], every Nash equilibrium forms a tree. Recently, Nash equilibria and their associated price of anar-

Without relying on the tree conjecture, Fabrikant et athy have been studied for a wide range of classical computer
proved an upper bound on the price of anarchy)¢f{/a), problems such as job scheduling, routing, facility location
wherea € [2,7%]. We improve this bound. Specifically,and, last but not least, network design and creation, see e.g.
we derive a constant upper bound fere O(y/n) and for [1, 2, 3, 7, 6, 8, 11, 10, 13, 15, 17, 21]. This also includes
a > 12nflogn]. For the intermediate values we derive avariants of the price of anarchy, called the price of stabil-
improved bound 0O(1 + (min{ 2", 2°})1/3), ity [1, 2, 6].

Additionally, we develop characterizations of Nash In this paper we study a network creation game intro-
equilibria and extend our results to a weighted network c@uced by Fabrikant et al. [10]. The game is defined as fol-

ation game as well as to scenarios with cost sharing. lows, there are: players, each of which is associated with a
separate network vertex. These players have to build a con-
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everyw € S,. (Note that we consider only pure strategiestrong. If a player deviates from its original strategy and
of the players.) Given a joint stratedy = (S,...,5,), builds less edges or edges to different players, then — since
the resulting grapl@(S) = (V, E) consists of the edge sethe original graph was geodetic — the shortest path distance
E=U,ev Uwes, {v,w}. In our analysis it will sometimes cost increases substantially. If a player decides to build
be convenient to assume that the edges have a directionn@e edges, then — since the graph has dianteter the
directed edgév, w) indicates that the playerbuilt an edge cost saving is negligible. Our construction resorts to some
to w. The cost of a playep under S is Cost(v,5) = concepts from graph theory and geometry. In particular,
alSu| + X vy 6(v,w), whered(v, w) is the length of We use results on finite affine planes. To the best _of our
the shortest path betweerandw in G(5‘). knowledge, these concepts have never been used in game

A joint strategyS forms a Nash equilibrium if, for any theoretic investigations and might be helpful when studying

e = . other graph oriented games.
playerv € V and any other joint strategy that differ L
from § only in v's strategy, Cost(v, §) < Cost(v, ). We proceed and give improved upper bounds on the

. i o price of anarchy. Our main result here is a constant upper
The induced graplz(S) is called the equilibrium graph.pound on the price of anarchy for both € O(y/n) and

S is astrongNash equilibrium if, for every playes, strict , > 12n[logn] and a worst case bound 6Kn'/3) instead
inequality Cost(v,S) < Cost(v,U) holds. Otherwise, it o O(n). More precisely, we prove thatif > 12n[logn],
is aweakNash equilibrium. In a weak Nash equilibriumye price of anarchy is not larger than 1.5 and goes to
at least one player can change its strategy without affectig,, increases. Interestingly, the proof shows that if>

its cost. We will also use the notion dfansient Nash 12n[logn], any Nash equilibrium is indeed a tree. For any

equilibria [10]. A transient Nash equilibrium is a weala we prove an upper bound 6f(1 + (min{aj ﬁ})ug)_

equilibrium from which there exists a sequence of singl%us ifa € O(y/n), the price of anarchy is again constant.
player strategy changes, which do not change the deviater’s a’ e [V, thé value increases, reaching a maximum
cost, leading to a non-equilibrium position. of O(n1/3) ata — n. Fora > n. the price of anarchy is
For a joint strategy S, let Cost(S) = decreasing. '
2_vey Cost(v,5) be the total cost of all players. Let  gyrthermore, we analyze the structure of Nash equilib-
Cost(OPT) be the cost of the social optimum that achieves, ' investigating solutions with short induced cycles. We
the smallest possible value. The price of anarchy is thgye that any Nash equilibrium that forms a chordal graph
worst-case ratid’'ost(S)/ Cost(OPT), taken over all Nash haying induced cycles of length three is indeed transient. We
equilibria.s. show that such equilibria do exist for all Furthermore, we
The main interest of Fabrikant et al. [10] was to analyz@ow that ifoe < n/2, then the only tree that forms an equi-
the price of anarchy of the game. They observed that, fjrjum is the star and that there exists Nash equilibria graphs
a < 2anda > n2, it is constant. Their main Contributionof n vertices which are not trees.
is an upper bound oD(y/a) for a € [2,n%]. This upper Additionally, we study a weighted network creation
bound can be as large &(n) whena = n®. Fabrikant game in which player wishes to send a certain amount of
et al. pointed out that in their constructions as well 3&ffic to playeru, for anyv andw. In the cost of player
in experiments they performed they only found tree Naghthe shortest path distancedds multiplied by this traffic
equilibria. The only exception was the Petersen graph tBaiount. We provide an upper bound on the price of anarchy.
represents a transient Nash equi”brium. This fact mOtivat%r bound in the We|ghted case is SUCh, that when the traffic
them to formulate #&ree conjecturestating that there exists agmounts are uniform, the bound is asymptotically equal to
constant4 such that, for anyx > A, all non-transient Nash that of the unweighted game.
equilibria are trees. In other words, every Nash equilibrium Finally, we consider settings with cost sharing where
that has a cycle in the underlying graph is transient and,gfayers can pay for a fraction of an edge. The edge exists
particular, weak. They proved that if the tree conjectufgthe total contribution by all players is at least We show
holds, the price of anarchy is constant, for any that in both the unweighted and weighted games part of our
Our contribution: In this paper we first show that the tre%pper bounds on the price of anarchy carry over. We also
conjecture is incorrect, and show that the possible resultmve that there exist strong Nash equilibria with cycles in
equilibria can have a rich and involve structure. We proyghich the cost is split evenly among players.
that, for any positive integer, there exists a graph built by pye to lack of space some of our proofs are omitted and
n > ng players that contains cycles and forms a strong Nagdnh be found in the complete version of the paper available
equilibrium, for anya with 1 < a < 4/n/2. The graphs we gn the web.
construct argeodetici.e. the shortest path between any tWRelated work: There exists a large body of previous work
vertices is unique, and have a diamete2.of hese properties on other network design problems. Anshelevich et al. [1] in-
are crucial in ShOWing that the Nash equilibrium is inde%stigate a network design prob|em where p|ayersy in agiven



