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Abstract

Planning and learning in Partially Observable
MDPs (POMDPs) are among the most chal-
lenging tasks in both the AI and Operation Re-
search communities. Although solutions to these
problems are intractable in general, there might
be special cases, such as structured POMDPs,
which can be solved efficiently. A natural and
possibly efficient way to represent a POMDP is
through the predictive state representation (PSR)
— a representation which recently has been re-
ceiving increasing attention.

In this work, we relate POMDPs to multiplicity
automata — showing that

POMDPs can be represented by multiplicity au-
tomata with no increase in the representation
size. Furthermore, we show that the size of the
multiplicity automaton is equal to the rank of the
predictive state representation. Therefore, we re-
late both the predictive state representation and
POMDPs to the well-founded multiplicity au-
tomata literature.

Based on the multiplicity automata representa-
tion, we provide a planning algorithm which
is exponential only in the multiplicity automata
rank rather than the number of states of the
POMDP. As a result, whenever the predictive
state representation is logarithmic in the standard
POMDP representation, our planning algorithm
is efficient.

1 Introduction

In the last decade, the field of reinforcement learning has
become a dominant tool for formulating and solving many
real world sequential decision problems. The most pop-
ular mathematical framework for formulating this problem
is the Markov Decision Process (MDP). Here, planning can

be done efficiently using algorithms such as policy iter-
ation, value iteration and linear programming, and, when
the state space is so large that these algorithms become in-
tractable, there are a number of other approximate tech-
niques (e.g. Sutton and Barto [1998], Bertsekas and Tsit-
siklis [1996]).

Although the MDP framework is appealing, it carries the
often unrealistic assumption that the system state is fully
observable by the agent. Unfortunately, in many cases
where the system state is not revealed to the agent, the MDP
framework is not applicable and a different model is in or-
der. In such cases, the Partially Observable Markov De-
cision Process (POMDP) provides a suitable mathematical
framework.

Unlike for MDPs, the problem of planning in POMDPs
is intractable in general. For example, it is NP-Hard to
give an algorithm, which computes anε-optimal policy
in a POMDP Lusena et al. [2001]. Although the prob-
lem is intractable, many heuristics and approximation al-
gorithm have been proposed. One such class of approx-
imation schemes are grid based algorithms for POMDPs
(See Lovejoy [1991], Brafman [1997], Hauskrecht [1997],
Bonet [2002] and references therein). In essence, these grid
based algorithms discretize thebelief statesin the POMDP
in some manner into a finite state MDP. Recall that in a
POMDP, the belief state — the distribution over the states
given the observable — is what is relevant and there are an
(uncountably) infinite number of such states.

Recently, an alternative and more concise representation
for POMDPs, namelyPredictive State Representations
(PSRs) (Littman et al. [2001], Singh et al. [2003, 2004]),
has been proposed. The hope is that this representation will
allow for more efficient approximation algorithms. In the
PSR, the POMDP, “hidden state” structure is not explicitly
represented and only the probabilities of future, “action -
observation” sequences are specified.

In this work, we focus on the closely related representa-
tion of multiplicity automata, which were first introduced
by Shlitzenberger [1961] and were closely studied by Fliess



[1974], Carlyle and Paz [1971]. Multiplicity automata
are generalizations of both deterministic and stochastic au-
tomata, and we show that they are also generalizations of
the POMDPs.

Our first contribution is in showing that POMDPs are a spe-
cial case of multiplicity automata. This is done through us-
ing a similar construction to the PSR construction. Similar
to PSRs, we then show that a POMDP can be represented
by multiplicity automaton of sizer, wherer is bounded by
the number of the POMDP states. These results formally
relate PSRs to a large extant literature on that of multiplic-
ity automata, where many learning models have been con-
sidered (for instance, see Beimel et al. [2000]).

Our second contribution is to provide a planning algorithm
which exploits this structure. In particular, we provide an
algorithm which has runtime that is exponential in the mul-
tiplicity automata size rather than the number of states of
the POMDP. This result directly contributes to the extant
PSR literature — essentially, in the PSR framework, our
algorithm can be viewed as providing an approximate plan-
ing algorithm with runtime that is exponential in the PSR
rank, which, to our knowledge, is a novel result in this lit-
erature.

