
A Sufficient Condition for Truthfulness with Single
Parameter Agents

Nir Andelman
∗

School of Computer Science
Tel-Aviv University

andelman@cs.tau.ac.il

Yishay Mansour
†

School of Computer Science
Tel-Aviv University

mansour@cs.tau.ac.il

ABSTRACT
We consider the task of designing truthful mechanisms for
single parameter agents. We prove a general sufficient con-
dition for truthfulness when each agent’s valuation function
for each possible outcome is a one-dimensional function of
its type, continuous everywhere and differentiable almost ev-
erywhere. For certain types of natural valuation functions,
our condition is also necessary. Our condition extends both
the Mirrlees-Spence condition [25, 17], applicable only for
differentiable real allocations, and Archer and Tardos’ sin-
gle parameter characterization [4], which assumes an agent’s
valuation is linear in its type.

We demonstrate the simplicity of testing our condition by
showing that classical criteria for truthfulness in combinato-
rial problems such as auctions and machine scheduling can
be derived from our condition. In addition, we use our con-
dition to derive results for new single parameter problems,
which have not been previously analyzed.

We also consider combinatorial problems where the true
types of agents affect the valuation of each other, such as in
machine scheduling with selfish jobs. In such cases there are
only degenerate dominant strategy mechanisms. We show
that the same condition can be used to design mechanisms
which are ex-post truthful, meaning that the outcome where
all agents cooperate and report their true type is a Nash
equilibrium. We demonstrate the power of this condition
by applying it on the problem of machine scheduling with
strategic job owners, previously presented in [5]. We give
a constant approximation ratio algorithms for the original

∗Partially supported by a grant from the Israel Science
Foundation.
†The work was done while the author was a fellow in the
Institute of Advance studies, Hebrew University. This work
was supported in part by the IST Programme of the Eu-
ropean Community, under the PASCAL Network of Excel-
lence, IST-2002-506778, by a grant no. 1079/04 from the
Israel Science Foundation and an IBM faculty award. This
publication only reflects the authors’ views.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’06, June 11–15, 2006, Ann Arbor, Michigan.
Copyright 2006 ACM 1-59593-236-4/06/0006 ...$5.00.

problem and to the double setting where both jobs and ma-
chines are strategic.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Nonnumerical Algorithms
and Problems; G.2.1 [Descrete Mathematics]: Mathe-
matics of Computing

General Terms
Algorithms, Theory, Economics

Keywords
Game theory, Algorithmic mechanism design, Approxima-
tion Algorithms

1. INTRODUCTION

1.1 Background
At the core of Mechanism Design is the desire to define a

system such that selfish agents interacting with the system
would reach the desired outcome. Example of such setting
is a centralized decision maker with regulatory power (gov-
ernment, employer, etc.) that wishes to optimize an objec-
tive function by aggregating signals on private information
collected from agents (buyers, sellers, workers, etc.). The
private information of an agent, which is also referred as its
type, may include its demand curve, income reports, poten-
tial labor power, etc. The information (e.g., bids) that the
agents submit signals their types, however they are expected
to strategically choose their signal such that they will affect
the decision making in a manner that will optimize their
own utility.

Mechanism design aims to give the agents an incentive to
simply reveal their information to the decision maker, and
avoid strategic signaling. This goal is achieved by assigning
payments from or to the mechanism, which encourage the
agents’ cooperation by making truthtelling a (weakly) dom-
inant strategy. I.e., for each agent, regardless of the other
agents’ actions, reporting its type is a best response strategy.
Settings where each agent has a dominant strategy are more
convenient to the central decision maker, since it is likely
that all agents will indeed follow their dominant strategies,
and this frees the central decision maker from considering
the implications of strategic behaviors of the agents. By the
revelation principle, if dominant strategy mechanisms exist,
it is sufficient to consider mechanisms where truthtelling is

the dominant strategy (see, e.g., [16]). Under the assump-
tion that each agent is aware of its own type, truthtelling is
the simplest strategy for an agent to follow, which motivates
making it a dominant strategy.

Algorithmic mechanism design [19] extends mechanism
design into the realm of discrete algorithms, by considering
computational limitations on the algorithmic process that
calculates the decision rule. Much of the algorithmic mech-
anism design literature is devoted to studying a wide range
of different utility and objective functions and design appro-
priate efficient mechanisms for them.

One can hope that rather than verifying that a given al-
gorithm and a payment scheme construct together a truth-
ful mechanism, we would rather have a criteria for verify-
ing whether a given algorithm can be melded into a truth-
ful mechanism by adding a proper payment scheme (i.e., if
it is rationalizable). Such criteria was given by Rochet in
[22]. Additionally, if a decision rule is rationalizable, there
is a mathematical formulation to the suitable payment func-
tions. The drawback of Rochet’s characterization of ratio-
nalizable decision rules is that it does not provide a compu-
tationally practical method for testing rationalizability. A
simpler condition, referred as weak monotonicity [14] or as
2-cycle inequality [10], is a necessary condition for rational-
izability, but not a sufficient condition, as demonstrated in
[14].

Given a restricted domain of single parameter agents, we
search for a sufficient condition, which is not a necessary
one in general, although in some settings we can show it is
also necessary. On one hand, we aim for a condition that is
simple enough to be easily applied to test rationalizability.
On the other hand, the condition should be general enough
to be useful in constructing truthful mechanisms. We focus
on mechanisms for single parameter agents, which although
restricted, include a wide range of mechanisms, and weak
monotonicity alone does not imply rationalizability by itself.

In the case that the output of the mechanism is continu-
ous, the Mirrlees-Spence condition [25, 17] is a simple neces-
sary and sufficient condition that characterizes all truthful
single parameter mechanisms. The requirement that the
output space is continuous is a severe limitation. In al-
gorithmic mechanism design, the outcome space for many
problems is discrete. (Example of such problems include
auctions, machine scheduling, routing, etc.) In such set-
tings the Mirrlees-Spence condition is inapplicable, since in
discrete spaces the preliminary requirements required for
applying this condition immediately fail. Currently, algo-
rithmic mechanism design requires deriving rationalizabil-
ity conditions for each model, separately. A replacement to
the Mirrlees-Spence condition that holds for discrete models
would simplify this process in single parameter setups.

Archer and Tardos [4] suggested a simple characterization
for single parameter agents, where the valuation (or cost) of
an agent is linear with respect to its type, and therefore
the type can be considered as representing a cost (or value)
per unit. Unlike the Mirrlees-Spence condition, this char-
acterization does not require the allocation function to be
continuous, only monotone in the type. However, it signifi-
cantly limits the structure of the valuation function.

1.2 Our Results
We present a generalization to both the Mirrlees-Spence

condition, and Archer and Tardos’ characterization, which

relaxes prior assumptions on the structure of the valuation
functions and the decision rule. We define a property named
Halfway Monotone Derivative (HMD), prove that all HMD
algorithms are rationalizable and characterize the structure
of the payment function. We also prove that for some valu-
ation functions, HMD is also a necessary condition.