graph, have to connect desired terminal pairs. They analgral vertical lines). Each class hanes and each such line
the quality of the best Nash equilibrium under Shapley cagintainsg points.

sharing. Anshelevich et al. [2] consider connection games We are now ready to describe the graphs representing
where each player has to connect a set of terminals aticbng Nash equilibria. The graphs were also constructed by
present algorithms for computing approximate Nash eq@ilokhuis and Brouwer [4] as instances of geodetic graphs.
libria. Further work on cost sharing in network design irFor an affine planelG(2, ¢) we define a grapy = (V, E)
cludes [12, 15, 20, 16]. Bala and Goyal [3] study a networkith V' = A U L. In the following, when we refer to a point
formation problem in which players incur cost but also beor a line, we often mean the corresponding vertex or player.
efit from building edges to other players. They tradeoff théhe edge seF is specified as follows.

costs of forming links against the potential reward from do- , A point and a line are connected by an edge if and only
ing so. Haller and Sarangi [13] build on this work and allow it the line contains the point.

player heterogeneity.

In a recent work Corbo and Parkes [5] study the price
of anarchy in the model introduced by Fabrikant et al. with
a (crucial) variation that the edges are not bought by a single No two points are connected by an edge.
player but by both players at the end points of the edge. 1§ gere are no self-loops or multiple copies of an edge. We
recent unpublished note, independent ng our work, Lin [18lye to give orientations to these edges. Every equivalence
shows that forx = O(v/n) anda = Q(n /2) the price of ¢jass of a linel. defines a complete subgraph, of G. Let
anarchy is constant. _ _ %L) and s(L) denote the indegree and outdegreeLoin
~ Social and economic networks in which each play ,» respectively. One can easily show by induction that
is a different vertex in the graph play a major role in thgare exists an orientation of the edges 6§ such that,
economic Ilteraturg. For a recent and detailed review gf every line L in K,, |r(L) — s(L)| = 0 if ¢ is odd
social and economics models see [14]. and|r(L) — s(L)| = 1if ¢ is even. In order to define an

] ) ) orientation for the edges between points and lines, we choose
2 Disproving the tree conjecture a representative liné’, 0 < i < ¢, for each of they + 1
We will present a family of graphs that form strong Naséquivalence classes. The lines[df] = {L{,.. ,,Lg_l}
equilibria and have induced cycles of length three and fivi not build edges to their points; rather the existing edges
To construct these graphs, we have to define affine plar@®, built by the points. As for the other equivalence classes,
see e.g. Mac Williams and Sloane [22]. alineL € [LY],0 < i < ¢ — 1, builds edges to the two
points L N L and L N L3+1(mod 0" All the other edges

. . i . are built by the points. Every pointis contained in a line
a set (of points) and’ is a family of subsets of (of lines) (@ || L9) 1 14 I?ind has exa)::tFI)y two incoming edges from
: J

satisfying the following four conditions. ) ,
ing nd : . : .. the lines(z || L7) and(x || L7~1(medd)) Forqg = 2, we
e For any two points, there is a unique line Comamm%btain the Petersen graph

these points. Figure 1 shows the graph structure relative to a line

e Two lines are connected by an edge if and only if they
are parallel.