Our algorithm differs from other grid based ones in that
it uses amodified belief MDPand not the standardbelief
MDP. Themodified belief MDPis built with respect to the
multiplicity automaton construction. Since previous plan-
ning based algorithms have runtime which is exponential
in the number of states of the POMDP, our algorithms pro-
vides a significant improvement whenever the multiplic-
ity automata representation is logarithmic in the standard
POMDP representation. In such cases, the planning prob-
lem becomes tractable. An example for POMDP that has a
logarithmic PSR representation was given by Littman et al.
[2001] (the example is the POMDP extension of the fac-
tored MDP that was introduced by Singh and Cohn [1998]).

We now briefly outline the difficulty in our approach, as op-
posed to standard grid based approaches. Consider a stan-
dard belief state representation in which a belief state is
represented as a vector, which specifies the probability dis-
tribution over then states (so the vector is inRn and sums
to 1). It is easy to see that there exists an orthonormal basis
for the belief states, with the property that every belief state
can be represented as a linear combination of these basis
vectors with weights that are bounded (by1). In the mul-
tiplicity automata (and also the PSR) representation, belief
states are also represented as vectors, except now the vec-
tors are not probability vectors (they may have negative en-
tries and not to sum to one). Here, one can show that these
vectors are spanned by a basis with size that is no greater
than the number of states. However, the problem is that
representing any state as linear combination of these basis
vectors might involve using arbitrarily large weights, which

makes a discretization scheme problematic. Here, we show
to how to construct a basis which spans the set of all states
with “small” weights (using the methods in Awerbuch and
Kleinberg [2004]). Using this carefully constructed basis
set, we devise our planning algorithm.

The paper is organized as follows. Section 2 provides
a formal definition of POMDPs. Grid based algorithms
for POMDPs are defined and analyzed in Subsection 2.2.
Then, in Section 3, we provide a definition and concrete ex-
amples of multiplicity automate. The inherent connection
between multiplicity automata and POMDPs is explored in
Section 4. In section 5 we show how given a POMDP we
can build its matrix representation compactly and in Sub-
section 5.3 we show how to improve this representation.
Finally, in Section 6, we provide an algorithm which is ex-
ponential only on the multiplicity automaton rank.

2 Model

2.1 Partially Observable Markov Decision Processes

A Partially Observable Markov Decision Process
(POMDP) consists of:

• A finite set of statesS = {s1, . . . , sn}, n = |S|.
• A finite set of actionsA(si) associated with each state

si. We assume identical action sets, i.e., for every state
si, A(si) = A

• The transition probability matrix,P (s, a, s′), which is
the probability of moving to states′ after performing
actiona at states.

• A finite set of observable signalsO × R whereO is
the observation set andR is the set of immediate re-
wards. We assume each immediate reward is bounded
in [0, 1]. For simplicity, we assume that the possible
observation signals are identical for all states.

• An observation probability, given a statesi and ac-
tion a ∈ A(si), for an observationo ∈ O × R, is
OB(o|si, a).

We define the return of a policyπ in a POMDP,Rπ

as the expected sum of its discounted rewards, where
there is a discount factorγ ∈ (0, 1), i.e., Rπ(s) =
E[

∑∞
t=0 γtrt|π, s].

An equivalent problem to finding the optimal strategy in a
POMDP is solving the associatedBelief MDP. The Belief
MDP is a continuous state MDP, in which the states are
distributions over the original POMDP states, i.e., a state
x is a distribution overS such thatx(i) is the probability
of being at statesi. These distributions over states are re-
ferred to asbelief states. The transition probabilities in this



MDP are defined according to the MDP transition and ob-
servation probability (The update is bayesian). Similarly to
finite state MDP we define the value function under policy
π from states asV π(s) = E[

∑∞
t=0 γtrt|π, s] and the Q-

function asQπ(s, a) = E[
∑∞

t=0 γtrt|π, s, a0 = a]. We
denote the optimal policy asπ∗ and denotes its value and
Q function asV ∗ andQ∗.