We apply our condition on several sample algorithmic
problems and derive simple conditions for truthfulness, as
well as simple structures of the payment functions. Specif-
ically, we show that in all single commodity auctions, the
critical value condition is equivalent to the HMD condition.
We show that in machine scheduling problems where agents
(machines) have a cost per unit of work function, the mono-
tonicity condition of Archer and Tardos [4] is an outcome of
the HMD condition. We define a setting where an agent’s
utility from getting service before some deadline is propor-
tional to the time before the deadline that the service was
given, and analyze conditions for rationalizability. We an-
alyze a single parameter version of an auction with limit
constraints [2] and give a piecewise monotonicity condition
for rationalizability. We then present rationalizable approx-
imation algorithms for this problem.

We then extend our work to models where the valuation
of each agent is also affected by the true types of the other
agents. Since it is not possible to achieve a reasonable truth-
ful implementation in dominant strategies, we settle with an
ex-post truthful implementation, where there is a Nash equi-
librium where all agents reveal their true type. We show that
the HMD condition holds for this model, and then apply
it on the problem of scheduling on related machines with
strategic job owners, which is a dual problem to schedul-
ing on strategic related machines [4]. We show that the
monotonicity condition in [5] can be derived using HMD,
and give a 2 approximation which is ex-post truthful, the
first constant approximation ratio for the problem. Finally,
we consider the problem where both machines and jobs are
strategic, and show that the 5 approximation in [1] is ex-post
truthful for this problem.

1.3 Related Work
Provided that each agent’s valuation function depends

only on its type and the outcome, a truthful mechanism for
any optimization problem where the objective function of
the algorithm is to maximize the sum of utilities (maximize
the social welfare) is the VCG mechanism [7, 9, 26], which
can also be generalized to any maximization problem of an
affine function. However, for other objective functions VCG
is not applicable. Additionally, optimally solving an affine
maximization problem may be computationally hard, which
motivates developing truthful mechanisms that only approx-
imate the optimal solution. However, the VCG mechanism
does not cope well with approximate solutions [20].

If the valuation functions are unrestricted and there are
at least 3 possible outcomes, Roberts [21] proved that a
mechanism is truthful is and only if it is a weighted VCG
mechanism. In particular, the allocation must maximize an
affine function of the valuations.

Given that the valuation function of the agents is taken
from some restricted domain, several papers have attempted
to characterize function spaces for which weak monotonicity
would also be a sufficient condition for truthfulness [10, 14].
Saks and Yu [23] have generalized these results to any finite
outcome space and valuation functions defined on convex

domains (in contrast, we do not require the outcome space
to be finite).

Although weak monotonicity is a simple condition, in prac-
tice it is not always easy to prove for given a given algorithm.
We believe that a weaker sufficient yet not necessary condi-
tion may be easier to prove, yet most practical algorithms
will not stumble into the pitfall of rationalizable algorithms
that this condition does not hold for them.

2. PRELIMINARIES

2.1 Mechanisms
The system consists of a decision rule (an algorithm) and

n agents. Each agent submits a bid (signal) bi ∈ T , and
then an outcome ω ∈ Ω is calculated by an algorithm A(b),
where b denotes the bid vector.

The bid vector without the i-th bid is denoted by b−i.
Additionally, (β, b−i) denotes the bid vector b with the i-th
bid replaced with β. When it is clear from the context that
A and b−i are fixed, we shall let ωbi

= A(bi, b−i) denote the
outcome when agent i bids bi.

Definition 2.1. A decision rule is a function A : T n 7→
Ω that given a vector b of n bids returns an outcome ω ∈ Ω.
A payment scheme P is a set of payment functions Pi :
Ω × T n 7→ R, where Pi determines the payment of agent i
to the mechanism, given the output ω and the bid vector b.
A mechanism M = (A, P) is a combination of a decision
rule A and a payment scheme P .

We note that payments may be nagative, meaning that
the mechanism pays the agents.

2.2 Utilities
Each agent has a private value ti ∈ Ti, which is called

its type. To simplify the notation, we will assume that all
agents have their types taken from the same space as the
bids (signaling) space, T .

Each agent has a valuation function vi : Ω × T 7→ R

that reflects the utility from an outcome ω ∈ Ω, given that
the type of the agent is ti. The agents have a quasi-linear
utility, meaning that their utility can be shifted linearly by
monetary payments. Therefore, the utility of agent i from an
outcome ω and a payment Pi is ui(ω, ti, Pi) = vi(ω, ti)−Pi.

In some cases we will be interested in the partial derivative
of a valuation function by the agent’s type. Therefore, for
simplicity, we denote v′

i = ∂vi

∂ti
.

2.3 Truthfulness
For truthful mechanisms we will concentrate on payment

functions of the form Pi : Ω × T n−1 7→ R, which don’t
depend on the i-th bid, because it is easy to see that truthful
mechanisms must have payments of this form.

Definition 2.2. Algorithm A admits a truthful payment
if there exists a payment scheme P such that for any set of
fixed bids b−i, and for any two types s, t ∈ T

vi(ωt, t)− Pi(t, b−i) ≥ vi(ωs, t)− Pi(s, b−i) (1)

In this case, A is also called rationalizable, and the mecha-
nism M = (A, P) is called truthful.

In words, a mechanism is truthful if for every agent, re-
porting its true type as a bid is a weakly dominant strategy.

A mechanism is strongly truthful if truthtelling is the only
weakly dominant strategy.

If an algorithm A is randomized, then it can be viewed
as a distribution over deterministic algorithms. Therefore, a
randomized mechanism M = (A, P), which is a distribution
over truthful mechanisms is also truthful (this property is
also referred as universal truthfulness). A weaker notion of
truthfulness is to carry the randomization into the mecha-
nism, and require truthtelling to always be a best response
strategy in expectation over the random choices of the algo-
rithm. A mechanism of this type is truthful in expectation.

Rochet [22] presented a necessary and sufficient condition
for rationalizable decision rules. We refer to a slightly dif-
ferent presentation of this condition, which appears in [10]:

Theorem 2.3. [22, 10] Given an agent i and having all
other bids b−i held fixed, let G(i, b−i) = (V, E) be a weighted
directed graph such that V = T , E = T × T and the weight
of every edge is w(s, t) = vi(ωt, t)− vi(ωs, t). An allocation
algorithm admits a truthful payment if and only if for ev-
ery agent i and for every vector of fixed bids b−i, the graph
G(i, b−i) has no finite negative cycles.

In addition to Theorem 2.3, if an decision rule is rational-
izable, the following is a suitable payment function for the
i-th agent: For every vector of fixed bids b−i, choose an arbi-
trary type t0. The payment from agent i to the mechanism
if it bids t is:

p(t, b−i) = inf

{

k
∑

j=0

w(tj , tj+1)|k ≥ 0,
t1, . . . , tk+1 ∈ T
tk+1 = t

}

(2)
In words, the payment function is the infimum on all finite
paths from an arbitrary type t0 to the actual bid t.