DEerINITION 1. An affine plane is a paifA, £), whereA is

e Each line contains at least two points. L ¢ [L9. Leta,...,z, be theq points contained in
e Given a pointz and a lineL that does not contaim, [. We number these points such thatbuilds edges to
there is a unique lind.’ that containsr and is disjoint 5, and z,. Let Lq,.. ., Ly—1 be theq — 1 lines parallel
from L. to L. We number these lines such that the firse (L)
e There exists atriangle, i.e. there are three distinct poinlises build edges td. while L builds edges to the remaining
which do not lie on a line. q — 1 — r lines. For any point;;, 1 < ¢ < ¢, we denote
If Ais finite, then the affine plane is called finite. by Li*,..., L the otherq lines that containz;. These

sets ofg lines are disjoint for different:; since for every

Two lines areparallel, in signs|, if the lines are disjoint or pair of points there is a unique line containing this pair.
if they are equal. Given a pointand a lineL, we denote Furthermore these lines are different from, ..., L, 1.
by (x| L) the unique line that is parallel tb and contains..  For any lineL;, 1 < i < ¢ — 1, let »Llpxé, be theq
Parallelism defines an equivalence relation on the lines, 3fints contained irL;. Again these point sets are disjoint
the equivalence class dfis denoted byL]. for different L; and are also different from, .. ., z, since

If ¢ is a prime power, then for the field = GF(q) the the linesL and Ly,..., L, , are parallel. IfL e [L9],
setsA = F? andL = {a +bF | a,b € A,b # 0} are then the structure of the graph is the same except that the
an affine plane of ordey, denoted byAG(2,¢). The plane edges betweet and its points are all built by the points.
containsg® points and(%)/(4) = q(¢ + 1) lines. There If L ¢ [L9] then the cost of the player representihgs

2
areq + 1 equivalence classes ¢ 1 real slopes, horizontal (2 + s)a + (2¢ — 1) + 2(2¢ — 1)q = (s + 2)a + 4¢® — 1,
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Figure 1: The distances with respect to a line
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Figure 2: The distances with respect to a paint
wheres = s(L) = ¢ — 1 —r. If L € [L9], then the cost is L
so+4¢® — 1.
Figure 2 depicts the graph structure relative to a point
x. LinesL§,... L2, are theg + 1 lines containinge. For ~ 3 =~ Tq Iy o Ly
alineLr, 1 < i < g+ 1, letzi,...,z¢_, be the other oLy Lgta v
i . 1 . q-1 . z - r 7.Lr+1 qul
q — 1 points of L7 and letLi,... , L} , betheq — 1 lines Li* Lg® I I
parallel toL?. These sets af—1 points and lines are disjoint ~ Li* - L+ Ly* - Lg?

| sj T
for differenti. Thus the cost of the player representing oy e

(g—D)a+(g+1)+2(g+1)(2(g-1)) = (g—1)a-+4¢>+4-3. z1 72

LEMMA 2.1. Letq > 10. Foraintherangel < a < ¢+1,
no player associated with a liné has a different strategy
that achieves a cost equal to or smaller than thatldd
original one. Fora intherangel < o < g+ 1, L has
no strategy with a smaller cost.

Figure 3: Strategy chandg®.

cost which is at leasi(l — s — 2) — (I — s — 2) smaller than
that of S, and this expression is strictly positive far> 1.
Proof. We prove the lemma for alink ¢ [L9], which builds Thus buying more than+ 2 edges does not pay off.
two edges to points. This implies that the lemma also holds In the remainder of this proof we study the case that
for lines L' € [L?] which do not build edges to pointsbuilds at most + 2 edges and start with the stratefy in
For, if a line L’ € [L?] had a different strategy with thewhich L does not build any edges at all. The resulting short-
same or a smaller cost, then any liheZ [L?] could adopt est path tree of is given in Figure 3. Line&, 11,..., Ly
the same strategy change while maintaining the two edges a distance df away from L since these lines are con-
built to points. This would result in the same or a smalleected toL,,...,L,. LinesL{* andL;?, 1 < i < g,
cost, respectively. As we will show in the following, this iare a distance o3 away from L because they do not con-
impossible. tain z3,...,x, and are not parallel td+,..., L, but are
Fix a line L ¢ [L4]. We consider all possible strateggonnected to one line fronk], ..., Ly’, for any j with
changes. First, if.. builds! > s + 2 edges, then at best3 < j < ¢, and are also connected to one point from
there arel — s — 2 + 2q — 1 vertices at distancé while },...zJ, foranyj with 1 < j < r. Pointszi,... i,
the other vertices are at distanzdrom L. In L’s original with r +1 < ¢ < ¢ — 1, are a distance df away because
strategy there argy — 1 vertices at distancewhile all other they are not contained ih,, . . ., L,. but are connected to one
vertices are at distance Thus, L's original strategy has aline from L7, ..., Ly, forany3 < j < ¢. Finally pointsz;