2.2 Grid Based Algorithms for POMDPs

Grid based algorithms for POMDPs are a standard and use-
ful technique in solving POMDPs. The grid based algo-
rithms discretize the belief states in the Belief MDP into
a finite set, and they differ by the way they discretize it.
The discreteization is done by defining a mapping from the
belief statesto the grid states, i.e.,g : B → G, where
G is the grid states. The grid mesh parameter is defined
asδ = supb,b′,g(b)=g(b′) ‖b − b′‖1. Unfortunately, all grid
based algorithms suffer from an exponential dependence on
the number of states that is the grid is composed form(1

δ )n

cells whereδ is the grid mesh.

To give intuition we provide here a simple grid based al-
gorithm and performance guarantees for it. Similar re-
sults can be found in the literature. First we discretize
the belief spaceby having ( 1

δ )n grid states. Each state
is a vector of the form(α1, ..., αn), whereαi = mδ,
m ∈ {0, 1, . . . , 1/δ}.
The MDP is constructed from these discretized states in the
natural way. The transition probabilities are now just modi-
fied such that transition only occur between discretized be-
lief states. We call the resulting MDP theδ-discretized
MDP of the POMDP. Under this modification, it is rela-
tively straightforward to show the following theorem.

Theorem 2.1 Let M be the δ-discretized MDP for a
POMDP. Then the optimal policy inM is 2δ

(1−γ)3 -optimal
policy in the POMDP.

The following three simple technical lemma establish the
proof.

Lemma 2.2 Letx andy be any two belief states such that
‖x− y‖1 ≤ δ, then|Q∗(x, a)−Q∗(y, a)| ≤ δ

1−γ

Proof: Consider any policyπ and start it from statex and
from statey. Since‖x − y‖1 ≤ δ the expected reward at
time1 differs by at mostδ. Let xt, yt be the belief states at
timet after starting at statesx, y respectively and following
policy π for t steps then‖xt− yt‖1 ≤ δ. The proof is done
by induction. The basis holds sincex1 = x andy1 = y.
Assume the hypothesis holds fort−1 and prove fort, since
‖xt−1−yt−1‖1 ≤ δ, then after followingπ for one step w.p
1 − δ for both states we will have the same behavior, thus
‖xt − yt‖1 ≤ δ and this implies that the reward difference
is bounded byδ as well at timet. ¤

This leads to a standard results on the value attained by
value iteration on aggregated states (see Bertsekas and Tsit-
siklis [1996] page 350).

Lemma 2.3 Let the gridG defined by a functiong : B →
G, and suppose that for everyb, b′ such thatg(b) = g(b′),
‖b−b′‖1 ≤ δ. If we take one state as representative in each
cell and letṼ ∗ be the optimal value in this MDP then we
have

|V ∗(b)− Ṽ ∗(g(b))| ≤ δ

(1− γ)2

The next lemma is also standard and relates the greedy
policy loss to the value function approximation error (see
Singh and Yee [1994], Bertsekas and Tsitsiklis [1996]).

Lemma 2.4 If Q̃ is a function such that|Q̃(s, a) −
Q∗(s, a)| ≤ δ for all s ∈ S and a ∈ A. Then for all
s

V ∗(s)− V π̃(s) ≤ 2δ

1− γ
,

whereπ̃ = Greedy(Q̃).

Now the proof of Theorem 2.1 follows, by Lemma 2.2 if
the grid mesh isδ then the difference inQ∗ in the same
grid state is at mostδ/(1 − γ) and then we can simply
apply Lemmas 2.3 and 2.4.

3 Multiplicity Automata

In this section, we define the multiplicity automata and pro-
vide examples of other automata which are special case of
the multiplicity automata.

Starting with notation, letK be a field1 (in this paper, we
only useK = R), Σ an alphabet,λ the empty string, and
f : Σ∗ → K be a function (here,Σ∗ is the set of all strings
comprised of elements fromΣ). Let us now define the Han-
kel matrix, which corresponds tof (sometimes referred to
as a formal series).

