
Fast Convergence of Selfish Rerouting ∗

Eyal Even-Dar † Yishay Mansour ‡

Abstract

We consider n anonymous selfish users that route their
communication through m parallel links. The users are
allowed to reroute, concurrently, from overloaded links
to underloaded links. The different rerouting decisions
are concurrent, randomized and independent. The
rerouting process terminates when the system reaches
a Nash equilibrium, in which no user can improve its
state.

We study the convergence rate of several migration
policies. The first is a very natural policy, which
balances the expected load on the links, for the case
that all users are identical and apply it, we show
that the rerouting terminates in expected O(log log n +
log m) stages. Later, we consider the Nash rerouting
policies class, in which every rerouting stage is a Nash
equilibrium and the users are greedy with respect to the
next load they observe. We show a similar termination
bounds for this class. We study the structural properties
of the Nash rerouting policies, and derive both existence
result and an efficient algorithm for the case that the
number of links is small. We also show that if the users
have different weights then there exists a set of weights
such that every Nash rerouting terminates in Ω(

√
n)

stages with high probability.

1 Introduction

Routing is one of the most basic tasks in networking.
Traditionally it has been view as a large multi-valued
optimization problem, which the network provider has
to address. Clearly, the selection of the load on
the various routes greatly impacts the overall network
performance. As part of the optimization process, the
goals of different individual users are contrasted with
the desire to achieve a high utilization of the network
resources.

∗This work was supported in part by the IST Programme of the

European Community, under the PASCAL Network of Excellence,
IST-2002-506778, by a grant from the Israel Science Foundation

and an IBM faculty award. This publication only reflects the

authors’ views.
†School of Computer Science, Tel-Aviv university, email

evend@post.tau.ac.il
‡School of Computer Science, Tel-Aviv university, email man-

sour@post.tau.ac.il.

A different perspective of the routing problem, is to
allow individual users to specify the path on which their
traffic would be routed. In such setting each individual
user optimizes her own utility function, and naturally
tries to route her traffic on the least loaded path. An
appropriate solution concept for such system is that
of Nash equilibrium [17], where no user can benefit
from rerouting her traffic. Although the distributed
view of network routing has many interesting features,
it carries the difficulty that the selfish users decisions
might negatively impact the overall performance of the
system.

Because of the highly attractive nature of decen-
tralize distributed routing, networks researchers have
looked for over a decade into issues involved in the de-
sign and implementation of such mechanism. One im-
portant line of research has been to try and ”determine”
the resulting equilibrium, with the motivation of allow-
ing the network administrator to predict and control
the resulting equilibrium. Therefore, cases in which the
equilibrium is unique have been highly desired [13, 18].

The main focus in theoretical computer science,
in this research direction, has been the study of the
quality of the resulting Nash equilibrium. The work
of Koutsoupias and Papadimitriou [12] defined the
coordination ratio, which is the ratio of the cost of an
optimal global objective function to the cost of the worst
Nash equilibrium. Many following works have studied
the coordination ratio in a wide range of routing and
job scheduling scenarios [3, 5, 6, 11, 12, 19].

We consider a different aspect of Nash equilibrium
and are interested in “how fast Nash equilibrium is
reached” rather than “the quality of the Nash equilib-
rium”. Traditionally, the convergence to Nash equi-
librium was studied using the Elementary Step Sys-
tem, where only one user can reroute at each stage
[8, 9, 13, 18]. We consider algorithms that have no
centralized unit and decisions are made locally and con-
currently. The decisions are no longer deterministic but
are stochastic and a user action is a distribution over
the links. Therefore, if an equilibrium point is not ex-
post Nash1, several users will try to migrate in the next

1An ex-post Nash remain an equilibrium even after, every user
observe all the random choices of all other users.

time step.
Although the Elementary Step System has attrac-

tive theoretical properties, it has also very clear draw-
backs. First, since only one user is allowed to reroute
in each stage, the convergence time is at least Ω(n).
Second, the implementation of a centralized controller
is unattractive and fairly difficult in a truly distributed
system. Third, by avoiding the issue of concurrency,
many realistic issues that are involved in the decision
to reroute ”disappear”, such as the fear of a user that
after the rerouting she would be worse off.