Theorem 2.3 does not provide an efficient computational
method for testing whether an algorithm is rationalizable. A
simpler condition, which should be easier to test, is whether
the graph contains a negative cycle of length 2. Formally, a
graph G(i, b−i) does not have negative cycles of length 2 if
and only if for every two types t, s ∈ T ,

vi(ωt, t)− vi(ωs, t) ≥ vi(ωt, s)− vi(ωs, s) (3)

This necessary (but not sufficient) condition is referred as
weak monotonicity [14] or as 2-cycle inequality [10].

2.4 Single Parameter

Definition 2.4. An agent i is a single parameter agent
with respect to Ω if there exists an interval Si ⊆ R and a
bijective transformation ri : T 7→ Si such that for any ω ∈ Ω,
the function v̂i(ω, si) is continuous and differentiable almost
everywhere in si, where v̂i(ω, si) = vi(ω, ri

−1(si)).

The purpose of ri(·) is to overcome the difficulty of having
different representations for the same type space. The sin-
gle parameter property should be indifferent to the chosen
representation. For simplicity, we shall assume the type rep-
resentation allows ignoring ri(·). For example, if the type
space is R itself, or an interval T = [t0, t1], and the utility
function is continuous and differentiable almost everywhere
in T for every ω ∈ Ω, then ri(·) is the identity function and
can be ignored. We therefore, slightly abuse the notation
and assume vi = v̂i.

3. HALFWAY MONOTONE DERIVATIVE
The Mirrlees-Spence condition [25, 17, 22] can be used

to characterize all truthful single parameter mechanisms,
where the notion of single parameter is more restricted than
the one we use. Assume the output space Ω is a continuous
interval in R, the type space T is a segment T = [t0, t1]. The
condition requires that vi is twice differentiable, and that

∀ω ∈ Ω, t ∈ T
∂2

∂t∂ω
vi(ω, t) > 0 (4)

then the mechanism is truthful if and only if ω is non-
decreasing in the bid bi of the agent.

Our condition is a generalization of this notion of the
Mirrlees-Spence condition, as it relaxes the assumptions on
Ω and the differentiability of the valuation and decision func-
tions. It is a sufficient but not necessary condition, which
we call Halfway Monotone Derivative (HMD) condition.

Definition 3.1. A valuation function vi satisfies Halfway
Monotone Derivative (HMD) condition with respect to a
given decision rule if for every fixed bid vector b−i, one of
the following holds:

1. For every two types s, t ∈ T such that s < t, ∀u ≥ s we
have, v′

i(ωs, u) ≤ v′
i(ωt, u), except for a set of measure

zero.

2. For every two types s, t ∈ T such that s < t, ∀u ≤ t we
have, v′

i(ωs, u) ≤ v′
i(ωt, u), except for a set of measure

zero.

The set of points where the inequality may not hold is re-
quired since the valuation function may not be differentiable
everywhere. Note that by integrating the derivatives in the
definition over [s, t], HMD also implies weak monotonicity.

The following condition gives a characterization to a fam-
ily of rationalizable decision rules.

Theorem 3.2. A single parameter decision rule A(b) :
T n 7→ Ω is rationalizable when all valuation functions are
HMD.

Proof: We shall prove only that the first condition of HMD
leads to rationalizability, as the proof for the second condi-
tion is analogous. Assume by way of contradiction that the
condition holds yet A is not rationalizable. By Theorem 2.3
there is a some graph G(i, b−i) which has a negative cycle
t0, t1, . . . , tk, tk+1 = t0. We shall first show that the graph
must also contain a negative 2-cycle, and later infer that the
condition is violated. If k = 1 then clearly a negative 2-cycle
exists. Otherwise, let t be the node in the cycle such that
∀0 ≤ i ≤ k, t ≤ ti, and let s and u be the nodes in the cycle
which have cycle arcs in and from t, respectively. Since t is
the node of minimum value in the cycle, we have t ≤ u and
t ≤ s. The length of the path from s to u through t is:

w(s, t) + w(t, u)

= vi(ωt, t)− vi(ωs, t) + vi(ωu, u)− vi(ωt, u)

= vi(ωs, u)− vi(ωs, t)− vi(ωt, u) + vi(ωt, t)

−vi(ωs, u) + vi(ωu, u)

=

∫ u

t

v′
i(ωs, x)dx−

∫ u

t

v′
i(ωt, x)dx

−vi(ωs, u) + vi(ωu, u)

=

∫ u

t

(

v′
i(ωs, x)− v′

i(ωt, x)
)

dx + w(s, u) ≥ w(s, u)

The last integral is non-negative since t ≤ u and since
v′

i(ωs, x) ≥ v′
i(ωt, x) for every x ≥ t (in particular, t ≤ x ≤

u), due to the first HMD condition. From the inequality we
infer that a shorter negative cycle with k − 1 nodes can be
constructed with a shortcut from s to u. By induction, we
get that the graph has a negative 2-cycle. Let s and u be
the nodes in this cycle, and assume without loss of generality
that s < u. We infer from HMD, that:

w(s, u) + w(u, s)

= vi(ωu, u)− vi(ωs, u) + vi(ωs, s)− vi(ωu, s)

=

∫ u

s

v′
i(ωu, x)dx−

∫ u

s

v′
i(ωs, x)dx

=

∫ u

s

(v′
i(ωu, x)− v′

i(ωs, x))dx ≥ 0,

which contradicts the cycle being of negative length.
For some types of valuation functions, HMD is also a nec-

essary condition. The following Theorem proves this prop-
erty for a simple case where the partial derivative is a con-
stant in the agent’s type (proof omitted).

Theorem 3.3. If for every agent i, fixed bid vector b−i,
and bid bi, v′

i(ωbi
, x) does not depend on x, then HMD is a

necessary and sufficient condition for rationalizability.

In Sections 4.1 and 4.2 we demonstrate the importance of
Theorem 3.3 by showing that classical truthfulness results
are special cases of the theorem. In contrast to this result,
we give in Section 4.4.3 an example of a truthful mechanism
where neither HMD condition holds.

We now show a simple structure for the payment function
in truthful HMD mechanisms:

Theorem 3.4. A suitable payment scheme for agent i in
a single parameter rationalizable decision rule A : T n 7→ Ω
that is HMD is

Pi(t, b−i) = c(b−i) + vi(ωt, t)−

∫ t

t0

v′
i(ωx, x)dx (5)

Where b−i is held fixed, t0 ∈ T is an arbitrary type and c is
an arbitrary function of b−i.

Proof: The following proof holds for the first HMD condi-
tion. The proof for the second HMD condition is analogous.
We first prove the Theorem for t0 = inf T , and later extend
the result for any arbitrary t0 ∈ T . For now we assume that
inf T ∈ T . At the end of the proof we refer to the case where
inf T /∈ T .