Definition 3.1 Associate withf an infinite Hankel matrix
F , where each row is indexed by somex ∈ Σ∗ and each
column is indexed by somey ∈ Σ∗. LetF (x, y) = f(x◦y),
where◦ denotes the concatenation operation.

Next we define multiplicity automata, which represents the
functionf : Σ∗ → K.

Definition 3.2 A multiplicity automatonA of sizer defined
with respect to a fieldK, an alphabetΣ, and an empty
stringλ consists of:

1Recall, a field is an algebraic structure in which the opera-
tions of addition, subtraction, multiplication, and division (except
division by the zero element) are permitted, and the associative,
commutative, and distributive rules hold.



• a set of matrices{µσ : σ ∈ Σ}, each of sizer × r
whereµσ(i, j) ∈ K.

• an r tupleγ = (γ1, . . . , γr) ∈ Kr.

• a mappingµ which maps strings inΣ∗ to r× r matri-
ces. More precisely,µ(λ) = I (whereI is the identity
matrix), and, forw ∈ Σ∗, µ(w) = µσ1 · µσ2 · · ·µσn .

• a functionfA(w) = [µ(w)]1 · γ, where[µ(w)]i is the
ith row ofµ(w).

We now provide a concrete example of a deterministic au-
tomaton and show its multiplicity automaton representa-
tion.

{b,c,d} {a}
{a} {a,b,c,d}

{c,d}

{b}

Figure 1: A deterministic automaton overΣ = {a, b, c, d}
that accepts a string only if it contains the substringab, the
accepting state is the rightmost state.

The multiplicity automaton of Figure 1 is of size3 and its
matrices are:

µa =




0 1 0
0 1 0
0 0 1


 , µb =




1 0 0
0 0 1
0 0 1




µc =




1 0 0
1 0 0
0 0 1


 , µc =




1 0 0
1 0 0
0 0 1




Setγ = (0, 0, 1), since the rightmost state is the only ac-
cepting state.

We extend the previous example and show that probabilis-
tic automata in general are a special case of multiplicity
automata. Let the field be the reals and define[µσ]i,j as
the probability of moving from stateqi to stateqj with in-
put σ, thus for a wordw = σ1, . . . , σn, we haveµw =
µσ1 · · ·µσn and [µw]i,j is the probability of moving from
stateqi to stateqj with input stringw. Let γ will be vec-
tor of 1 in accepting states and0 otherwise. Assuming that
initial state iss1, then[µw]1 · γ is the probability thatw is
accepted by the probabilistic automaton.

We now introduce a theorem which relates the size of mini-
mal automaton representingf to the rank ofF , its associate
matrix. Recall the rank of a matrix is the number of linearly
independent rows (or, equivalently, columns) in the matrix.

Theorem 3.1 (Carlyle and Paz [1971], Fliess [1974]) Let
f : Σ∗ → K such thatf 6≡ 0 and let F be the correspond-
ing Hankel matrix. Then, the sizer of the smallest automa-
ton A such thatfA ≡ f satisfiesr = rank(F ) (over the
fieldK)

4 Multiplicity Automata and Partially
Observable MDP

In this section, we connect POMDPs and multiplicity au-
tomata. We show that POMDPs are actually MA. The con-
nection is done through using the Predictive State Repre-
sentation (PSR), which has received much attention in re-
cent years (See for example Littman et al. [2001], Singh
et al. [2003, 2004]).

The PSR of the POMDP describes the POMDP based on
the possible futures rather than based on its structure. A
future in a POMDP is a set of action observation pairs.
A test is defined as a sequence of actions and observa-
tions a1, o1, . . . , ak, ok, for every history2 h the proba-
bility of test being successful is defined asP(t|h) =
P(ok, . . . o1|ak, . . . a1, h). It is clear that if we enumer-
ated all possible tests for all possible initial histories, then
the model would be fully specified. However, the size of
the representation described so far is infinite. Littman et al.
[2001] showed that this representation can be done by a
square matrix at size at most|S|. We will reprove this
claim using the inherent connection between the PSR and
the multiplicity automata.

Theorem 4.1 A POMDP is a special case of multiplicity
automata.