We consider a simple model of m parallel links (with
possibly different speeds). The links are shared by n
identical selfish users, at each stage each user selects
one of the parallel links. The cost of each user is
the number of users that share the link with her, and
therefore users would like to reroute from overloaded
links to underloaded links. In our dynamic model, at
each stage, each user decides stochastically whether to
stay or reroute her traffic to a different link. We assume
that each user has access only to the load on the links
and that the users are anonymous, thus all identical
users that share the same link select the same stochastic
rerouting policy.

For identical links, we first consider a simple policy,
BALANCE, in which every link has the same expected
load during each rerouting stage. Specifically, for an
overloaded link (a link with load L > n/m), each user
stays with probability n/(Lm) and reroutes otherwise.
Given that a user decided to reroute, the probability
of rerouting to an underloaded link (a link with load
L′ < n/m), is proportional to n/m− L′. We show that
the expected number of stages until BALANCE converges
to Nash equilibrium is O(log log n + log m). We extend
the result to links with different speeds and derive a
similar convergence bound.

One weakness of BALANCE is that a selfish user
might not have an incentive to follow it. For example
consider two identical links, one with 200 users and
one with 400 users. In the BALANCE policy each user
from the overloaded link reroutes with probability 1/4.
Consider a selfish user using the overloaded link. When
this user considers its best response it computes the
expected load on the links, ignoring its own action.
For such a user the expected load on the underloaded
link is 300 − 1/4 = 299.75 and on the overloaded
link is 300 − 3/4 = 299.25. Being greedy, the only
best response of the user is not to reroute, rather
than to reroute with probability 1/4. This motivates
our study of Nash rerouting policies that are a Nash
equilibrium in every stage. In Nash rerouting policies,
by definition, no greedy user has any incentive to deviate
from them. In the above example, the Nash rerouting

policy reroutes with probability 99.5/399, and a user
from the overloaded link observes an expected load of
299.5 on both links, ignoring its influence.

We study a very natural class of Nash rerouting
policies that has the following properties: (1) all iden-
tical users that share a link have the same policy, (2)
no user from an underloaded link reroutes, and (3) no
user from an overloaded link reroutes to a different over-
loaded link. We show that if at every stage Nash rerout-
ing policy is used, then the expected number of stages
until convergence is O(log log n + log m) for identical
users but can be Ω(

√
n) even for two links for weighted

users. In addition we study the structure of this class,
and show that there always exists such a Nash rerouting
policy. In contrast we show that there are examples in
which there is no Nash rerouting policy of the follow-
ing form: (1) In each overloaded link, all users have the
same probability to stay or reroute. (2) All users that
decided to reroute use the same probability distribution
to select an underloaded link. (Note that the BALANCE
policy has this property.) Finally, we show that a Nash
rerouting policy can be computed in time O(2m2

).

Related work Research in the communication net-
works community studied various aspects of selfish
rerouting for over a decade. In [18] it was shown that
for general topology, under certain conditions, a unique
equilibrium exists. They also show that in an Elemen-
tary Step System (ESS), where only one user reroutes
in each time step, the best response dynamics converges
to Nash equilibrium for two parallel links. In [13] it was
shown that for parallel links and a specific cost func-
tion there exists a unique Nash equilibrium. They also
show that in the ESS model the best response dynamics
converges. In [14] selfish users can select their priority
and pay accordingly, and the result is a unique Nash
equilibrium which is also Max-Min Fairness.

The work of [8] studied the convergence to Nash
equilibrium under the ESS model, for several settings:
identical, related and unrelated machines and identi-
cal/weighted jobs. For each setting different lower and
upper bounds on the convergence rate were shown. For
instance, in the case of identical machines and weighted
jobs, the convergence might take exponential time, un-
der one natural selection policy, and linear time using a
different selection policy.

The work of [9] studied a randomized model in
which each user can select a random delay over con-
tinuous time. The continuous time implies that only
one user tries to reroute at each specific time, and thus
this model is very similar to the ESS model. In that
model rerouting succeeds only if the user lowers its load.
The work shows a simple randomized algorithm in which

the expected number of rerouting attempts, until con-
vergence to a Nash equilibrium, is polynomial in the
number of links m and users n.

The work of [16] studied a model in which only
one user is allowed to move in each time step, but the
main interest was not in the equilibrium point but on
the social value after a short best response path and
therefore they were interested in the convergence time
to an approximate solution and not to exact solution as
we are.

