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Abstract

Planning and learning in Partially Observable
MDPs (POMDPs) are among the most chal-
lenging tasks in both the Al and Operation Re-
search communities. Although solutions to these
problems are intractable in general, there might
be special cases, such as structured POMDPs,
which can be solved efficiently. A natural and
possibly efficient way to represent a POMDP is
through the predictive state representation (PSR)
— a representation which recently has been re-
ceiving increasing attention.

In this work, we relate POMDPs to multiplicity
automata — showing that

POMDPs can be represented by multiplicity au-
tomata with no increase in the representation
size. Furthermore, we show that the size of the
multiplicity automaton is equal to the rank of the
predictive state representation. Therefore, we re-
late both the predictive state representation and
POMDPs to the well-founded multiplicity au-
tomata literature.

Based on the multiplicity automata representa-
tion, we provide a planning algorithm which
is exponential only in the multiplicity automata
rank rather than the number of states of the
POMDP. As a result, whenever the predictive
state representation is logarithmic in the standard
POMDP representation, our planning algorithm
is efficient.

Introduction

Sham M. Kakade
Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104
skakade@linc.cis.upenn.edu

Yishay Mansour
School Computer Science
Tel-Aviv University
Tel-Aviv, Israel 69978
mansour@post.tau.ac.il

be done efficiently using algorithms such as policy iter-
ation, value iteration and linear programming, and, when
the state space is so large that these algorithms become in-
tractable, there are a number of other approximate tech-
nigues (e.g. Sutton and Barto [1998], Bertsekas and Tsit-
siklis [1996]).

Although the MDP framework is appealing, it carries the
often unrealistic assumption that the system state is fully
observable by the agent. Unfortunately, in many cases
where the system state is not revealed to the agent, the MDP
framework is not applicable and a different model is in or-
der. In such cases, the Partially Observable Markov De-
cision Process (POMDP) provides a suitable mathematical
framework.

Unlike for MDPs, the problem of planning in POMDPs
is intractable in general. For example, it is NP-Hard to
give an algorithm, which computes aroptimal policy

in a POMDP Lusena et al. [2001]. Although the prob-
lem is intractable, many heuristics and approximation al-
gorithm have been proposed. One such class of approx-
imation schemes are grid based algorithms for POMDPs
(See Lovejoy [1991], Brafman [1997], Hauskrecht [1997],
Bonet [2002] and references therein). In essence, these grid
based algorithms discretize thelief statesn the POMDP

in some manner into a finite state MDP. Recall that in a
POMDP, the belief state — the distribution over the states
given the observable — is what is relevant and there are an
(uncountably) infinite number of such states.

Recently, an alternative and more concise representation
for POMDPs, namelyPredictive State Representations
(PSRs) (Littman et al. [2001], Singh et al. [2003, 2004]),
has been proposed. The hope is that this representation will
allow for more efficient approximation algorithms. In the
PSR, the POMDP, “hidden state” structure is not explicitly
represented and only the probabilities of future, “action -

In the last decade, the field of reinforcement learning hagbservation” sequences are specified.

become a dominant tool for formulating and solving many

In this work, we focus on the closely related representa-

real world sequential decision problems. The most POPsion of multiplicity automata, which were first introduced

ular mathematical framework for formulating this problem hii ; ;
1961 losel Fl
is the Markov Decision Process (MDP). Here, planning canIOy Shiitzenberger [1961] and were closely studied by Fliess



[1974], Carlyle and Paz [1971]. Multiplicity automata makes a discretization scheme problematic. Here, we show
are generalizations of both deterministic and stochastic auo how to construct a basis which spans the set of all states
tomata, and we show that they are also generalizations afith “small” weights (using the methods in Awerbuch and
the POMDPs. Kleinberg [2004]). Using this carefully constructed basis

Ouir first contribution is in showing that POMDPs are a spe—SEt’ we devise our planning algorithm.

cial case of multiplicity automata. This is done through us-The paper is organized as follows. Section 2 provides
ing a similar construction to the PSR construction. Similara formal definition of POMDPs. Grid based algorithms
to PSRs, we then show that a POMDP can be representddr POMDPs are defined and analyzed in Subsection 2.2.
by multiplicity automaton of size, wherer is bounded by  Then, in Section 3, we provide a definition and concrete ex-
the number of the POMDP states. These results formallamples of multiplicity automate. The inherent connection
relate PSRs to a large extant literature on that of multiplic-between multiplicity automata and POMDPs is explored in
ity automata, where many learning models have been corSection 4. In section 5 we show how given a POMDP we
sidered (for instance, see Beimel et al. [2000]). can build its matrix representation compactly and in Sub-
section 5.3 we show how to improve this representation.
Finally, in Section 6, we provide an algorithm which is ex-
ponential only on the multiplicity automaton rank.