Proof: We will show how to construct a multiplicity au-
tomaton as was defined in definition 3.2 from a POMDP.
The size of the automaton will be|S|, andΣ is A×O×R.
We letγ be the initial distribution over the states, and for
every a ∈ A and o ∈ O × R we define a matrixµa,o,
whereµa,o(i, j) = P (sj , o|si, a). Recall thatµλ = I and
µa1,o1,...ak,ok

= µa1,o1 · · ·µak,ok
. We prove by induction

that for ,[µa1,o1,...ak,ok
]i ¦γ = P(ok, . . . , o1|ak . . . , a1, si),

where[M ]i is theith row andγ = (1, 1, 1 . . . , 1). First we
prove the induction base case,

[µa1,o1 ]i ¦ γ =
n∑

j=1

P(sj , o1|a1, si) = P(o1|a1, si)

Now assume the induction hypothesis holds fork − 1 and
prove fork

[µa1,o1,...,ak,ok
]i ¦ γ = [µa1,o1µa2,o2,...,ak,ok

]i ¦ γ

=
n∑

j=1

[µa1,o1 ]i,j [µa2,o2,...,ak,ok
]j ¦ γ

2We will allow for history of size1 to be an initial states



=
n∑

j=1

[µa1,o1 ]i,jP(ok, . . . , o2|ak, . . . , a2, sj)

=
n∑

j=1

P(sj , o1|a1, si)P(ok, . . . , o2|ak, . . . , a2, sj)

=
n∑

j=1

P(ok, . . . , o1, sj |ak, . . . , a1, si)

= P(ok, . . . , o1|ak, . . . , a1, si)

¤

Corollary 4.2 POMDP can be represented as multiplicity
automata of sizer, r ≤ |S|.

Proof: By Theorem 4.1, we know that a POMDP is mul-
tiplicity automata by Theorem 3.1 its size is equal to the
Hankel matrix rank. The rank of the Hankel matrix is
bounded by|S| since we can first write|S| rows corre-
sponding to all states, and these rows will span any other
possible initial history. ¤
An important note here is that the Hankel matrix corre-
sponding to the multiplicity automata is essentially the
same matrix used in the PSR literature. Thus the inher-
ent connection between the approaches. In the next sec-
tion, similarly to the PSR works we show how to construct
a minimal submatrix of the Hankel matrix with the Hankel
matrix rank. We denote the minimal basis as the set of rows
and columns which consists the minimal submatrix of the
Hankel matrix.

5 A Minimal Basis

While in the previous section we pointed out that there ex-
ists a minimal basis in size at most|S| of both histories
and tests, in this section we show how it can be found ef-
ficiently. We also show how to find efficiently a basis with
additional properties — namely, a basis set that only needs
“small” weights to span all states. This “small” weight
property allows us to construct our planning algorithm us-
ing such a basis.

5.1 POMDP to Minimal Matrix Representation

In this subsection, we construct a minimal size matrix cor-
responding to a given POMDP.

Starting with notation. Given a set of testsT =
{t1, . . . , tm}we define for every initial belief statex, a vec-
tor FT

x of sizem, whereFT
x (i) = P(ti|x), which denotes

the probability of testti starting from belief statex. We
also defineP(λ|x) = 0 for any belief statex (recall λ is
the empty string). For a states ∈ S, we slightly abuse nota-
tion by writings to also mean the belief state which places
all probability mass on the states. So we writeFT

s , where

Input : POMDP=(S, A,O, R, P )
Output : BasisB = {b1, . . . , br} and test basis

T = {t1, . . . , tr}
Initialize B ← {s1}, T ← {λ};
while Existsσ ∈ A×O ×R andb ∈ S \B, such that
1. FT

b =
∑

bi∈B αiF
T
bi

2. ∃y ∈ T : P (σ ◦ y|b) 6= ∑
bi∈B αiP (σ ◦ y|bi)

do
B = B ∪ {b};
T = T ∪ {σ ◦ y};

end
Algorithm 1 : Construction a minimal matrix representing
POMDP

the initial belief state has all probability mass on states.
For a set of belief statesX and a set of TestsT , we denote
FT

X as the set{FT
x |x ∈ X}. Also note that the POMDP

is represented by infinite matrix, but the rank of the matrix
is finite and the algorithm finds a matrix with the minimal
rank.