When contrasting our work with the ESS dynamics,
one should first note that in the ESS dynamics, by
definition, the worst case number of steps is at least
linear in the number of users. Another important
difference is that in the ESS model, at each time step
the system “improves” while in our setting the system
might also “deteriorate”, which is a major conceptual
difference between ESS and concurrent rerouting.

In [10] several types of dispersion (anti coordina-
tion) games were defined. Simple concurrent algorithms
that are similar to BALANCE were tested empirically and
demonstrated logarithmic convergence rate but only a
linear upper bound on the convergence rate was shown.
We derive for those simple policies a logarithmic upper
bound.

A somewhat related topic are games of throwing
balls in to bins (see [15] for a survey). The game there
is a single shot, once a ball is assigned to a bin it does
not change its bin, and the goal is to minimize the
maximum load. In this work we are interested in the
dynamics that converge to a state where all the loads
are almost identical, and our main parameter is the time
to convergence, and the game theoretic motivation of
the selfish users to follow the prescribed policy.

2 Model Description

Our model is composed from a set of n identical users
x1, . . . , xn

2, and a set of m parallel links M1, . . . ,Mm

with speeds s1, . . . sm, respectively. (When we will refer
to identical links we mean that si = 1 for i ∈ [1,m].)
The time would progress in stages from t = 1. At each
stage t each user xi is on one of the links Mk, and there
is a function gt such that gt(xi) = k if and only if user
xi is on link Mk at time t. We define G to be the set
of all configurations, i.e., gt ∈ G. The number of users
that use link Mk at time t is nt(k) = |{xi|gt(xi) = k}|
and the load on Mk is Lt(Mk) = nt(k)/sk.

The average system load is L̄ = n/
∑m

i=1 si (for
identical links it is simply L̄ = n/m). For simplicity
of both the algorithms and analysis we assume that
L̄ is an integer. A link Mk is balanced at time t if

2Only in Subsection 3.3 we consider users with weights

its load is L̄, i.e., Lt(Mk) = L̄, it is overloaded if its
load is above L̄, i.e., Lt(Mk) > L̄, and it is underloaded
otherwise, i.e., Lt(Mk) < L̄. A strategy P t of the users
x1, . . . , xn is a product distribution P t

1 · · ·P t
n, where

P t
i = 〈pt

i(1) . . . pt
i(m)〉 is a distribution on M1, . . . ,Mm.

Let P t
−i be the joint strategy of all users at time t,

except user xi. We assume that the users are selfish and
rational, thus a user would like to minimize the load on
the link that she uses and can use rerouting (moving to
a different link) to achieve this goal. Through the paper
we consider policies in which only users from overloaded
links reroute to underloaded links.

In this paper we deal with two types of equilibria.
One is for the final state of the system, when all links
are balanced, and one is for each rerouting stage. We
start by defining the final state equilibrium.

Definition 2.1. A system is in Nash-equilibrium at
time t if for every links Mi and Mj we have Lt(Mi) ≤
Lt(Mj) + 1

sj
.

Our second type of equilibria is an equilibrium
during each rerouting stage. It considers the joint
strategy of all users in the system, such that no user
would like to change its rerouting policy.

Definition 2.2. A joint strategy P t is an ε-Nash
rerouting policy if no user can gain more than ε (in
expected load) by deviating from P t. Formally, for ev-
ery user xi and link Mj such that pt

i(j) > 0 then
EP t

−i
[Lt+1(Mj)] ≤ ε + mink EP t

−i
[Lt+1(Mk)]. A Nash

rerouting policy is a 0-Nash rerouting policy.

The convergence proofs use extensively large devi-
ation bounds, specifically the relative Chernoff bound
[2], as stated in the following lemma.

Lemma 2.1. [2] Let 0 < p < 1, let Z1, . . . , Zn be
independent binary random variables and Z =

∑n
i=1 Zi,

where
∑n

i=1
E[Zi]

n = p, and let p̂ =
∑

Zk

n . Then,

P
(

p ≤ p̂ +
√

2p ln(1/δ)
n

)
≥ 1− δ 0 ≤ p ≤ 1

P
(

p ≥ p̂−
√

3p ln(1/δ)
n

)
≥ 1− δ ln(1/δ)

3n ≤ p ≤ 1

P
(
p ≥ p̂− 2 ln(1/δ)

n

)
≥ 1− δ 0 ≤ p ≤ ln(1/δ)

3n

Another bound that is used through the paper is a
bound on the probability of hitting the mean.