By Theorem 2.3, a suitable payment function is

Pi(t, b−i) = inf

{

k
∑

j=0

w(tj , tj+1)|k ≥ 0,
t1, . . . , tk+1 ∈ T
tk+1 = t

}

(6)
We call an arc (tj , tj+1) a forward arc if tj < tj+1 and a
backward arc if tj > tj+1. We first prove that within a path,
adding an intermediate node inside a forward arc cannot
make it longer. Let (tj , tj+1) be a forward arc in a given
path. Let s ∈ [tj , tj+1] be an intermediate node. We have
that

w(tj , s) + w(s, tj+1)

= vi(ωs, s)− vi(ωtj
, s) + vi(ωtj+1

, tj+1)− vi(ωs, tj+1)

= −

∫ tj+1

s

v′
i(ωs, x)dx +

∫ tj+1

s

v′
i(ωtj

, x)dx

+vi(ωtj+1
, tj+1)− vi(ωtj

, tj+1)

=

∫ tj+1

s

(

−v′
i(ωs, x) + v′

i(ωtj
, x)

)

dx + w(tj , tj+1)

≤ w(tj , tj+1)

The last inequality is because the integrated expression is
negative within the integral’s range, due to the first HMD
condition. For the first forward arc leaving the interval [t0, t]
(if such an arc exists) we add an intermediate node at t. The
resulting path is not longer, and all the nodes outside the
interval [t0, t] are contained in a cycle, starting and ending at
t (as the entire path ends at t). Since there are no negative
cycles in the graph, we can remove the cycle and end with a
shorter path that uses only nodes within the interval [t0, t].

In a similar technique we remove all the backward arcs
(tj , tj+1) such that tj+1 < tj . Let l > j be the index of
the first node tl that appears after tj+1 such that tl ≥ tj .
The arc that ends at tj must be a forward arc (i.e. tl−1 <
tl), since by definition of l, tl−1 ≤ tj . By adding tj as an
intermediate node within the arc (tl−1, tl), we get a cycle
from tj to itself, which can be removed. Removing the cycle
also removes the backward arc (tj , tj+1).

We now have that the payment is the infimum on paths
from t0 to t that only use forward arcs. By adding interme-
diate points to all arcs, we get that

Pi(t, b−i) = lim
∆→0

t/∆
∑

j=t0/∆

w(j∆, (j + 1)∆)

= lim
∆→0

t/∆
∑

j=t0/∆

(vi(ω(j+1)∆, (j + 1)∆)− vi(ω(j+1)∆, j∆))

= vi(ωt, t)− vi(ωt0 , t0)

− lim
∆→0

t/∆
∑

j=t0/∆

(

vi(ω(j+1)∆, j∆) − vi(ωj∆, j∆)
)

= vi(ωt, t)− vi(ωt0 , t0)

− lim
∆→0

t/∆
∑

j=t0/∆

∫ (j+1)∆

j∆

v′
i(ωj∆, x)dx

= vi(ωt, t)− vi(ωt0 , t0)−

∫ t

t0

v′(ωx, x)dx

Since vi(ωt0 , t0) does not depend on t it can be replaced by
any other function c(b−i) without affecting the truthfulness.

Additionally, the integral can be changed to
∫ t

t̂
v′(ωx, x)dx,

where t̂ is an arbitrary type, since this change only subtracts
∫ t̂

t0
v′(ωx, x)dx from the payment, which does not depend on

t and therefore is part of c(b−i).
If t0 = inf T /∈ T , we can naturally add t0 to T by setting

vi(ω, t0) = limt→t0 vi(ω, t) and vi(ωt0 , s) = limt→t0 vi(ωt, s).
If these limits are not well defined we can settle for any arbi-
trary values. Since t0 is not a legal bid nor a legal type, these
values affect neither the rationalizability of the algorithm,
nor the value of the payment function.

We describe a large class of cases where the integral in
Theorem 3.4 reduces into an alternative representation that
may be more convenient to implement. In many combina-
torial problems the outcome space Ω is finite or countable,
and combinatorial algorithms have the following property:
For each agent i, when b−i is fixed, the type space T can
be divided into a finite or countable number of intervals,
such that for each interval, the algorithm outputs the same
outcome for any bid within the interval. We denote such al-
gorithms as piecewise continuous. Let Tb

−i
denote the set of

endpoints of these intervals. For any endpoint s ∈ Tb
−i

, let

s− and s+ denote the intervals whose upper and lower end-
points are s, respectively. Clearly, for any endpoint s, either
s ∈ s− or s ∈ s+. Given an interval [t1, t2], Tb

−i
∩ [t1, t2]

denotes the set of endpoints whose surrounding intervals in-
tersect with [t1, t2] (i.e., all the endpoints within (t1, t2),
and possibly t1 and t2, if they are endpoints and t1 ∈ t+1 ,
t2 ∈ t−2).

Corollary 3.5. A suitable payment scheme for agent i
in a single parameter piecewise continuous rationalizable de-
cision rule A : T n 7→ Ω that is HMD is

Pi(t, b−i) = c(b−i) + (7)










∑

s∈Tb
−i

∩[t0,t] vi(ωs+ , s)− vi(ωs− , s) t > t0
∑

s∈Tb
−i

∩[t,t0] vi(ωs− , s)− vi(ωs+ , s) t < t0

0 t = t0

,

where b−i is held fixed, t0 ∈ T is an arbitrary type.

In words, the non constant part of the payment is given
by accumulating the values of the transitions between two
consecutive outcomes, over all the endpoints between t0 and
t.
Example: To illustrate our payment function consider the
following case for player i, when all the other bids b−i are
fixed. If bi = x ∈ R

+ then A(x, b−i) == ω⌈x⌉. The valuation
is vi(ω⌈x⌉, t) = t + ⌈x⌉. Choosing t0 = 0 and c(b−i) = 0, the
payment in this case would be Pi(x) = ⌈x⌉. If we change the
valuation function to vi(ω⌈x⌉, t) = t · ⌈x⌉ then the payment

would be Pi(x) =
∑⌈x⌉−1

k=1 k = O(x2).

4. HMD APPLICATIONS
We show applications of the HMD condition for several

single parameter mechanisms. In Sections 4.1 and 4.2 we
rederive results from [4, 3] by applying the HMD condition
to some well known mechanisms, and showing that condi-
tions derived for these mechanisms are actually special cases
of Theorem 3.3. In the rest of this section we present new
single parameter mechanisms and demonstrate the usage of
the HMD condition for them (due to space constraints sev-
eral proofs were omitted)

4.1 Single Commodity Auction
For simplicity, we concentrate on single commodity auc-

tions, where each agent has a unit demand. However, the
results hold for a more general setup of an auction with
known single minded bidders [18], which is a multi commod-
ity combinatorial auction where each agent is interested in
a specific bundle of commodities, which is publicly known.

In an auction, an agent’s type is a private value ti, which is
the value the agent associates with a good that it is bidding
on. From the point of view of a specific agent, there are two

possible outcomes: winning and losing. When winning, the
value of the agent is ti, and in the losing outcome, the value
is 0.

The second price auction [26] is a classical method for
auctioning a single commodity: The highest bidder wins
and pays the bid of the second highest bid. Although it is a
popular example, it is not the only truthful mechanism for
auctioning.