Before proving that the algorithm constructs the minimal
basis, let us provide intuition behind the algorithm. First,
this algorithm resembles the one for learning MA from
equivalence and member queries given in Beimel et al.
[2000] and the algorithm of Littman et al. [2001] where
the predictive state representation was introduced. The al-
gorithm begins by taking the test basis to be the empty test
and for the initial history to be an arbitrary state. After
phasek the algorithm hask histories andk tests which are
linearly independent3 and should decide whether they are a
basis and if not it should find an additional test and history
and add them to the basis. We show that if we did not find
a basis yet then an additional history can be found inS and
an additional test can be found as a one-step, extension test
of the current basis tests. Thus, a basis can be computed
efficiently.

Lemma 5.1 Algorithm 1 builds a submatrix of the Hankel
matrix with rank equal to the Hankel matrix rank.

Proof: We first show that at any stageB is linearly inde-
pendent with respect to the tests setT . We prove by induc-
tion, the basis holds trivially. Assume that the induction hy-
pothesis holds forB` = {b1, ..., b`} andT` = {t1, ..., t`}
and prove for̀ + 1. SinceFT`

B`
are linearly independent

thenF
T`+1
B`

are linearly independent as well. By the way

we chooset`+1 andb`+1 we are assuredFT`+1
b`+1

is linearly

independent ofFT`+1
B`

. Now we have to prove that our ma-
trix is not smaller than the minimal matrix. By the con-
struction of Beimel et al. [2000] we know that that if the
matrix rank is less than the Hankel matrix rank, then there

3This implies that theαs calculated by the algorithm are
unique



exists a counterexamplew and a testσ ◦ y, y ∈ T such that

• FT
w =

∑
bi∈B αiF

T
bi

• P (σ ◦ y|w) 6= ∑
bi∈B αiP (σ ◦ y|bi)

Since everyw is a linear combination ofS = {s1, . . . , sn},
then FT

w can be represented as linear combinationFT
S .

Thus the rank ofs1, . . . , sn is larger than the rank ofB
with respect toT ∪ {σ ◦ y}, and we can find a statesi

which is linearly independent ofB with respect toT thus
addingsi to B increases its dimension. ¤

Lemma 5.2 Algorithm 1 terminates in
O(r4|S|2|A||O||R|) steps.

Proof: Since we build a basis of size at most|S|, there at
most |S| iterations. In each iteration we check for every
combination of state, action and observation if they satisfy
condition1 and2 which takesO(r3) ¤

5.2 A Modified Belief MDP

Similarly to thebelief MDP,we would like to define the
modified belief MDP.

Definition 5.1 Letr be the size of a basisB = (b1, . . . , br)
and let T = {t1, . . . , tr} be the test basis. The modi-
fied belief MDP states are vector of sizer such thatx =
(α1, . . . , αr) if and only if FT

x =
∑r

i=1 αiF
T
bi

. Let x =
(α1, . . . , αr) and y = (β1, . . . , βr) two modified belief
states, thenP(x, a, y) =

∑
b′|F T

b′=
∑r

i=1 βiF T
bi

P(b, a, b′)

for any b =
∑r

i=1 αiF
T
bi

. Let x = (α1, . . . , αr) and b

a any belief state such thatFT
b =

∑r
i=1 αiF

T
bi

, then the
reward of actionu in statex is

∑
r′∈R P(r|u, b)r′.

The optimal policy in themodified belief MDPas the op-
timal policy in thebelief MDPis the optimal policy in the
original POMDP, since in both cases the representation is
exact. Note that although each state in themodified belief
MDP is represented by a coefficients vector, this represen-
tation differs from the standard belief space representation
as the coefficients of the basis statesFT

s =
∑

si∈B βiF
T
si

can be very large and negative.