Lemma 2.2. Let Z1, . . . , Zn be i.i.d {0, 1}-random vari-
ables with P(Zi = 1) = p and Z =

∑n
i=1 Zi. Then

P(Z = dpne) ≥ 1

c
√
dpne

for some constant c > 0 3. If

pn = q is an integer then, P(Z = q) ≥ 1√
2πq

3This holds only for p ≥ 1
c′n but we do not use smaller

probabilities.

Input : Links: M1,M2, Users: X = {x1, . . . , xn};
Let t = 1; d1 = |Lt(M1)− Lt(M2)| ;
over = arg max{Lt(M1), Lt(M2)};
while dt ≥ 2 do

for xi s.t gt(xi) = Mover do in parallel
Move with probability dt/(2Lt(Mover))

end
t = t + 1; dt = |Lt(M1)− Lt(M2)|;
over = arg max{Lt(M1), Lt(M2)} ;

end
Algorithm 1: Distributed algorithm, BALANCE, for
two identical links.

Notation: The notation g = Õ(f) implies that
there are constants c1 and c2 such that g ≤ c1f lnc2(f).

3 Two Links

3.1 Two Identical Links In this subsection we ana-
lyze the convergence rate of a distributed algorithm for
two identical links. We first give a technical lemma.

Lemma 3.1. Given that the difference at time t is dt,
then by time t+`+1 algorithm BALANCE terminates with

probability at least (1
2)`

√
1/(2π(2.039dt)(

1
2)`).

Sketch of Proof: By applying ` times the relative
Chernoff bound (Lemma 2.1), with δ = 1/2 each time,
we obtain that the difference at time t+` is bounded by
(2.039dt)(

1
2)`

with probability (1
2)`. Using Lemma 2.2,

we obtain that the probability of terminating in the last

stage is at least
√

1/(2π(2.039dt)(
1
2)`) .

Theorem 3.1. With probability at least 1−δ algorithm
BALANCE, terminates within O(ln ln(n)) + Õ (ln(1/δ))
stages.

Proof. Let ` be an upper bound on the number of stages
of algorithm BALANCE until reaching Nash equilibrium.
(We latter fix ` and show that it is bounded with
high probability.) We divide the execution to two
phases, the first is while dt > 3 ln(1/δ′) and the second
starts when dt ≤ 3 ln(1/δ′), where δ′ = δ/(2`). We
first show that the first phase ends with probability
1 − δ/2 within O(ln ln(n)) stages. By Lemma 2.1
with probability at least 1 − δ′, dt+1 ≤

√
3dt ln(2/δ′)

for every stage t ≤ ` in the first phase. Since d0

is bounded by n, then dt+1 ≤ 3n1/2t+1
ln(1/δ′) with

high probability. Therefore, after O(ln ln(n)) stages
dt is bounded by 3 ln(1/δ′) and once dt ≤ 3 ln(1/δ′)
it remains so with probability 1 − δ/2 until the end
of stage ` by Lemma 2.1. For the second phase, we
apply Lemma 3.1 with ` = O(ln ln ln(1/δ′)), and obtain

that algorithm BALANCE terminates with probability
O(1

ln ln(1/δ′)) in O(ln ln ln(1/δ′)) stages. Therefore, if
we make additional O(ln ln(1/δ′) ln ln ln(1/δ′) ln(2/δ))
stages, we will terminate with probability at least 1 −
δ/2. Solving the following equation

` = c1 ln ln(n)+ c2 ln(ln(`/δ)) ln ln(ln(`/δ)) ln(2/δ)+ c3,

we arrive at ` = O(ln(1/δ) ln(ln(1/δ) ln ln(ln(1/δ)) +
ln ln(n)) = O(ln ln(n)) + Õ (ln(1/δ)). �

A direct and simple corollary from the theorem is
regarding the expected time of convergence.

Corollary 3.1. Algorithm BALANCE terminates
within expected O(ln ln(n)) stages.

The following lemma shows that although algorithm
BALANCE is not a Nash rerouting policy, the deviation is
bounded by 1.

Lemma 3.2. At every stage t algorithm BALANCE is a
1-Nash rerouting policy.