A well known result on rationalizable deterministic auc-
tions is the existence of a critical value for each bidder, un-
less the bidder has no winning bid. A bidder’s critical value
is determined by the bids of the other agents. The bidder
wins if its bid is above the critical value and loses if the bid
is under it. Given that losing bidders pay 0, the winning
bidders pay exactly their critical value. The second price
auction is truthful since the critical value of each bidder is
the highest bid among the other bidders.

The HMD condition is equivalent to the critical value con-
dition in auctions, and extends to randomized auctions:

Claim 4.1. In deterministic auctions the critical value
condition is equivalent to HMD.

In randomized auctions, the relevant outcome for an agent
is a probability 0 ≤ p ≤ 1 for winning the good. The ran-
domized auctioning can be viewed as a distribution over
deterministic auctions. If for each and every one of these
deterministic auctions we have a critical value, then we have
a universal truthfulness. Otherwise, we can settle for truth-
fulness in expectation. In this case, the following holds:

Claim 4.2. The following are equivalent:

1. A randomized auction is rationalizable ,

2. each bidder’s probability for winning is weakly mono-
tone in its bid,

3. HMD conditions hold.

4.2 Machine Scheduling
A central mechanism assigns n jobs to m machines, with

the goal of minimizing the makespan, which is the longest
completion time (also known as Q‖Cmax). Machines are
related by speeds s1, . . . , sm, and the jobs have processing
requirements p1, . . . , pn. Therefore, running the i-th job on
the j-th machine requires pi

sj
time. It is sometimes more

convenient to refer to a machine’s cost per unit of work
cj = 1

sj
rather than to its speed.

If all speeds and weights are known to the mechanism,
then it is known that the optimization problem is NP -
Complete [8], however there is a PTAS to this problem
[11]. Since the problem is strongly NP hard, this is the
best approximation result possible, unless P = NP . In case
the number of machines is constant then there exists an
FPTAS to the problem [12].

4.2.1 Mechanism Design for Machine Scheduling
A machine j incurs a cost proportional to the amount of

work assigned to it, i.e. Lj = (
∑

i∈Ij
pi)cj , where Ij is the

set of jobs assigned to machine j. If the machines’ speeds are
only known privately to the owners of the machines, then the
owners (agents) may report false values to the mechanism
in order to lower their costs.

Archer and Tardos [4] have shown that a scheduling algo-
rithm is rationalizable if and only if it is monotone. Mono-
tonicity means the amount of work assigned to a machine
cannot decrease if it raises its speed, while the rest of the in-
puts remain constant. Although traditional algorithms for
job assignment are not monotone, several monotone algo-
rithms have been given to this problem.

There is a mechanism that solves the optimization prob-
lem optimally and is monotone. Obviously, its running time
is not polynomial, unless P = NP . However, there is a 2-
approximation polynomial time randomized mechanism that
is monotone in expectation, and therefore achieves truthful-
ness in expectation [3] . There is also a 3-approximation
polynomial time deterministic mechanism that is truthful
[13], improving a previously known 5-approximation [1]. If
the number of machines is constant, there is a monotone
FPTAS [1] .

The monotonicity condition holds for any problem where
the agents have a cost function which is linear in the amount
of work assigned to them. This has been demonstrated in
[4] for strategic versions of various allocation problems such
as maximal flow and facility location. We show that the
monotonicity condition is equivalent to HMD.

Claim 4.3. A scheduling algorithm is monotone iff it is
HMD.

By Theorem 3.4, when choosing t0 = ∞ (or any large
enough type that assures a zero assignment) and c = 0, the
payment from the machine to the mechanism is

Pj(bj , b−j) = −bjAj(bj , b−j)−

∫ bj

∞

[−Aj(x, b−j)]dx

= −bjAj(bj , b−j)−

∫ ∞

bj

Aj(x, b−j)dx (8)

where Aj(x, b−j) is the amount of work assigned to ma-
chine j when the bid vector is (x, b−j). Since the payment
is negative, the mechanism actually pays the machine −Pj ,
which is exactly the payment function derived in [4].

The natural dual problem for strategic machine scheduling
is scheduling with strategic job owners, which is discussed
in Section 5.

4.3 Scheduling with Deadlines
The following problem is an example for single parameter

agents, where the derivative of the valuation function is not
a constant (but still simple): n agents apply to get service
from a central mechanism. An agent’s type is a deadline
ti ∈ R

+, which it must be served by to have a positive
valuation. The output is a service time ωi ∈ R

+∪{∞}. The
valuation function of an agent is vi(ωi, ti) = max{0, ti−ωi},
i.e., it linearly decreases until it drops to 0 at the deadline,
and then remains fixed. The infinity outcome represents the
case where an agent is never served.

Since the HMD condition relates only to the valuation
function, we don’t consider here the objective function of
the mechanism, or the set of feasible outcomes, which are
needed for the algorithmic design, but settle on deriving the
rationalizability condition:

Theorem 4.4. Given that a server never serves an agent
after its declared deadline, then it is rationalizable if and

only if for each agent, either ωbi
=∞ for every bi, or it has

a critical time ci such that if bi < ci then ωbi
= ∞, and if

bi > ci then ωbi
< ci.

The assumption that an agent is never served after its
deadline simplifies the condition for rationalizability. It is
also a reasonable assumption since a cooperative agent is
indifferent between late service and denial of service.

4.4 Auctions with Limit Constraints
A limit constraint 1 is a special case of submodular [15]

valuations. Given n items and m agents (bidders), pij de-
notes the valuation of the i-th agent for the j-th item. Each
agent has also a limit constraint ti. Given a bundle of
items I , the valuation of the i-th agent of the bundle is
vi(I, ti) = min{ti,

∑

j∈I pij}. For simplicity we assume that

maxj{pij} ≤ ti ≤
∑

j pij . We also assume that the allo-
cation algorithm does not have to allocate all of the items.
We define the objective function of the mechanism to be the
total valuation of all agents.

This optimization problem is known to be NP-Complete,
but has several approximations: A simple greedy algorithm
gives a 2-approximation for a wider class of valuations (sub-
modular valuations) [15], an LP-rounding gives a 1.58 ap-
proximation, and there is a PTAS when the number of bid-
ders is constant [2]. All of these algorithms assume that the
bidders are non strategic.

4.4.1 Strategic Limits
The following is a single parameter problem: Assume that

all valuations are known, but the limits are privately held by
the agents. Although this is a somewhat artificial setting, it
demonstrates the HMD condition well: We will show that
the valuation function is very similar to the valuation func-
tion in Section 4.3, and the rationalizability conditions are
different.

Definition 4.5. An allocation scheme for auctions with
limit constraints is piecewise monotone if for every agent i
and every limit t0 such that vi(ωt0 , t0) = t0, then for every
t1 > t0, ωt1 ≥ ωt0 .

In words, whenever the value of the allocation meets or
exceeds the limit, it sets a lower bound on the value of the
allocation for higher bids. However, in between these points,
the allocation need not be monotone.

Theorem 4.6. Any piecewise monotone allocation rule is
rationalizable.