andx, are a distance of away fromL because these points’i*, ..., L7* and to one line fronLi, ..., L72. From there
are only contained in lineg{", ..., Lyt andLi*, ..., L3?, x; andz, can be reached. By laying out an edgexgo
respectively, at distancg The cost difference betweesy line L saves a shortest path distance cosi oélative to.S,
andL’s original strategy is-(s +2)a+s(¢+1)+2¢+6 = and hence a value of at mostrelative to any other strat-
(¢+1—-a)(s+2)+4 > 0and hence is a worse strategy. egy. Again, removing this link can increase the shortest path
Next suppose that does build edges. The edges can hfistance cost by at most
of six different types:L builds an edge to (a) a lingj" for Case (c) Assume w.l.0.g. that an edge 1g* is built.
some3 < i <qgandl < j <gq;(b)a pointxg'., for some The analysis of a link tch2 is similar. LineL;.cl is linked
1 <i<randl <j<g;(c)anedgd.j" or L;?, for some toz; and to one line fromL7*, ..., Lg2. FurthermoreL*
1 < j < ¢; (d) apointz’, for somer +1 < i < ¢ —1and is linked to one point frome,. .., z), foranyr +1 <i <
1<j<gq;(e)alineL;, forsomer+1<i<gq—1;(f)a g¢— 1. Relative toS, the shortest path distances decrease by
pointz; or z2. In the following we investigate all of theses + 5. Removing the edge results in an increase of at most
cases, which are also depicted in Figure 4. 5+ 5.
Case (d) Point x; is connected to one line from
(a) L (b) L LY, ..., Ly and to one line fronli?, ..., Lg2. From there
x1 andxz, can be reached. Building an edgeatpsaves a
shortest path distance cost®felative t0.5,. Not building

Lf x; this edge results in an increase of at m@st
The last two cases are studied under the condition that
[T [ [T e the other edges built bl are also of typée) or (f).
! ! grt el ! ! Case (e) If L builds only edges of typée) and (f),
' ‘ then pointsz}, . . ., z/, are still at distancé and by setting a
T i) T To

link to L; the shortest path distance cost reducesg byl.
Case (f) Again, assume thdt builds only edges of type
(e) and(f). Without an edge tor, lines L', ..., L7 are
a distance o8 away fromL andz; is a distance of away.
1o i Building an edge ta:; reduces the shortest path distance cost
J J by ¢ + 3.
With the above case distinction (a—f) we are able to
N o Lyt L3? finish the proof. Recall thak builds at mosts + 2 edges.
ULttt gt If S contains edges of types (a—d), then we simultaneously
I o replace all of these edges by edges of typeor (f). Any
such edge replacement increases the shortest path distance
(e) L (f) L cost by at most or s + 5 while the decrease is at least- 1.
Since, forg > 10, we haveg +1 > ¢/2+6 > s+ 5 > 6,
strategys is worse tharl’s strategy defined by grapgh. So
L; 1 suppose thab' only builds edges of typeg) or (f). If S
builds less thars + 2 edges, then we introduce additional
edges of typese) or (f) until a total ofs 4 2 edges are laid
x} le Lyt Ly out. For any additional edge, there is an edge building cost of
« while the shortest path distance cost decreases by at least
Figure 4: The effect of edges of types (a — f). g+ 1. If & < g+ 1, there is a net cost saving afds worse
thanL’s original strategy given by. If « = ¢+ 1, thenL'’s
Case (@) The line Lf is connected to one line fromoriginal strategy is at least as good. |
L, .. -, Lg*, which is linked toz;, and to one line from .
L%2,..., L, which is linked tox,. Additionally L% is LEMMA 2.2. For o in the rangel < a < ¢ +1, no
connected to one point from¥, ...z, for anyr + 1 < player associated with a point has a different strategy that

b) q! _— . . . .
k< ¢— 1. Thus, setting a IinkttL;?i, line L can save a COS,[achleves a cost equal to or smaller than that:tf original

of at mosts + 5 relative t0oSy. HenceL can save a cost Ofstrategy. Fora = 1, no player associated with a point has a

at mosts + 5 no matter how other links are laid out iy In strategy that achieves a smaller cost.
other words, removing the edge £ results in an increaseryg aove two lemmata yield the main result of this section.
in the shortest path distance cost of at most5.