Our second contribution is to provide a planning algorithm
which exploits this structure. In particular, we provide an
algorithm which has runtime that is exponential in the mul-
tiplicity automata size rather than the number of states of

the POMDP. This result directly contributes to the extant2 Model

PSR literature — essentially, in the PSR framework, our

algorithm can be viewed as providing an approximate plan2.1 Partially Observable Markov Decision Processes
ing algorithm with runtime that is exponential in the PSR

rank, which, to our knowledge, is a novel result in this lit- A Partially Observable Markov Decision Process
erature. (POMDP) consists of:

Our algorithm differs from other grid based ones in that .
it uses amodified belief MDPand not the standaroelief o Afinite set of statess = {s1,...,sn}, n = |5].

MDP. Themodified belief MDRs built with respect to the « Afinite set of actionsi(s,) associated with each state

multlphcny autom_aton constructhn. Sm(_:e previous plar_1- s;. We assume identical action sets, i.e., for every state
ning based algorithms have runtime which is exponential si A(s;) = A
(2 K3 -

in the number of states of the POMDP, our algorithms pro-

vides a significant improvement whenever the multiplic- e The transition probability matrix?(s, a, s'), which is
ity automata representation is logarithmic in the standard  the probability of moving to state’ after performing
POMDP representation. In such cases, the planning prob-  actione at states.

lem becomes tractable. An example for POMDP that has a

logarithmic PSR representation was given by Littman etal. ® A finite set of observable signa@@ x I whereO is
[2001] (the example is the POMDP extension of the fac- the observation set anll is the set of immediate re-

tored MDP that was introduced by Singh and Cohn[1998]).  wards. We assume each immediate reward is bounded
in [0,1]. For simplicity, we assume that the possible

We now briefly outline the difficulty in our approach, as op- observation signals are identical for all states.

posed to standard grid based approaches. Consider a stan-

dard belief state representation in which a belief state is e An observation probability, given a statg and ac-
represented as a vector, which specifies the probability dis-  tion a € A(s;), for an observatiom € O x R, is
tribution over then states (so the vector is R™ and sums OB(o|s;,a).

to1). Itis easy to see that there exists an orthonormal basis

for the belief states, with the property that every beliefstateswe define the return of a policyt in a POMDP, R™

can be re_prr]esentﬁd aﬁ a Imezr co(Tt?jmatlon 0; thes<|a basi§ the expected sum of its discounted rewards, where
vectors with weights that are bounded (By In the mul- o6 is 3 discount factor € (0,1), i.e., R7(s) =
tiplicity automata (and also the PSR) representation, behek 0ot
[> im0 relm, 8.

states are also represented as vectors, except now the vec-—"=" o _ _
tors are not probability vectors (they may have negative enAn equivalent problem to finding the optimal strategy in a
tries and not to sum to one). Here, one can show that thedeOMDP is solving the associat@lief MDP. The Belief
vectors are spanned by a basis with size that is no great&DP is a continuous state MDP, in which the states are
than the number of states. However, the problem is thaglistributions over the original POMDP states, i.e., a state
representing any state as linear combination of these basisis a distribution overS such thatz(i) is the probability
vectors might involve using arbitrarily large weights, which of being at states;. These distributions over states are re-

ferred to adelief statesThe transition probabilities in this



MDP are defined according to the MDP transition and ob-This leads to a standard results on the value attained by
servation probability (The update is bayesian). Similarly tovalue iteration on aggregated states (see Bertsekas and Tsit-
finite state MDP we define the value function under policysiklis [1996] page 350).