Proof. Consider any stage before reaching Nash equilib-
rium, where there are n + d users on link 1 and n − d
on the link 2, i.e., dt = 2d. User on the overloaded
link reroutes with probability d

n+d . We compare the
expected load on the links, excluding one user on the
overloaded link.

L1 = (n + d− 1)(1− d

n + d
) = n− 1 +

d

n + d

L2 = n− d + (n + d− 1)(
d

n + d
) = n− d

n + d
.

Therefore the difference is bounded by 1 and can be as
large as 1− 2

n+1 . It is easy to see that the best response
of users on the underloaded link is to remain on their
current link. �

Next we present a modification of algorithm
BALANCE, algorithm NashTwo which is a Nash rerout-
ing policy in every stage, the algorithm appears at the
top of the next page.

Lemma 3.3. At every stage Algorithm NashTwo is a
Nash rerouting policy.

Proof. As in Lemma 3.2 we compare the load on two
links, one with load n+d and the other with load n−d,
when excluding one user on the overloaded link. Since
dt = 2d, we have

L1 = (n + d− 1)(1− 2d− 1
2(n + d)− 2

) = n− 1/2

L2 = n− d + (n + d− 1)(
2d− 1

2(n + d)− 2
) = n− 1/2.

Input : Links: M1,M2, Users: X = {x1, . . . , xn};
Let t = 1; d1 = |L1(M1)− L1(M2)|;
over = arg max{Lt(M1), Lt(M2)};
while dt ≥ 2 do

for xi s.t gt(xi) = Mover do in parallel
Move with probability
(dt − 1)/(2L(Mover)− 2)

end
t = t + 1; dt = |Lt(M1)− Lt(M2)|;
over = arg max{Lt(M1), Lt(M2)} ;

end
Algorithm 2: Distributed algorithm NashTwo for
two identical links.

Therefore, a greedy user on the overloaded link has no
incentive to deviate from the joint strategy. As before,
users from the underloaded link can only lose by trying
to reroute to the overloaded link. �

Our next aim is to show that the convergence rate
of NashTwo is similar to that of BALANCE. (The proof is
similar to the proof of Theorem 3.1 and omitted.)

Theorem 3.2. Algorithm NashTwo is a Nash rerout-
ing policy and with probability at least 1 − δ, reaches
a Nash Equilibrium, within O(ln ln(n)) + Õ(ln(1/δ))
stages. Also Algorithm NashTwo terminates within ex-
pected O(ln ln(n)) stages.

3.2 Different Speed Links In this subsection we
consider links with different speeds, specifically, s1 = 1
and s2 = α ≥ 1. The resulting Nash equilibrium is not
necessarily unique. More precisely, any nt(1) is Nash
equilibrium if and only if nt(1) ∈ [(n−α)/(1 + α), (n +
1)/(1 + α)]. Recall that L̄ = n/(1 + α).

We first derive the convergence rate of algorithm
BalanceSpeeds(The proof is similar to the proof of
Theorem 3.1 and omitted).

Theorem 3.3. Algorithm BalanceSpeed is a 1-Nash
rerouting policy and with probability at least 1 − δ it
terminates within O (ln ln(n)) + Õ (ln(1/δ)) stages.

We first derive the convergence rate of algorithm
NashTwoSpeeds (The proof is similar to the proof of
Theorem 3.1 and omitted.).

Theorem 3.4. Algorithm NashTwoSpeeds is Nash
rerouting policy and with probability at least 1 − δ it
terminates within O (ln ln(n)) + Õ (ln(1/δ)) stages.

3.3 Multiple Weights In this subsection we con-
sider a slightly different model and assume that each
user has a weight and as a consequence in a Nash rerout-
ing policy only users with same weight on a link must

Input : Links: M1,M2 with speeds s1 = 1 and
s2 = α > 1, Users: X = {x1, . . . , xn};

Let t = 1; over = arg max{L1(M1), L1(M2)};
under = arg min{L1(M1), L1(M2)};
while |Lt(M1)− Lt(M2)| > 1/sunder do

for xi s.t gt(xi) = Mover do in parallel
Move with probability p(nt(over), sover)

end
t = t + 1; over = arg max{Lt(M1), Lt(M2)},
under = arg min{Lt(M1), Lt(M2)};

end
Algorithm 3: Distributed algorithm for two
links with speeds. BalanceSpeeds is derived
by taking p(nt(over), sover) = nt(over)−soverL̄

nt(over)

and NashTwoSpeeds is derived by taking
p(nt(over), sover) = dt−1/sover

(1+1/α)(nt(over)−1)

share a policy. We show that there exists a set of weights
and an initial assignment such that any Nash rerouting
policy converges within Ω(