Therefore, building a grid with respect to themodified be-
lief MDP will depend on the largest coefficient and on the
matrix rank (which is at most|S|). In the next section we
would show how to improve our basis and overcome the
dependence on the largest coefficient.

5.3 Barycenteric Spanner - Improving the basis

In this subsection we introduce how to transform the basis
outputted by Alg. 1 to a ”better” basis by using Awerbuch
and Kleinberg [2004] technique. More formally, the main

theorem of the subsection shows that we can find a basis
such that for anybelief statelargest coefficient is bounded
by 2.

Theorem 5.3 Letr be the rank of the multiplicity automata
representing the POMDP and letT be the set of tests out-
putted by Alg. 1. There exists a set of statesB ⊂ S, where
|S| = r, such that, for any belief stateb, the vectorFT

b

can be uniquely represented asFT
b =

∑
b̃∈B αiF

T
b̃

, with
maxi |αi| ≤ 2.

We first provide a definition of barycenteric spanner.

Definition 5.2 (Awerbuch and Kleinberg [2004]) A
C-barycenteric spanner is a basisB, which spans a
convex setS, such that everyx ∈ S can be represented as
x =

∑
bi∈B αibi, where|αi| ≤ C.

Awerbuch and Kleinberg [2004] showed that ifS is a com-
pact set that contained inRd but is not contained in lin-
ear subspace of smaller dimension then there exists a1-
barycenteric spanner. If we could transform that basis out-
putted by Alg. 1 to a barycenteric spanner, we can the dis-
cretize themodified belief MDPwith dependence only on
the automaton rank since the largest coefficient is constant.
The next algorithm shows how to construct efficiently an
”almost” spanner as was done in Awerbuch and Kleinberg
[2004]. We denote the matrix of basis initial historiesB
and TestsT asM(B, T ), whereM(B, T )i,j = P(tj |bi).

Input : POMDP=(S, A,O, R, P )
BasisB = {b1, . . . , br}
and test basisT = {t1, . . . , tr}

Output : BasisB̃ = {b̃1, . . . , b̃r}
Initialize: b̃i = bi, ∀i;
while ∃x ∈ S \ B̃, i ∈ {1, . . . , r} satisfying
det(M(x ∪B \ b̃i, T )) > 2det(M(B̃, T )) do

b̃i = x;
end

Algorithm 2 : Construction a2-Barycenteric spanner

Note the spanner spans the the set{FT
s : s ∈ S}, which is

identical to span the set{FT
b : b is a belief state}.

This next lemma proves that the Algorithm builds a2-
Barycenteric spanner and its proof can found in Awerbuch
and Kleinberg [2004]. For intuition, note that this algo-
rithm must terminate since there exists a1-barycenteric
spanner, which achieves the largest determinant, and in
each iteration the determinant grows by at least a factor of
two.

Lemma 5.4 Alg. 2 constructs a2-Barycenteric spanner
for the set{FT

s : s ∈ S}.

Next we show that Algorithm 2 terminates in polynomial
time.



Lemma 5.5 Algorithm 2 terminates inO(|S|r4 log r)
steps.

Proof: By Lemma 2.5 in Awerbuch and Kleinberg [2004]
we know that the loop repeatsO(r log r). In each iteration
we calculate the determinant of a square matrix of sizer at
mostS times, thus each iteration takes at most|S|r3 time
steps. ¤
Now we are ready to prove the main theorem of this sub-
section, which demonstrates the advantage of the basis pro-
duced by Alg. 2 over the basis produced by Alg. 1 in which
αi is unbounded.

Proof of Theorem 5.3:

Let b =
∑|S|

i=1 βisi any belief state.