Proof: From the point of view of the i-th agent, the exact
allocation is not important, only the total value of items
assigned to him (denoted by ω), and the limit constraint.
Having ω fixed, vi(ω, ti) = ti if ti < ω and vi(ω, ti) = ω
otherwise. The derivative is therefore 1 if ti < ω and 0
otherwise.

1In [15, 2] the class of limited valuations is called budget con-
strained, or budget limited. In non-strategic settings, maxi-
mizing valuations can be equivalently restated as a problem
of maximizing payments. However, in strategic models, pay-
ments are different than valuations. The usage of the term
’budget’ for these valuations is misleading in the strategic
context and therefore was altered here

We now show that piecewise monotonicity leads to the
first HMD condition: Given a limit constraint b0, first as-
sume that the outcome ω0 does not exceed b0 in its total
value. For any type t > b0, v′

i(ω0, t) = 0, so b0 does not in-
duce any constraints on the outcomes for larger bids. If ω0

exceeds b0 in its total value, then the derivative is 1 until ω0,
therefore to fulfill the HMD condition, for any type t > b0

the outcome must be at least ω0. This is achieved due to
piecewise monotonicity, and therefore we also have the first
HMD condition, which by Theorem 3.2 is a sufficient condi-
tion for rationalizability.

Piecewise monotonicity also has a dual version that leads
to the second HMD condition: Let ω0 be the value of the
allocation resulting from bidding a limit constraint of b0.
If ω0 < b0 then the dual piecewise monotonicity condition
requires that for any b1 < b0, the value of the outcome ω1

will fulfill ω1 ≤ ω0. If ω0 exceeds the limit constraint, there
are no additional requirements. We omit the proof that this
property implies the second HMD condition.

Since finding the optimal allocation is NP-Hard, we show
that there are piecewise monotone (hence, rationalizable)
allocation algorithms that output approximate allocations.
The approximation algorithms for the non-strategic form of
the problem [2, 15] are not piecewise monotone. The next
subsection presents approximation algorithms that are also
examples of the following two special subcases of piecewise
monotone algorithms:

Corollary 4.7. Any allocation algorithm that never ex-
ceeds the limit constraint is rationalizable.

Corollary 4.8. Any allocation algorithm for which the
total value of items it allocated to each agent is weakly mono-
tone increasing in its limit constraint is rationalizable.

4.4.2 Piecewise Monotone Algorithms
Under the restriction of never exceeding the limit con-

straint, the allocation problem reduces to a subcase of the
MAX-GAP (Generalized Assignment Problem). MAX-GAP
is a generalization of the Multiple Knapsack problem [6],
where each item has a size and profit, and the items are
packed into bins (knapsacks) of limited capacity. The goal
is to maximize the total profit of the packed items, under
the capacity constraints. In the MAX-GAP problem, each
item has a different size and profit for each bin. MAX-GAP
is NP-Hard to solve, but there is a 2-approximation, based
on a reduction to MIN-GAP [24], which is a similar prob-
lem where items have a cost instead of a profit. An instance
to an auction with limit constraints is reduced to a MAX-
GAP instance by having a bin for each agent, with a capacity
equal to the limit constraint of that agent. The value of an
assigning the j-th item to the i-th item is both the size and
the profit of packing the j-th item in the i-th bin. The 2-
approximation of the MAX-GAP problem is preserved under
the auction with limit constraint problem, since the approx-
imation is in comparison to a fractional assignment, which
is optimal in both problems. By Corollary 4.7, this approx-
imation algorithm is also rationalizable. Choosing that an
agent with an empty assignment won’t pay the mechanism,
the payment function in Corollary 3.5 reduces to paying the
exact value of the allocated items.

It may seem at first that the greedy algorithm [15, 2] that
greedily allocates each item to the highest bidder (with re-
spect to the valuations given the current partial allocation),

Input: a matrix {pij} of values of items for agents
a bid vector b = (b1, b2, .., bm) of limit constraints,
such that bi ≥ pij , ∀i, j

Output: An allocation {Si}
m
i=1 of items to agents

1. I ← {1, 2, . . . , m}, Si ← ∅, for 1 ≤ i ≤ m

2. For j ← 1 to n;

(a) If I = ∅ Return {Si}
m
i=1

(b) i← arg maxi∈I{pij}

(c) Si ← Si ∪ {j}

(d) If
∑

j∈Si
pij > bi Then I ← I \ {i}

3. Return the allocation {Si}
m
i=1

Algorithm 1: Lazy Greedy

would be rationalizable since it appears to be monotone in
the limit constraint. The following example disproves this
intuitive claim:

Example 4.1. Consider 3 items {1, 2, 3} and 2 bidders,
with valuations {3, 5, 6} and {0, 4, 2} respectively. If both
bidders have a limit constraint of 6 then a greedy assign-
ment gives the first bidder items 1 and 3. If the first bidder
changes his limit constraint to 9 his allocation will be items
1 and 2. Week monotonicity is violated, since:

v1({1, 3}, 6)− v1({1, 2}, 6) = 6− 6

= 0 < 1 = 9− 8 = v1({1, 3}, 9)− v1({1, 2}, 9)

Algorithm Lazy Greedy outputs a weakly monotone as-
signment and requires only O(mn) operations, which is lin-
ear in the input size. Lazy Greedy allocates each item to
the highest bidder, ignoring the limit constraint until after
the assignment. If the limit constraint of an agent has been
exceeded, then the agent is removed from the rest of the
allocation process. Ignoring the limit constraint until after
the allocation is required for weak monotonicity: An agent
that raises its limit constraint will receive at least the same
items. By Corollary 4.8, this implies rationalizability. When
the limit is raised to a critical value needed to win another
item, the extra valuation of this item is zero. Therefore,
the payment function in Corollary 3.5 reduces to a constant
payment, regardless of the actual assignment.

The analysis of Lazy Greedy is not given due to space
constraints. However, the following holds for Lazy Greedy:

Theorem 4.9. The approximation ratio of Lazy Greedy
is 3.

One may argue that both algorithms presented here give
a weak incentive to cooperation, since the mechanisms are
not strongly truthful. There are strategies different than
truthtelling, that may change the allocation, without affect-
ing the utility. In the MAX-GAP based mechanism, since
the payment equals the valuation, there is no incentive to
avoid underbidding. The Lazy Greedy based mechanism
does not give an incentive to avoid overbidding, since the
payment is constant.

This difficulty is an outcome of the structure of the valu-
ation functions, but can be overridden by a convex combi-
nation of these mechanisms, i.e. a randomized mechanism
that with probability p applies the MAX-GAP reductions,
and with probability 1− p applies Lazy Greedy. This mech-
anism is universally truthful (a distribution over truthful
mechanisms), has an approximation ratio of 3 in the worst
case, and 3− p in expectation.

4.4.3 A Negative Example
We note that unlike previous examples, HMD is not a

necessary condition here. For example, consider VCG [26,
7, 9] mechanisms. Since the objective function is to maxi-
mize the total valuation, these mechanisms are truthful (and
therefore, any algorithm that outputs an optimal allocation
is rationalizable).