√
n) even for two links. 4 We

consider n users, where n is a square of an even num-
ber. Each user belongs to one of the

√
n weights classes,

where the weight of user in the k class is n2k and the
size of each class is

√
n. We say that class i is larger

than class j if i > j, i.e. the weight of a user in class
i is larger than the weight of those in class j. A Nash
rerouting policy is fully described by p1, . . . , p√n, where
pi is the probability of user from class i to migrate from
the overloaded link to the underloaded link.

It is straightforward to see that the only Nash
equilibrium of this game is that each class is partitioned
equally on the links. We say that a class i is balanced
only if it is partitioned equally and every class j such
that j > i is balanced. We also note that after a class
is balanced, its users will not move under any Nash
rerouting policy.

The next lemma shows that if a user from the
largest unbalanced class is on the underloaded link, then
only the other members of her class move stochastically
in the system.

Lemma 3.4. Let ` be the largest unbalanced class, then
if there exists a class k < ` such that pk ∈ (0, 1) then
all users of class ` are on the overloaded link.

Proof. Suppose by contradiction that there exists a
configuration g in which both users from class ` and
class k move stochastically and that there is at least
one user from class ` on the underloaded link. Let
Lu(Lo) be the expected load after the users move on

4This result can be extended to a boarder class of policies.

the underloaded(overloaded) link. Since the policy is
Nash rerouting, the following must be satisfied

Lu − p`w` = Lo − (1− p`)w`

Lu − pkwk = Lo − (1− pk)wk.

Simplifying these equations we obtain that (1−2p`)w` =
(1 − 2pk)wk. Together with the fact that in a Nash
rerouting policy users in the largest unbalanced class
move with probability at most 1/2, we obtain that users
in every other unbalanced class that move stochastically
move with probability at most 1/2. Writing pi =
1/2 − εi for some εi > 0, we have ε`w` = εkwk. Since
wk/w` ≤ 1/n2 we have that ε`/εk < 1/n2, which implies
p` > 1/2 − 1/n2. By our assumption all user with
weight larger than w` are already balanced. If X is the
current number of users from class ` on the overloaded
link, then the expected load after move due to class
` on the overloaded link is at most X(1/2 + 1/n2)w`

while the expected load on the underloaded link is at
least (X(1/2 − 1/n2) + 1)w` (using the contradiction
assumption). Since the expected load of all users from
classes 1, . . . , ` − 1 is bounded w`/n, the difference
between Lu and Lo is at least w`/2 and users from class
k will move deterministically to the overloaded link, a
contradiction to the lemma assumption. �

Next, we complete the characterization of the Nash
rerouting policy.

Lemma 3.5. Let ` be the largest unbalanced class, if
there are users from class ` on the underloaded link, then
all users from smaller classes move to the underloaded
link deterministically.

Proof. We first note that by Lemma 3.4 only users of
class ` move stochastically. We denote k =

√
n/2,

and assume that on the overloaded link that are k + d
users from class ` and on the underloaded link there are
k − d users, where 1 ≤ d ≤ k − 1. For any policy
we let wu and wo be the expected weight of classes
1, . . . , ` − 1 on the underloaded and overloaded links.
Hence, p` = d−1/2

k+d−1 + wo−wu

(k+d−1)n2` , together with the fact
that the load of all users from classes 1, . . . , ` − 1 is
bounded by n2`/n, we obtain that

1
3
√

n
<

1
2k

− 1
n
≤ p` ≤

k − 1.5
2k − 2

+
1
n

<
1
2
− 1

3
√

n
.

This assures that the expected load of the overloaded
link in the next stage is at least larger by O(n2`−1/2)
from the expected load on the underloaded link, thus all
users of classes 1, . . . , ` − 1 will move deterministically
to the underloaded link. �

In the following proof we use the previous lemma to
show that the classes are balanced sequentially.

Theorem 3.5. There exists a set of weights and an
initial assignment such that every Nash rerouting policy
converges in Ω(

√
n) steps with probability at least 1 −

O(1/n1/4).