w from states asV™(s) = E[Y_,-,7'r:|m, s] and the Q-

function asQ™(s,a) = E[Y.,2,7'r|m, s,a0 = a]. We  Lemma 2.3 Let the gridG defined by a functiop : B —
denote the optimal policy as* and denotes its value and G, and suppose that for evebyb’ such thatg(b) = g('),

@ function asV* andQ*. [6—0"[[1 < 4. If we take one state as representative in each
cell and letV* be the optimal value in this MDP then we
2.2 Grid Based Algorithms for POMDPs have

| _ Vo) =V (g < 75
Grid based algorithms for POMDPs are a standard and use- (1-7)

ful technique in solving POMDPs. The grid based algo- .
rithms discretize the belief states in the Belief MDP into | '€ Néxt lemma is also standard and relates the greedy

a finite set, and they differ by the way they discretize it, POliCY 10SS to the value function approximation error (see
The discreteization is done by defining a mapping from the>ingh and Yee [1994], Bertsekas and Tsitsiklis [1996]).
belief statedo the grid states, i.eg : B — G, where ~ . ~
G is the grid states. The grid mesh parameter is deﬁne%e*mma 241f Q is a function such thaiQ(s,a) —
as6 = supy 4(n)—ge) I — ¥'[l1. Unfortunately, all grid (s,a)] < dforall s € Sanda € A. Then for all
based algorithms suffer from an exponential dependence ch . 25

the number of states that is the grid is composed fofirt Vi(s) =V7(s) < -

cells whereg) is the grid mesh.

To give intuition we provide here a simple grid based aI-Wherew = Greedy(Q).
gorithm and performance guarantees for it. Similar re-Now the proof of Theorem 2.1 follows, by Lemma 2.2 if

Sr:”tf) ﬁa? be foetkj)ndhin _the Ilit(iratu_(rje. First V\IIEe dr:scretizethe grid mesh is) then the difference ir)* in the same
the belief spacehy having(3)™ grid states. Each state grid state is at mosé/(1 — «) and then we can simply

is a vector of the form(ay, ..., a,), Wherea; = md,
pron g apply Lemmas 2.3 and 2.4.
me{0,1,...,1/5). PRY

The MDP is constructed from these discretized states in thg Multiplicity Automata
natural way. The transition probabilities are now just modi-
fied such that transition only occur between discretized be
lief states. We call the resulting MDP thediscretized
MDP of the POMDP. Under this modification, it is rela-
tively straightforward to show the following theorem.

in this section, we define the multiplicity automata and pro-
vide examples of other automata which are special case of
the multiplicity automata.

Starting with notation, lefd be a field (in this paper, we
Theorem 2.1 Let M be the §-discretized MDP for a only useK = R), ¥ an alphabet) the empty string, and
POMDP. Then the optimal policy i/ is %-optimal f:¥* — K be afunction (herey* is the set of all strings
policy in the POMDP. comprised of elements frol). Let us now define the Han-
kel matrix, which corresponds tp (sometimes referred to
The following three simple technical lemma establish theas a formal series).
roof.
P Definition 3.1 Associate withf an infinite Hankel matrix
Lemma 2.2 Letz andy be any two belief states such that F', where each row is indexed by some= ¥* and each
[l —yll1 <9, then|Q*(z,a) — Q*(y,a)| < % columnis indexed by sorges ¥*. LetF'(z,y) = f(xoy),
whereo denotes the concatenation operation.
Proof: Consider any policyr and start it from state and
from statey. Since||x — y||; < J the expected reward at Next we define multiplicity automata, which represents the
time 1 differs by at mosb. Let z;, y; be the belief states at function f : ¥* — K.
timet after starting at states y respectively and following
policy 7 for t steps the{z; — y,||; < . The proof is done  Definition 3.2 A multiplicity automatom of sizer defined
by induction. The basis holds sineg = z andy; = y. ~ With respect to a field<’, an alphabet®, and an empty
Assume the hypothesis holds for 1 and prove fot, since  string A consists of:

— < i . T . . . .
!xt_alf ytgltu]l S f’ then afFﬁrthIIO\{[vrllngr for Oge ;tep W ?h 'Recall, a field is an algebraic structure in which the opera-
— o Tor both states we will have the same behavior, tug;, s o addition, subtraction, multiplication, and division (except

|+ — y:l[1 < d and this implies that the reward difference givision by the zero element) are permitted, and the associative,
is bounded by as well at timet. O commutative, and distributive rules hold.