Case (b) Point :c; is connected to one line fromTHEOREM2.1. Letq > 10. The graphG is a strong Nash



equilibrium, forl < o < ¢+ 1, and a Nash equilibrium, for [e &asndng 0
IS(XSQ—FI @ Neutral
Degenerated 1

3 Improved bounds for the price of anarchy

We first consider the case that> 12n[logn], proving a
constant price of anarchy. Then we address the remaining
range ofa. In both cases, for a given equilibrium graph
G(§), we need the concept of a shortest path tree rooted at a
certain vertexu. The root ofT'(u) is vertexu and this vertex
representtayer O of the tree. Given vertex layers 04e- 1,
layeri is constructed as follows. A node belongs to layer 6[logn]

i if it is not yet contained in layers 0 to— 1 and there is a (Boundary level)
vertexwv in layeri — 1 such that there is an edge connecting

anduw, i.e.{v,w} € E. We add this edge to the shortest path  Figure 5: A classification of the vertices of T(u).
tree. We emphasize thatif is linked to several vertices

of layeri — 1, only one such edge is added to the tree at

this point. Suppose that all verticeséthave been added top e yviTion 2. Let G(§)

T'(u) in this fashion. The edges inserted so far are referred to- Let T'(u) be a shortest path tree rooted at We

astree edgesWe now add all remaining edges Bfto '(u) - g5y that a vertex € V, at a depth smaller thaf[log n] in
and refer to these edgesrasn-tree edgesEssentially,l"(u) T(u), is:

is just a layered version @F with distinguished tree edges.

6[logn] — 1

be an equilibrium graph and let

e Expanding - If v has at least two children with at least
3.1 Constant price of anarchy fora > 12n[logn| one descendent in the Boundary level.
In order to establish a constant price of anarchy, we prove ] ]
that if & > 12n[logn], then every Nash equilibrium graph ® Neutral - If v has exactly one child with at least one
is a tree. This implies an upper boundfobn the price of descendent in the Boundary level.
anarchy [10]. However, we here give an improved upper
bound of1.5 for the considered range of
Our proof has the following structure. Given an equilib-

rium graph whose girth (i.e., the length of the minimal cycle 5, example to this classification is given in Figure 5.

in the graph) is at least2[log ], we prove that the graphygte that vertices at levéllog n] (the Boundary level) and
diameter is bounded Kflog n.]. The proof is by contradic- pigher |evels are not classified. Our target is to show that
tion. We assume that there exists a vertexith eccentricity inare aren vertices in the Boundary level. This implies
atleast[log n| and examine its shortest path tiBgu). We  {hat there are no vertices in levels higher thidtog n]. It
Sh(?V\{ that the ma_><|ma_1| depth a@f(u) is .Ies.s tharb flofg nl. s important to note that since the graph has girth at least
This immediately implies that the equilibrium graph is a tregy Mogn], there is a unique tre®(u) up to level6[log n]
given the bound on the girth. Also, since we have chosgpe Boundary level).

an arbitrary vertex this implies that the diameter is at most |, the next Lemma we show that Degenerate children of

Glogn]. We complete the proof by showing that for high Neutral vertex and their descendants are connected only
edge costs the graph has a high girth. through to vertices out of the subtree ofin T'(u).

We classify the vertices of the equilibrium graph accord-
ing to their location in the tre&'(u). We refer to the vertices | cyivia 3.1. LetG(S) be an equilibrium graph whose girth
at depth exactlp[log n| as vertices in th&oundarylevel. g at least12[logn]. Letv be a Neutral vertex irf'(u)
We classify the vertices in the levels before the Boundagyy |et D, (v) be the set of its Degenerate children and

level according to the number of descendent their childrg{yir descendants & (u). Every path frome € D, (v) to
have in the Boundary level. We have three types of vertic%se V\ Dy(v)in G(§) must go through.

The first ar€Expanding verticewhich lead to an exponential

growth, the second, and the most problematic, Neettral proof. Suppose that there is a path that does not go through
in the Boundary level, and the third aegenerate vertices|eye| or the entire path does not cross the Boundary level.
tices of the Boundary level, and at levels of larger depth, &{gq can not be in the Boundary level since it violates the
unclassified. We now give the formal definition. definition Degenerate vertex. Thus, it must be tat, z) <

e Degenerate- If v does not have any descendent in the
Boundary level.



6[logn]. Now if every vertexz on the path frome to y 6[logn]) is atleast:. As it is not possible to have vertices
satisfies that(u, z) < 6[logn] then there is a cycle ofin the Boundary level we reach to a contradiction. This
length less than2[logn]. We conclude that any path fromobviously implies that the maximal depth is at mégbg n |
x to y must go through. O and that there are no cycles. Lete V, we denote with
d the depth ofv in T'(u) and withb the number of Neutral
Lemma 3.1 shows that Neutral vertices have a cruciglges on the path from to v. We label a vertex byd, b).
role in connecting Degenerate vertices. The next LemiRgr example, the label for the roatis (0, 0) becausel = 0
will use this property to show that although many Neutrahdbs = 0. Let v be a non-Degenerate vertex whose label
vertices can be found in the tree, the number of times th&td, v), and letN(d, b) be a lower bound on the number
two Neutral vertices can appear consecutively on a path fremits descendants at the Boundary level. (Note that two
w is limited. vertices might have the same label, but have different number
- _ ~of descendants at the boundary level.) We claim for every
LEMMA 3.2. LetG/(S) be an equilibrium graph whose girth, ., that N(d, b) > gflegrl=d_(oMlogn]-b) This implies