If there is more than one optimal outcome, VCG may
choose among them arbitrarily. However, An inconsistent
choice rule between optimal outcomes in different settings
may lead to violation of both versions of the HMD condition.
An example of such a case follows:

Example 4.2. Consider 2 bidders and 5 identical items.
Both bidders have a valuation of 1 for each item. Given that
the second bidder reports a limit of 2, consider the following
allocation function: If the first bidder bids 2, he receives two
items, if he bids 4, he receives four items, and for any other
bid he receives three items. All other items are allocated
to the second bidder. One can verify that these allocations
maximize the total valuation, and are therefore consistent
with the VCG mechanism.

However, the decrease in the value of the allocation when
bidding 2 instead of 1 violates the first HMD condition, while
the increase while lowering the bid from 5 to 4 violates the
second HMD condition. Therefore, there exists a truthful
VCG-based mechanism which does not comply to either HMD
conditions.

5. EX-POST EQUILIBRIUM
The theory of mechanism design assumes that the valu-

ation function of each agent depends on its true type and
on the output of the mechanism, which may depend on the
bids of the other agents. The true types of all other agents,
have no effect on the valuation function, once the outcome is
fixed. In such setups, it is reasonable to try and construct a
mechanism where truthtelling is a dominant strategy, since
each agent is invariant to whether the other agents bid truth-
fully or strategically.

This assumption fails to hold when valuation functions
are affected by the true types of other bidders and not only
their actual bids and the mechanism outcome. When an
agent lies about its type, it not only affects the outcome,
but also inserts great uncertainty into the system, since the
valuations of the other agents depend on its true type.

Since having truthtelling to be a dominant strategy may
be an unreasonable aim, we settle on designing mechanisms
which are ex-post truthful, meaning that there is an equilib-
rium where all agents reveal their true type. Relaxing the
dominance requirement is necessary due to the complexity of
the valuation functions, which depend on the private param-
eters of the other agents. Formally, the valuation function of
an agent is now vi : Ω×T n 7→ R. The outcome space is now
Ω×T n−1 instead of Ω, i.e. a combination of the algorithm’s

decision and the true types of the other agents. We define
an ex-post truthful mechanism as follows:

Definition 5.1. A mechanism M = (A, P) is ex-post
truthful if for every agent i, for every fixed set of bids for
the other agents b−i and for every types s, t ∈ T

vi(A(t, b−i), (t, b−i))− Pi(A(t, b−i), b−i)

≥ vi(A(s, b−i), (t, b−i))− Pi(A(s, b−i), b−i) (9)

In words, a mechanism is ex-post truthful if any setting
where all agents report their true type is a Nash Equilib-
rium. For any agent, assuming that all other agents report
their true values, its valuation function reduces to a function
that does not depend directly on the other agents’ types, as
those are assumed to be equal to the bids, and are now
part of the extended outcome space. Let Ω′ ⊂ Ω× T n−1 =
{(ω, b−i)|∃bi, A(bi, b−i) = ω} denote the set of possible out-
comes if indeed the other agents bid their types. Replac-
ing Ω with Ω′, we can now extend the HMD conditions for
valuation functions which depend on the types of the other
agents, and give a ex-post truthful characterization and pay-
ment functions similar to Theorems 3.2 and 3.4.

Theorem 5.2. If a decision rule A supports the HMD
condition then M = (A,P) is an ex-post truthful mechanism,
where

Pi(t, b−i) = c(b−i) + vi(A(t, b−i), (t, b−i))

−

∫ t

t0

v′
i(A(x, b−i), (x, b−i))dx (10)

HMD is a necessary condition if for each agent, the partial
derivative of the valuation function by the agent’s type does
not depend on the type.

5.1 Scheduling with Strategic Job Owners
Consider a machine scheduling setting where the machine

speeds are publicly known, but the job owners have to re-
port their processing requirements. Each job owner has a
negative utility from waiting until the completion of the job
(we assume that there is also a positive utility from having
the job executed, which would motivate job owners to par-
ticipate, but we ignore this issue here). The valuation of
having a job with a processing requirement pi executed on a
machine with a cost per unit of cj (i.e., a speed of sj = 1/cj)
is vi = −cj(Wij + pi), where Wij denotes the total process-
ing requirements of jobs that are executed on machine j, not
including the i-th job 2

Clearly, Wij depends on the actual precessing require-
ments, which are unknown to the mechanism, and only as-
sumed to be equal to the bids.

First, we like to show that unless the scheduling algo-
rithm is degenerate, there is no dominant strategy for the
job owners. A degenerate scheduler is a scheduler that al-
ways assigns the same jobs together on the same machine
(or on a machine with the same speed), regardless of their
bids, given that the jobs are assigned on the same machine
for some bid (jobs that are always assigned alone can change

2The definition of Wij given here assumes that the jobs are
executed in parallel. Alternatively, one can consider serial
execution, and define Wij as the total processing require-
ments of all the jobs assigned before the i-th job, on the
j-th machine.

machines). Clearly, degenerate scheduling may be consider-
ably inefficient.

Assume that given the bids of the other agents, if job
owner j bids its true type bj then it is assigned to a machine

together with the jobs in set S1, and if the bid is b̂j then the
assignment is to a (possibly different) machine with the set
S2 of jobs. Assume that there is a job i ∈ S1 such that i /∈
S2. Since the real processing requirement of job i is unknown
to the mechanism and may be arbitrary large, any payment
to job owner j may be insufficient to make j favor reporting
bj over b̂j , which avoids sharing a machine with the i-th
job. Therefore truthtelling cannot be a dominant strategy
in this case. A similar result can be shown if S1 = S2 but
are non empty, and sj1 6= sj2 . This motivates searching for
mechanisms that are ex-post truthful.

Observe that the partial derivative is of the i-th valua-
tion function is v′

i = −cj . By Theorem 5.2, the necessary
and sufficient HMD condition is that when a job raises its
declared processing requirement (having all other jobs fixed
and bidding truthfully), the job cannot move to a slower
machine. Deriving this condition from HMD simplifies the
proof that appears in [5]. Surprisingly, the constraint does
not depend on Wij . This is because if indeed all other agents
bid truthfully, then cjWij is known to the mechanism and its
effect can be reversed by setting the payment appropriately.

Follows is a construction of a fractional job assignment
from [4], which is used to both lower bound the makespan
of the optimal integral assignment, and serves as a starting
point for constructing rationalizable scheduling algorithms
for strategic machines [4, 3, 1].

1. Sort the jobs in non increasing order

2. Set a threshold of maximal load

3. Assign jobs to machines, from fastest to slowest, split-
ting a job whenever the threshold is reached

The threshold that serves as a lower bound for the optimal
integral allocation is the smallest value that is large enough
such that there is enough volume to allocate all the jobs, and
no fraction of a job is allocated to a machine that cannot run
the full job within the threshold limit. It is known that this
threshold can be computed efficiently, in polynomial time.

By rounding each fractionally assigned job toward the
faster machine we get a 2-approximation, since each ma-
chine gets at most one extra fraction, and the load it incurs
is lower than the threshold. Although this approximation is
not rationalizable for strategic machines, it can be used to
construct an ex-post mechanism for strategic job owners.