a set of matricedu, : 0 € X}, each of size x r  Theorem 3.1 (Carlyle and Paz [1971], Fliess [1974]) Let
wherep,(i,7) € K. f : ¥* — K such thatf # 0 and let F be the correspond-
ing Hankel matrix. Then, the sizeof the smallest automa-

e anrtupley = (vi,...,v,) € K". ton A such thatf, = f satisfiesr = rank(F) (over the

e a mappingu which maps strings iX* to » x » matri- field K)

ces. More precisely;(A) = I (wherel is the identity

matrix), and, forw € X7, p(w) = po, - pro, -+ to,- 4 Multiplicity Automata and Partially
e afunctionfa(w) = [u(w)]; - v, where[u(w)]; is the Observable MDP

ith row of u(w).
In this section, we connect POMDPs and multiplicity au-

We now provide a concrete example of a deterministic automata. We show that POMDPs are actually MA. The con-
tomaton and show its multiplicity automaton representanection is done through using the Predictive State Repre-
tion. sentation (PSR), which has received much attention in re-
cent years (See for example Littman et al. [2001], Singh
et al. [2003, 2004]).

b,cd {a}

{ } {a {b {abcd; The PSR of the POMDP describes the POMDP based on

/\ the possible futures rather than based on its structure. A
future in a POMDP is a set of action observation pairs.
A testis defined as a sequence of actions and observa-
tions a1, 01,...,ax, o, for every history h the proba-
bility of test being successful is defined ®(t|h) =

{c,d} P(og,...01]ak,...a1,h). Itis clear that if we enumer-

ated all possible tests for all possible initial histories, then

Figure 1: A deterministic automaton ovEr= {a, b, c,d} the model would be fully specified. However, the size of

that accepts a string only if it contains the substihgthe  the representation described so far is infinite. Littman et al.

accepting state is the rightmost state. [2001] showed that this representation can be done by a
square matrix at size at most|. We will reprove this

o ] . ) ) claim using the inherent connection between the PSR and
The multiplicity automaton of Figure 1 is of siZeand its  the multiplicity automata.

matrices are:

01 0 10 0 Theorem 4.1 A POMDP is a special case of multiplicity
pa=10 1 0 J,up=1{0 01 automata.
0 0 1 0 0 1 . s
Proof: We will show how to construct a multiplicity au-
1 0 0 10 0 tomaton as was defined in definition 3.2 from a POMDP.
pe=11 00 |,ue=| 1 0 0 The size of the automaton will B8, and¥ is A x O x R.
00 1 0 0 1 We let~ be the initial distribution over the states, and for

everya € Aando € O x R we define a matrixu, o,
Sety = (0,0,1), since the rightmost state is the only ac- whereyi, ,(i,j) = P(s;,0|s;,a). Recall thatu, = I and
cepting state. Har,01,..amon = Har,o1 °** Hag,0,- YVE Prove by induction

. . thatfor,[ta, or...a.00lisy = P(ok, .. ., .o, a1, 8i),
We extend the previous example and show that probablllswhere[]\% Ts ihez’fh ?g)wvandy (:Ok(l 1 101|ak 1) Fcilrlsfvx)/e

tic automata in general are a special case of multiplicity . .
automata. Let the field be the reals and defing; ; as prove the induction base case,
the probability of moving from statg; to stateg; with in- n
put o, thus for a wordw = o, ...,0,, We haveu, = [Hay,00)i e Y =
Moy - Pho,, @Nd 1,5 ;5 IS the probability of moving from J=1
stateg; to stateg; with input stringw. Let~y will be vec-  Nqy assume the induction hypothesis holds#or 1 and
tor of 1 in accepting states aridotherwise. Assuming that prove fork

initial state iss1, then[u,,]1 - 7 is the probability thatv is

accepted by the probabilistic automaton. [May o1, anonli v Y = [Har,01 baz,00,....an,05 )i = Y

P(Sj, 01|a1, 87;) = P(ol\al, SL)