is at least12[logn]. Letu = wg,w,...,w; = v be a 6[log n]—0
) ) ) : ; 22E = —(2[logn]—0) _
shortest path from to v. An edge on the path is said to bd°" the root thatV (0, 0) = 27 X = n, thus

a Neutral edge if both of its endpoints are Neutral verticegrovmg the claim will lead to the desin_ad con_tradiction.
The total number of Neutral edges is at mfbg n]. The proof will be by a backwards induction drandb.
As for the induction basis we show that(6[logn],b) >

6[logn]—d
2

Proof. Let (w;_1,w;) be a Neutral edge on the path fram 2~l°s1=% and N(d,2[logn]) > 27 =z . We

to v. There are two possible types of Neutral edges. Eddist show that N(6[logn],b) > 2-(flegnl=b) — The
which are bought by their tail (i.ev;_1) or edges which are only descendent at the Boundary level is the vertex itself
bought by their head (i.ew;). We assume w.l.0.g that theand N (6[logn],b) = 1. Thus, we need to show that
number of edges which are bought by their tail is larger than2l°e"1=%) < 1. This follows directly from Lemma 3.2
the number of edges which are bought by their head. \8laceb < 2[logn]. Next, we prove thatV(d, 2[logn]) >

bound the total number of such Neutral edgesdayn. This 24" =¢  The proof here is a bit more subtle and a sec-
gives the desired bound @flog n. ondary induction o is needed. The basis for the secondary
Let (wi,—1,wi,), (Wis—1, Wi, ), - - -, (Wi,,—1,w5,,) b€ induction, N(6[logn], 2[logn]) > 1, trivially holds. We
the Neutral edges on the path which are bought by thg'g y 6[log n]—d’
. sume thatV(d’, 2[1 > 2 for every even
tail. We show thatn < logn. Let D,(w;,) be the set u (d',2[logn]) > : Very ev

. " d > d and prove it for an eved. Letv be a vertex at
of all the Degenerate children af;. and their descendants, : . :
E an even deptll with b = 21 which may be either Ex-
By Lemma 3.1 every path from a vertex I\ D, (w;,) P [logn] y

i tex inD th ho: . Letn. denot panding or Neutral. We show that in either cadeas at least
tﬁ a ver e;<D|n “(w”& goes throughw;;. L€ ﬁib _enoti two descendants at depth+ 2 which are either Expand-
b N S|f_zte ]? “'(u]jif)' b ow S'?ﬁe v(\;e are ih equiti rllum eing or Neutral. For the case thatis Expanding it follows
thenetlh Oé‘”j‘]}.t ;om QJV'F‘Q tr? € (?ewij‘l’ wi,) IS _?rr]ger from the definition of Expanding vertex thathas at least
§n> € Henetl romA uying If? gfiﬂéj”l;;”j{“)'d US:" two descendants at deptht 2 which are either Expanding
EJ o Zd:kb: . . AS afesulng =2 andm IS o Neutral. For the case thatis Neutral it follows that
ounde ognl. cannot have a Neutral child sinée= 2[logn] and there
HiLe at mosR[log n| Neutral edges by Lemma 3.2. Thus,
ust have an Expanding child which again has by definition
t least two children which are either Expanding or Neutral.
e conclude that in both cases, i«eis Expanding or Neu-
tral, it has at least two descendants at depth2 which are
PROPOSITIONT. If G(g) is an equilibrium graph whose €ither Expanding or Neutral. The induction hypothesis holds
girth is at least12[log ] then the diameter 01;’(5) is less for these descendants ofrecall that we assume it only for

than6 log n] andG(§) is a tree. even values ofl) and we get that:

Based on Lemma 3.2 we prove the main result of t
section. We show that every equilibrium graph whose gi
is at leastl2logn must be a tree whose maximal depth
6logn.