FT
b =

|S|∑

i=1

βiF
T
si

=
|S|∑

i=1

βi

r∑

j=1

γj(i)FT
b̃j

=
r∑

j=1

|S|∑

i=1

βiγj(i)FT
b̃j

=
r∑

j=1

αjF
T
b̃j

Now we observer that

αj =
r∑

j=1

|S|∑

i=1

βiγj(i) ≤ max
i

γj(i) ≤ 2,

where the first inequality comes from the fact that∑|S|
i=1 βi = 1 and thatβi > 0 for every i, and the sec-

ond inequality follows from the fact thatsis were used in
building the barycenteric spanner, and thus for everyi, j
|γj(i)| ≤ 2 . ¤

6 Planning Algorithm

We are finally ready to describe our planning algorithm,
Algorithm 3. The planning algorithm uses the first two al-
gorithms to construct a basis of sizer of initial states and
r tests. With eachmodified belief statefully represented
by a linear combination of the basis states with coefficient
bounded in[−2, 2], note that in contrast to the standard be-
lief state the coefficient can be negative. Instead of dis-
cretizing theBelief MDPwe discretize themodified belief
MDP, which is built with respect to the basis (see defini-
tion 5.1). Our planning algorithm will then discretize it
will compute the optimal policy for this MDP.

6.1 The Algorithm

Input : POMDPP = (S, A,O, R, P )

Output : An ε-optimal policyπ

Run Alg. 1 on (P ) and obtainT = {t1, . . . tr} and
B̃ = {b1, . . . , br} ;

Run Alg. 2 on (P , B̃, T ) and obtainB = {b1, . . . , br};
Build a grid based MDP,̃M with respect to the basis
B = {b1, . . . , br} and testsT = {t1, . . . , tr} ;

Each state in the MDP is a vector of sizer, (α1, . . . , αr),
whereαi = mε̃, m ∈ {−2/ε̃, . . . , 0, . . . , 2/ε̃}, ε̃ = ε/r ;

Compute an optimal policyπ for M̃ .
Algorithm 3 : Planning

Now we state our main theorem.

Theorem 6.1 Given a POMDP, Algorithm 3 com-
putes an ε

(1−γ)4 -optimal policy in time polynomial in
|S|, |A|, |O|, |R|, ε and exponentially only inr , wherer
is the size of the multiplicity automaton representing the
POMDP.

6.2 Algorithm Analysis

We first show that the algorithm is efficient, i.e., polyno-
mial in |S|, |A|, |O| and exponential inr the matrix rank.
Later we provide performance guarantees for the the algo-
rithm, i.e., that it produces anε-optimal policy.

Lemma 6.2 Algorithm 3 terminates in
O

(
r4|S|2|A||O||R| log r + ( 2r

ε )3r
)

steps.

Proof: Let’s first analyze the time. By Lemmas 5.2 and 5.5
running Alg. 1 and Alg 2 takesO(r4|S|2|A||O||R| log r).
The grid MDP contains( 2r

ε )r states and thus we can solve
it in (2r

ε )3r. ¤
Similarly to Subsection 2.2 we would like to show that if
two states are mapped to the same grid state then they are
close to each other in the sense that the optimal value is
close between them.

Lemma 6.3 Let b andb′ two belief states that are mapped
to the same state in the grid MDP, then for every action
u ∈ A |Q∗(b, u)−Q∗(b′, u)| ≤ ε

1−γ

Proof: We show here that ifb and b′ are mapped to the
same state in theε-discretized modified belief MDP then
for every policyπ4, |V π(b) − V π(b′)| ≤ ε. Let b be a
belief state such thatFT

b =
∑r

i=1 αiF
T
bi

andb′ such that
FT

b′ =
∑r

i=1 βiF
T
bi

, then sinceb andb′ are in the same state
in the discretized MDP‖α−β‖1 ≤ ε. LetRt be the return

4Note thatπ is not necessarily stationary



in testt, then we can rewrite

V π(b) =
∑

t

P(t|b, π)Rt =
∑

t

r∑

i=1

αiP(t|bi, π)Rt

≤
∑

t

r∑

i=1

βiP(t|bi, π)Rt +
ε

1− γ

= V π(b′) +
ε

1− γ

Similarly we can show thatV π(b) ≥ V π(b′)− ε
1−γ . ¤

Now similarly to the proof of Theorem 2.1 we apply Lem-
mas 2.3 and 2.4 to derive the following lemma.

Lemma 6.4 Algorithm 3 computes an ε
(1−γ)4 -optimal pol-

icy.

Now the proof of Theorem 6.1 follows from Lemmas 6.2
and 6.4.
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