We now introduce a theorem which relates the size of mini-
mal automaton representirfgo the rank off", its associate
matrix. Recall the rank of a matrix is the number of linearly
independent rows (or, equivalently, columns) in the matrix.  We will allow for history of sizel to be an initial states

n
= Z[lu’ahol]i:j [ua2;027'~~;ak;0k]j e
J=1



n

= S taron)igP 0k, -, 02lar, ... as,'5;) Input : POMDP=(S, 4,0, R, P) |
= Output: BasisB = {by,...,b.} and test basis
n T={ty,...,tr}
= ZP(Sjaol‘alaSi)P(Oka'"a02|aka"'aa2asj) InltlallzeB(ﬁ{él}'T(i{)\}'
j=1 while Existsoc € A x O x Randb € S\ B, such that
" L Fy) =30 cpaily,
= ZP(Om ..., 01, S5lak, ..., a1,8;) 2.y eT:Plooylb) # > cpiP(ooy|bi)
j=1 do
= Plog,...,01|ak,...,a1,8;) B =BU{b};
T=TU{ooy};
O lnd

Algorithm 1: Construction a minimal matrix representing
Corollary 4.2 POMDP can be represented as multiplicity POMDP
automata of size, r < |S]|.

Proof: By Theorem 4.1, we know that a POMDP is mul- the initial belief state has all probability mass on state
tiplicity automata by Theorem 3.1 its size is equal to theFor a set of belief state¥ and a set of Test§, we denote
Hankel matrix rank. The rank of the Hankel matrix is Fx as the se{F/ |z € X}. Also note that the POMDP
bounded by|S| since we can first writeS| rows corre- is represented by infinite matrix, but the rank of the matrix
sponding to all states, and these rows will span any otheis finite and the algorithm finds a matrix with the minimal
possible initial history. 0 rank.

An important note here is that the Hankel matrix corre-Before proving that the algorithm constructs the minimal
sponding to the multiplicity automata is essentially thebasis, let us provide intuition behind the algorithm. First,
same matrix used in the PSR literature. Thus the inherthis algorithm resembles the one for learning MA from
ent connection between the approaches. In the next se€duivalence and member queries given in Beimel et al.
tion, similarly to the PSR works we show how to construct[2000] and the algorithm of Littman et al. [2001] where
a minimal submatrix of the Hankel matrix with the Hankel the predictive state representation was introduced. The al-
matrix rank. We denote the minimal basis as the set of row§orithm begins by taking the test basis to be the empty test

and columns which consists the minimal submatrix of theand for the initial history to be an arbitrary state. After
Hankel matrix. phase: the algorithm hag histories and: tests which are

linearly independentand should decide whether they are a
basis and if not it should find an additional test and history
and add them to the basis. We show that if we did not find
o _ ) _ a basis yet then an additional history can be founsl and
While in the previous section we pointed out that there exp, gdditional test can be found as a one-step, extension test

ists a minimal basis in size at mojst| of both histories  of the current basis tests. Thus, a basis can be computed
and tests, in this section we show how it can be found efegfficiently.

ficiently. We also show how to find efficiently a basis with
additional properties — namely, a basis set that only needsemma 5.1 Algorithm 1 builds a submatrix of the Hankel

“small” weights to span all states. This “small” weight matrix with rank equal to the Hankel matrix rank.
property allows us to construct our planning algorithm us-

5 A Minimal Basis

ing such a basis. Proof: We first show that at any stage is linearly inde-
pendent with respect to the tests sefWe prove by induc-
5.1 POMDP to Minimal Matrix Representation tion, the basis holds trivially. Assume that the induction hy-

pothesis holds foB, = {b1,...,b,} andT; = {t1,...,t¢}
In this subsection, we construct a minimal size matrix cor-and prove for/ + 1. Sincngf are linearly independent
£

responding to a given POMDP. then Fgﬁ“ are linearly independent as well. By the way