N(d,2[logn]) > 2N(d+2,2[logn])

6[logn]—d—2
2

Proof. For the sake of contradiction, we start by assuming
that the diameter is at leasflogn|. Letu € V be a
vertex on one of the endpoints of the diameter. We look on a
shortest path tree rootedat Sinceu is one of the diameter
endpoints our assumption implies thats either Neutral or This completes the proof of the basis of the primary
Expanding vertex. We show that the number of descendantduction. We assume the induction hypothesis holds for
at the Boundary level (i.e. vertices at a depthesfictly every eveni’ > d and every’ > b (note that one inequality

Y

6[logn]—d
2



must be sharp). Let be a vertex at an even depfhwith 3.2 Improved upper bound for o < 12n[logn]

b Neutral edges on the path from Letw be a child ofv.  We give a new upper bound far < 12n[logn]. In fact,
There are four possibilities: bothandw are Expandingy is the following theorem holds for any and is stated in this
Expanding andv is Neutral,v is Neutral andv is Expanding general form so that it can be generalized to a weighted game
and bothv andw are Neutral. In the first three possibilitiesin Section 5. Furthermore, it implies a constant upper bound
as we already discussed abovéas at least two descendantfr o = O(y/n).

at depthi+2 which are either Expanding or Neutral and thus

the induction hypothesis holds for them and we have: =~ THEOREM3.2. Let « > 0.  For any Nash equi-
librium S, the price of anarchy is bounded by

N(d,b) = 2N(d+2,b) 15(1 + (min{ 22, 22})1/3),
> 9. 276“0’5 n;7d72—(2[log n|—b)
_ olesnlod_(o10gn]—b) Sketch of proof: Consider an arbitrary Nash equilibrius

and letG(S) = (V, E) be the corresponding equilibrium
In the fourth case in which both andw are Neutral graph. Given a shortest path trégu) and a vertex, let

there is one more Neutral edge and we have £(v) be the index of the layer belongs to inl"(u). We show
N(d,b) = N(d+2,b+1) LEMMA 3.4. For anyT(u) and anyv, w € V, the shortest
_ gfMlesnlod=2_(o1iogn] —p-1) path betweem andw in G consists of at leagt(v) — ¢(w)]

edges. ]

276 “Og;ﬂ —d —(2[logn]—0b) 0O

So far the only assumption that we used in our proofs Let Cost(S) be the cost off and letC'ost(v) be the cost

on the equilibrium graph is that its girth is of length at Ieagild by playew € V'in , i.e. Cost(S) = 3_,cyy Cost(v).

. e cost incurred by consists of the cost for building edges
12[1.0.‘% Tf]' The nextlemma connects between the girth of AMd Dist(v), the sum of the shortest path distances from
equilibrium graph and the edge caest

v to all the other vertices in the equilibrium graph. Fix an

LEMMA 3.3. Let G(S) be an equilibrium graph and be arbitraryv, € V. We prove,

any positive constant. i > cn[logn] then the length of _ )

the girth ofG(S) is more thar:[log n]. Cost(S) < 2a(n — 1) +nDist(vo) + (n —1)".

Proof. Suppose for the sake of contradiction that the size The main part of the proof is to analyZ@ist(v,) for

of the minimal cycle is:[log n], and look on a vertex, on the casel < a < n?. Letd be the depth of'(vy), i.e.d is

the cycle that buys a cycle edge. The benefit dfom this the maximum layer numbenax,cy ¢(v). If d < 9, we are

edge is at mostc[logn| — 1)n, which is strictly less than easily done so we restrict ourselves to the ecasel0.

enflogn] = o the cost of an edge. Therefore, this is notan Determinec, 1/3 < ¢ < 1, such thate = n3¢~1.

equilibrium graph and we reach to a contradiction. 0O LetV’ = {v € V | £(v) < [2d] in T(vo)} be the set of

We are ready to state our main results, which isvertiges of depth at mog£d i_n T(vo). If |V'| > 5n*, then
o o ’ Bnsider a vertex, at depthd in T'(vo). By Lemma 3.4, the

ch_aracterlzatlon of every Nash equilibrium and a constanl ot path distance betweep and any vertex € V'

price of anarchy whenever > 12n[logn]. is at least[2d]. If there was an edge between, and

THEOREM3.1. For a > 12n[log n] the price of anarchy is vo, then the distance betweesn, andv would be at most

bounded byl + $2[°el < 1 5 and any equilibrium graph [2d] + 1. Sincew, did not build an edge te, we have

. « (T3 2 2,c(1 2,c1

is a tree. a> |V ([3d] - |3d] —1) > 3n°(5d - 1) > In5d

and hencel < 152, On the other hand, ift’| < 2n°,

n 3

Proof. The fact that the graph is a tree follows form Lemma, ;e involved calculations show thét 15\/1T_ By the
3.3 and Proposition 1. Theocial cosbf the optimum, a star . sice ofc. both bounds oid are identical. -

graph, isx(n—1)+2(n—1). By Proposition 1 we knowthat * " \ve finally determine the price of anarchy. We have
every Nash equilibrium graph is a tree whose maximal de%st(vo) < (n — 1)15a/n° < 15an'~¢, which implies

is 6logn. Therefore, the cost of every equilibrium graph i%‘ost(S) < 2a(n—1) + 15an%~¢ +n2. Therefore, price of
bounded byx(n — 1) + 6n?[logn] and the price of anarChyanarchy is bounded by ’