Theorem 5.3. There exists an ex-post mechanism for ma-
chine scheduling with strategic job owners to minimize the
makespan that is a 2-approximation

Proof: We show that the approximation described above
is monotone in the jobs, meaning that when a job increases
in processing requirement, it cannot move to a slower ma-
chine. The existence of an ex-post mechanism follows from
Theorem 5.2.

Given an increase in the processing requirement of the i-
th job, we observe the effect of the increase in stages: As
long as the order of the sorted jobs does not change, the
threshold of the fractional assignment can only increase, in-
creasing the capacity of every machine. The total processing

requirement of jobs 1 to i − 1 is unchanged, and therefore
the machine where the first fraction (whether there are one
or two fractions) of the i-th job is allocated is either a faster
machine, or the same one. The integral solution rounds to
the fastest machine with a fraction of the job, which is the
machine that holds the first fraction, and therefore the cho-
sen machine cannot be slower.

In breakpoints where the increase in the processing re-
quirement of the i-th job cause it to swap places in the
sorted job vector with the job before it, the same allocation
is generated, except for swapping between two jobs. Obvi-
ously, the i-th job is shifted toward the faster machines, and
cannot be allocated to a slower one.

This is an improvement to [5], which presented non con-
stant approximation algorithms, unless the ratio between
the fastest and slowest machine speeds is small. Closing
the gap between this upper bound and the lower bound of
approximately 1.28 in [5] remains an open problem.

The scheduling mechanism described above is polynomial
in its running time, since the assignment algorithm runs in
polynomial time, and the payment function requires repeat-
ing the algorithm for each job in all the breakpoints that
cause the job to change a machine, or change the jobs that
are assigned with it to the same machine. Finding all break-
points in polynomial time is explained in [4].

If both jobs and machines are strategic, then any ex-post
truthful mechanism must fulfill a dual HMD condition, for
both jobs and machines. Among the several rationalizable
approximation schemes for strategic machines, the 5 approx-
imation in [1] is also monotone from the jobs’ perspective.
Using similar ideas to those of [1] one can derive the follow-
ing theorem.

Theorem 5.4. There exists an ex-post truthful mecha-
nism for uniformly related machine scheduling, where both
machines and job owners are strategic, which achieves a 5
approximation.

6. REFERENCES
[1] N. Andelman, Y. Azar, and M. Sorani. Truthful

approximation mechanisms for scheduling selfish
related machines. In Proc. 22nd Ann. Symp. on
Theoretical Aspects of Computer Science (STACS),
pages 69–82, 2005.

[2] N. Andelman and Y. Mansour. Auctions with budget
constraints. In Proc. 9th Scandinavian Workshop on
Algorithm Theory (SWAT), pages 26–38, 2004.

[3] A. Archer. Mechanisms for Discrete Optimization with
Rational Agents. PhD thesis, Cornell University, 2004.

[4] A. Archer and É. Tardos. Truthful mechanisms for
one-parameter agents. In Proc. 42nd Ann. Symp. on
Foundations of Computer Science (FOCS), pages
482–491, 2001.

[5] V. Auletta, R. D. Prisco, P. Penna, and P. Persiano.
How to route and tax selfish unsplittable traffic. In
Proc. 16th Ann. ACM Symp. on Parallel Algorithms
(SPAA), pages 196–205, 2004.

[6] C. Chekuri and S. Khanna. A ptas for the multiple
knapsack problem. In Proc. 11th Ann. ACM-SIAM
Symp. on Discrete Algorithms (SODA), pages
213–222, 2000.

[7] E. H. Clarke. Multipart pricing of public goods. Public
Choice, 11:17–33, 1971.

[8] M. R. Garey and D. S. Johnson. Computers and
Intractability: a Guide to the Theory of
NP-completeness. Freeman, San-Francisco, 1979.

[9] T. Groves. Incentives in teams. Econometrica,
41:617–631, 1973.

[10] H. Gui, R. Müller, and R. V. Vohra. Dominant
strategy mechanisms with multidimensional types.
working paper.

[11] D. S. Hochbaum and D. B. Shmoys. A polynomial
approximation scheme for scheduling on uniform
processors: Using the dual approximation approach.
SIAM J. Comput., 17(3):539–551, 1988.

[12] E. Horowitz and S. Sahni. Exact and approximate
algorithms for scheduling nonidentical processors. J.
of the Assoc. for Comp. Machinery, 23:317–327, 1976.

[13] A. Kovács. Fast monotone 3-approximation algorithm
for scheduling related machines. In Proc. 13th Ann.
European Symp. on Algorithms (ESA), pages 616–627,
2005.

[14] R. Lavi, A. Mu’alem, and N. Nisan. Towards a
characterization of truthful combinatorial auctions. In
Proc. 44th Symp. on Foundations of Computer
Science (FOCS), pages 574–583, 2003.

[15] B. Lehmann, D. J. Lehmann, and N. Nisan.
Combinatorial auctions with decreasing marginal
utilities. In Proc. ACM Conf. on Electronic Commerce
(EC), pages 18–28, 2001.

[16] A. Mas-Colell, M. D. Whinston, and J. R. Green.
Microeconomic Theory. Oxford University press, 1995.

[17] J. A. Mirrlees. Optimal tax theory: A synthesis. J. of
Public Economics, 6:327–358, 1976.

[18] A. Mu’alem and N. Nisan. Truthful approximation
mechanisms for restricted combinatorial auctions. In
Proc. 18th National Conf. on Artificial Intelligence
and 14th Conf. on Innovative Applications of Artificial
Intelligence (AAAI/IAAI), pages 379–384, 2002.

[19] N. Nisan and A. Ronen. Algorithmic mechanism
design. In Proc. 31st Ann. ACM Symp. on Theory of
Computing (STOC), pages 129–140, 1999.

[20] N. Nisan and A. Ronen. Computationally feasible vcg
mechanisms. In Proc. ACM Conf. on Electronic
Commerce (EC), pages 242–252, 2000.

[21] K. Roberts. The characterization of implementable
choice rules. In J. J. Laffont, editor, Aggregation and
Revelation of Preferences, pages 321–348. North
Holland, 1979.

[22] J. C. Rochet. A necessary and sufficient condition for
rationalizability in a quasi-linear context. J. of
Mathematical Economics, 16:191–200, 1987.

[23] M. E. Saks and L. Yu. Weak monotonicity suffices for
truthfulness on convex domains. In Proc. ACM Conf.
on Electronic Commerce (EC), pages 286–293, 2005.

[24] D. B. Shmoys and É. Tardos. An approximation
algorithm for the generalized assignment problem.
Math. Program., 62:461–474, 1993.

[25] M. Spence. Competitive and optimal responses to
signals: An analysis of efficiency and distribution. J.
of Economic Theory, 7:296–332, 1974.

[26] W. Vickrey. Counterspeculation, auctions and
competitive sealed tenders. J. of Finance, 16:8–37,
1961.