Starting with notation. Given a set of test6 = we choosé,,; andb,,; we are assureﬂ’gﬁl‘l is linearly
{t1,...,tm} we define for every initial belief state a vec-
tor FI" of sizem, whereF! (i) = P(t;|z), which denotes
the probability of test; starting from belief state:.. We
also defineP(\|x) = 0 for any belief state: (recall A is
the empty string). For a statec .S, we slightly abuse nota-
tion by writing s to also mean the belief state which places  3This implies that theas calculated by the algorithm are
all probability mass on the state So we writeF'l, where  unique

independent ong“. Now we have to prove that our ma-
trix is not smaller than the minimal matrix. By the con-
struction of Beimel et al. [2000] we know that that if the
matrix rank is less than the Hankel matrix rank, then there



exists a counterexampleand atest oy, y € T such that

T _ T
b Fw - ZbiGB OéZFbi

o Plooylw) # >, cgaiP(ooy|bi)

Since everyw is a linear combination of = {s1,...,s,},
then FI' can be represented as linear combinatiof.
Thus the rank ofsq,...,s, is larger than the rank oB
with respect toI" U {o o y}, and we can find a statg
which is linearly independent a8 with respect tdl" thus
addings; to B increases its dimension. O

Lemma 5.2 Algorithm 1 terminates in
O(r%|S|?|A||O||R|) steps.

Proof: Since we build a basis of size at m¢st, there at

theorem of the subsection shows that we can find a basis
such that for anyelief statdargest coefficient is bounded
by 2.

Theorem 5.3 Letr be the rank of the multiplicity automata
representing the POMDP and 18t be the set of tests out-
putted by Alg. 1. There exists a set of staes .S, where
|S| = r, such that, for any belief state the vectorF,"
can be uniquely represented & = >; 5 aiFBT, with
max; |a;| < 2.

We first provide a definition of barycenteric spanner.

Definition 5.2 (Awerbuch and Kleinberg [2004]) A
C-barycenteric spanner is a basi8, which spans a
convex seb, such that every: € S can be represented as
T = Zb,;EB a;b;, Where|0¢i| <C.

most S| iterations. In each iteration we check for every oy erbuch and Kleinberg [2004] showed thasifs a com-
combination of state, action and observation if they satisfypact set that contained iR¢ but is not contained in lin-
a

condition1 and2 which takesO(r3)

5.2 A Modified Belief MDP

Similarly to the belief MDPwe would like to define the
modified belief MDP

Definition 5.1 Letr be the size of abasB = (b4, ...,b;,)
and letT = {t4,...,t.} be the test basis. The modi-
fied belief MDP states are vector of sizesuch thatr =
(a1,...,ap) ifand only if 7 = 37 o, F. Letx =
(a1,...,ap) andy = (f,...,05-) two modified belief
states, thenP(z,a,y) = Zb,‘FbT/:ZLIﬂiFhTi P(b,a,b)

foranyb = >/, a;Fyl. Letz = (a,...,a,) andb
a any belief state such that) = ' | o, F}", then the

reward of actionu in statex is ., P(r|u, b)r’.

The optimal policy in themodified belief MDPFas the op-
timal policy in thebelief MDPis the optimal policy in the

ear subspace of smaller dimension then there exidts a
barycenteric spanner. If we could transform that basis out-
putted by Alg. 1 to a barycenteric spanner, we can the dis-
cretize themodified belief MDRwith dependence only on
the automaton rank since the largest coefficient is constant.
The next algorithm shows how to construct efficiently an
"almost” spanner as was done in Awerbuch and Kleinberg
[2004]. We denote the matrix of basis initial historiBs
and Test§ asM (B, T'), whereM (B, T), ; = P(¢;]b;).

Input : POMDP=S, A, O, R, P)
BasisB = {b1,...,b.}
and test basi¥’ = {t1, ...

Output: BasisB = {by, ..., b}

Initialize: b; = b;, Vi;

while 3z € S\ B,i € {1,...,r} satisfying

det(M(z U B\ b;, T)) > 2det(M (B, T)) do

end

st}

Original POMDP, since in both cases the representation IS A|gor|thm 2 Construction @_Barycenteric spanner

exact. Note that although each state in tinedified belief

MDP is represented by a coefficients vector, this represenggie the spanner spans the the &&f’
tation differs from the standard belief space representatio i

as the coefficients of the basis staf€§ = >, .5 5 F..
can be very large and negative.

Therefore, building a grid with respect to theodified be-

lief MDP will depend on the largest coefficient and on the

matrix rank (which is at mogtS|]). In the next section we

:s € S}, whichis
fbientical to span the sétt) : bis a belief statp.