is bounded by
2—c 2 2—c
a(n — 1)+ 6n?[logn] - 6n2[log n] 2a(n —1) 4+ 15an i +n <34 15an N
a(n—1)+2(n— 1) an+2(n—-1)2 -« an—1)+n an—1)+n
< 14 6n[logn] 0 The theorem then follows by inspecting cases< n and

o a > n, taking into account that® = (an)!/3. o



-,

LEMMA 4.1. LetG(S) be a(k, ¢) clique of stars. If the cost
of an edge equals té and all the edges are bought by the
clique vertices (and no edge is bought twice), ti&ib) is
an equilibrium graph.

Proof. We prove that &k, ¢) clique of stars is an equilibrium

in this setting by showing that no player has an incentive to
deviate from her strategy. We denote with, .. ., xz; the
vertices of the clique and with}, . .. ,yf‘l the vertices of
the star rooted at;.

We start by showing that the star vertices have no
incentive to deviate from their strategy of not buying any
edge. We look on an arbitrary star vertgk The edge
connecting it to the graph is bought by. The benefit
from buying the edg€y’, z,) for p # i is ¢, sincey] is
getting closer by one only to the vertices of the star rooted at
- The cost of an edge is algatherefore the playey! is
indifferent and will not deviate. The benefit from buying the
edge(y?, 7, ) is only one and thug? will have no incentive
to buy it. Since buying a set of edges is at most as beneficial

as the sum of their benefits in a connected gragphwill not
The next theorem implies that the only critical part ieeviate graphy

b_ounding the price of anarchy is the sum of the shortest path We now turn our attention to the clique vertices. We
distances between players. take an arbitrary vertex;. Its star vertices are connected
THEOREM3.3. In any Nash equilibriums, the total cost With an edge of the fornfz;, ;). If z; does not buy one
incurred by the players in building edges is bounded by twigéthese edges the graph get disconnected and the cost of
the cost of the social optimum. There exists a shortest pagfomes infinity. Thus, these edges are necessary. Suppose
tree such that, for any player, the number of non-tree edgehat the edgez;, x;) is bought byz;, thenz; is indifference

Figure 6: A(6, 8) clique of stars graph, an equilibrium grap
which is not a tree.

built by v is bounded byt + | (n — 1)/a]. of buying or not buying the edge, since without the edge the
distance to the star rootedatis at leas® while it is 1 with
4 Characterizations of Nash equilibria the edge. The benefit from buying the edgéehich is also

g@e cost of an edge. Clearly; can not benefit from buying
an edge to a leaf of another star, sﬁysincea > 1 and the
\REnefit is exactlyl. Thus,z; has no incentive to change its

rategy and we conclude tkﬁ(g) is an equilibrium graph.

We give further characterization of Nash equilibria. Our fir
contribution is to show that, for any and anya < n/2,
there exist transient Nash equilibria which are not trees.
then show that every Nash equilibrium which is a chordsl
graph is a transient Nash equilibrium. An undirected graﬁh

is chordal if every cycle of length at least four has a chord, We now continue with the proof of Theorem 4.1. For
i.e. has an edge connecting two non-adjacent vertices ondbery n we have a family of(k,¢) clique of stars with
cycle. Chordal graphs play a very important role in gragh. / = n anda = ¢. This implies that we can build a
theory, see e.g. [9]. Finally, we show that ter< n/2 every non-tree equilibrium forv = n/3,n/4, ..., 1. By a slightly
Nash equilibrium which is a tree must be star. more complicated construction it is possible to extend the
(k, ¢) clique of stars construction and to derive the desired

THEOREM4.1. qu any integem '_a_nd_ for any !nteger COSt theorem. The complete details are given in the full version
a < n/2, there exists a Nash equilibrium forming a non-trege v o paper O

chordal graph om vertices.
THEOREM4.2. Leta > 1 and N be a Nash equilibrium

Proof. We start by describing our non-tree chordal equilibhat has a cycle in the associated gra@gh= (V, E). IfGis
rium graph. A(k,¢) clique of starsis a clique withk ver- chordal, then is transient.
tices, where each vertex of the clique is a root of a star w
¢ vertices. A(6, 8) clique of stars is depicted in Figure 6.
We next prove that gk, /) cliqgue of stars is a Nash
equilibrium whem = ¢. We show that the edges of each staife note that forx = n/2, the construction of Theorem 4.1
are bought only by its root, and the clique edges are boughan equilibrium graph which is also a tree with diameter
arbitrarily by one of their endpoints. and as a result Theorem 4.3 is tight.

LFIIIEOREM 4.3. For a < n/2, the staris the only Tree which
is an equilibrium graph.
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