This next lemma proves that the Algorithm builds2a
Barycenteric spanner and its proof can found in Awerbuch
and Kleinberg [2004]. For intuition, note that this algo-
rithm must terminate since there existsl-darycenteric
spanner, which achieves the largest determinant, and in

would show how to improve our basis and overcome they, jteration the determinant grows by at least a factor of

dependence on the largest coefficient.

5.3 Barycenteric Spanner - Improving the basis

two.

Lemma 5.4 Alg. 2 constructs &-Barycenteric spanner
for the sef{ F! : s € S}.

In this subsection we introduce how to transform the basis
outputted by Alg. 1 to a "better” basis by using Awerbuch Next we show that Algorithm 2 terminates in polynomial
and Kleinberg [2004] technique. More formally, the main time.



Lemma 5.5 Algorithm 2 terminates inO(|S|r* logr)
steps.

Proof: By Lemma 2.5 in Awerbuch and Kleinberg [2004]
we know that the loop repeaf3(r log r). In each iteration
we calculate the determinant of a square matrix of siae
mostS times, thus each iteration takes at mg#t> time
steps. O

Now we are ready to prove the main theorem of this sub

section, which demonstrates the advantage of the basis pr

duced by Alg. 2 over the basis produced by Alg. 1 in which
«; is unbounded.

Proof of Theorem 5.3:
Letb = Z‘S‘ B;s; any belief state.

1S IS| r
Ff = Y BFL=> 8 w()F
i=1 i=1 j=1
r S| r
= 2.0 B = aFy
j=1i=1 Jj=1

Now we observer that

r S|

=33 Bili)

j=11:i=1

) < max*yj( ) <2,

where the first inequality comes from the fact that
Z‘S‘l B; = 1 and thatg; > 0 for everyi, and the sec-
ond inequality follows from the fact thats were used in
building the barycenteric spanner, and thus for every
(@) <2. O

6 Planning Algorithm

6.1 The Algorithm

Input : POMDPP = (S, 4,0, R, P)
Output: An e-optimal policyr

Run Alg. 1 on (°) and obtairl” = {ty,...t,} and
B ={b1,...,b.};

Run Alg. 2 on P, B, T) and obtainB = {b1,...,b.};
Build a grid based MDP)/ with respect to the basis

@ = {b1,...,b.} and testd’ = {t1,...,t.};
Each state in the MDP is a vector of sizg oy, .. ., «;),
whereq; = mé, m € {—2/¢,...,0,...,2/e}, e =¢/r;

Compute an optimal policy for M.
Algorithm 3 Planning

Now we state our main theorem.

Theorem 6.1 Given a POMDP, Algorithm 3 com-
putes an 5z V)4 -optimal policy in time polynomial in
|S],]14], 0|, |R|,e and exponentially only im , wherer

is the size of the multiplicity automaton representing the
POMDP.

6.2 Algorithm Analysis

We first show that the algorithm is efficient, i.e., polyno-
mial in |S|, |A],|O| and exponential in- the matrix rank.
Later we provide performance guarantees for the the algo-
rithm, i.e., that it produces anoptimal policy.
terminates in
)3") steps.

Lemma 6.2 Algorithm

O (r*|S1?|Al|O]|R|log r + (2

Proof: Let’s first analyze the time. By Lemmas 5.2 and 5.5
running Alg. 1 and Alg 2 take®(r*|S|?|A||O||R|log ).

The grid MDP containg2”)" states and thus we can solve
itin (2£)3" O
Similarly to Subsection 2.2 we would like to show that if
two states are mapped to the same grid state then they are

close to each other in the sense that the optimal value is
close between them.

Lemma 6.3 Letb and¥’ two belief states that are mapped

We are finally ready to describe our planning algorithm,to the same state in the grid MDP, then for every action
Algorithm 3. The planning algorithm uses the first two al- o € A |Q*(b,u) — Q*(V,u)| < 7

gorithms to construct a basis of sizef initial states and

r tests. With eacmodified belief statéully represented Proof: We show here that ib andb’ are mapped to the
by a linear combination of the basis states with coefficienisame state in the-discretized modified belief MDP then
bounded inf—2, 2], note that in contrast to the standard be-for every policyn?, [V™(b) — V™(b')| < e. Letb be a
lief state the coefﬂment can be negative. Instead of disbelief state such thalt“T = Yi_, a;Fy} andb’ such that

1 Q4
cretizing theBelief MDPwe discretize thenodified belief FT ZL 1 61FbT’ then Smcé)zandb' are in the same state

MDP, which is built with respect to the basis (see defll’ll-m the discretized MDR« — 8|, < e. Let R be the return
tion 5.1). Our planning algorithm will then discretize it

will compute the optimal policy for this MDP.

“Note thatr is not necessarily stationary



in testt, then we can rewrite Michael Littman, Richard Sutton, and Satinder Singh. Pre-
dictive representations of state. Auvances in Neural

o . ~ ot Information Processing Systems 14 (NIR@jges 1555—
V() = ;P(ﬂb, TR = 22%P(t|bww)R 1561, 2001,

r c W. S. Lovejoy. Computationally feasible bounds for par-

< Z Z B;P(t|b;, 7)R" + = tially observed markov decision processé&perations

t i=1 " Research39(1):162-175, 1991.
€

= V™) + T C. Lusena, J. Goldsmith, and M. Mundhenk. Nonapprox-
imability results for partially observable markov deci-

Similarly we can show that ™ (b) > V™ (b') — ——. O sion processes.Journal of Artificial Intelligence Re-

- o search 14:83-103, 2001.
Now similarly to the proof of Theorem 2.1 we apply Lem-

mas 2.3 and 2.4 to derive the following lemma. M.P Shlitzenberger. On the definition of a family of au-

tomata.Inf. Control, 4:245-270, 1961.

Lemma 6.4 Algorithm 3 computes aﬁjTyL—optimal pol-  Satinder Singh and David Cohn. How to dynamically
icy. merge markov decision processes.Aldvances in Neu-

ral Information Processing Systems 10 (NIPBages
Now the proof of Theorem 6.1 follows from Lemmas 6.2 1057-1063, 1998.

and 6.4. Satinder Singh, Michael R. James, and Matthew R. Rudary.

Predictive state representations: A new theory for mod-
eling dynamical systems. lbncertainty in Artificial

This work was supported in part by the IST Programme Intelligence: Proceedings of the Twentieth Conference
of the European Community, under the PASCAL Network (UAI), pages 512-519, 2004,
of Excellence, 1ST-2002-506778, and by a grant from theSatinder Singh, Michael Littman, Nicholas Jong, David
Israel Science Foundation and an IBM faculty award. This Pardoe, and Peter Stone. Learning predictive state rep-
publication only reflects the authors’ views. resentations. IiProceedings of the Twentieth Interna-
tional Conference on Machine Learning (ICMlpages
712-719, 2003.
Satinder P. Singh and Richard C. Yee. An upper bound
Baruch Awerbuch and Robert D. Kleinberg. Adaptive rout- 5 the loss from approximate optimal-value functions.
ing with end-to-end feedback: distributed learning and  \achine Learning16(3):227—233, 1994.
geometric approaches. BTOGC pages 45-53. ACM
Press, 2004.

Amos Beimel, Francesco Bergadano, Nader H. Bshouty,
Eyal Kushilevitz, and Stefano Varricchio. Learning func-
tions represented as multiplicity automath. ACM 47
(3):506-530, 2000.

Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-
Dynamic Programming Athena Scientific, Belmont,
MA, 1996.

B. Bonet. Ane-optimal grid-based algorithm for Partially
Observable Markov Decision Processes.Phoc. 19th
International Conf. on Machine Learningages 51-58.
Morgan Kaufmann, 2002.

Acknowledgements

References

R. Sutton and A. Barto.Reinforcement Learning MIT
Press, Cambridge, MA, 1998.

R. Brafman. A heuristic variable grid solution method for
pomdps. IPAAAI-97, pages 727-733, 1997.

J.W Carlyle and A. Paz. Realization by stochastic finite
automaton.J. Comput. Syst. Scb:26—-40, 1971.

M. Fliess. Matrices dehankeld. Math. Pures App|.53:
197-222, 1974.

M. Hauskrecht. A heuristic variable-grid solution method
for pomdps. IMAAAI-97, pages 734-739, 1997.