Proof. The initial configuration is that all users are
on one link. We let si be the configuration in which
all users from the unbalanced classes 1, . . . , i are on
one link and classes i + 1, . . . ,

√
n are balanced and let

S = {s1, . . . , s√n} be the set of these configurations.
Although most of the time the configuration is not
expected to be inside the set S, we show that under
any Nash rerouting policy the configuration is in S for
Ω(
√

n) times with high probability. We note that the
in state si in any Nash rerouting policy, all users from
classes 1, . . . , i move with probability 1/2 and users from
classes i + 1, . . . ,

√
n stay deterministically.

Each time that the system is in si ∈ S,(i ≥ 3), the
probability that the largest three classes are balanced at
once is at most O

(
(1

n1/4)3
)
. The probability that we do

not balance the three largest classes at once is at least
1−O(1/n1/4) in first

√
n times we are in S. Therefore,

by Lemma 3.5 we reach si for i ∈ [`−4, `−1]. Thus, we
reach at least Ω(

√
n) configurations in the set S with

probability at least 1−O(1/n1/4). �

4 Multiple Links

4.1 Multiple identical links, n = m In this sub-
section we consider the case where the number of users
is equal to the number of links and all links are identical.
The algorithm that we analyze this section is different
from other algorithms in this paper, in the sense that
a user can reroute from an overloaded link to a differ-
ent overloaded link. Algorithm RandomJump works as
follows: in each stage a user from an overloaded link
assigns equal probability to reroute to any unbalanced
link (overloaded or underloaded). This algorithm was
first given in [1], later it was demonstrated to converge
empirically in logarithmic time [10] but only a linear
upper bound was given there. We show a logarithmic
convergence bound.

Theorem 4.1. For n = m algorithm RandomJump ter-
minates within O(ln(n) + ln(1/δ)) with probability at
least 1− δ.

Proof. We note that for this special case an underloaded
link is an empty link and a stable link is a link with one
user on it. Therefore, every user on an overloaded link
with load d + 1 reroutes with probability d

d+1 and the
target link is chosen randomly. We first show that the

Input : Links: M1, . . . ,Mm, users
X = {x1, . . . , xn}

t = 1; For every i ∈ {1, . . . ,m} let
dt(i) = nt(i)− siL̄;
OVERt = {i|dt(i) > 0}; UNDERt = {i|dt(i) < 0};
d(t) =

∑
i∈OVERt

dt(i);
while ∃i, j : Lt(Mi)− Lt(Mj) > 1/sj do

for gt(xi) ∈ OVERt do in parallel
Move with probability dt(gt(xi))/nt(gt(xi))
if xi moves then

Move to link j ∈ UNDERt with probability
|dt(j)|
d(t)

end
end
t = t + 1; For every i ∈ {1, . . . ,m} let
dt(i) = Lt(Mi)− siL̄;
OVERt = {i|dt(i) > 0}; UNDERt = {i|dt(i) < 0}
and d(t) =

∑
i∈OVERt

dt(i);
end

Algorithm 4: Distributed algorithm
BalanceMultipleSpeed for multiple links

probability that an underloaded link becomes balanced
in one step is 1

e . Suppose that in the kth iteration
there are τ underloaded links, then there τ + ` users
in ` overloaded links. We let E be the event that an
underloaded link becomes stable, i.e. only one user
jumps to it. This probability can be lower bounded
as follows,

P(E) =
(

` + τ

1

)
(1− 1

` + τ
)`+τ−1 1

` + τ

= (1− 1
` + τ

)`+τ−1 ≥ 1
e

Our second argument is that each link becomes either
stable or underloaded with probability 1

2 in the next
iteration. This is true due to the fact that for each
link we have a binomial distribution, where its mean is
the stable point. Therefore, the probability that a link
becomes stable in two iterations is at least 1

2e . Using the
union bound we obtain that after 2e(ln(m) + ln(1/δ))
all links are stable with probability at least 1− δ. �

4.2 Multiple Links In this subsection we consider
multiple links of different speeds. We assume that the
speeds are sorted, i.e., s1 = 1 ≤ s2 ≤ · · · ≤ sm. We
derive a variant of the Balance algorithm for the case
of multiple links with different speeds. For simplicity
we prove the theorems only for identical links, however
the theorem holds for links with different speeds as well.

We first note that algorithm
BalanceMultipleSpeed is a 1-Nash rerouting pol-

icy. (proof omitted.)

Lemma 4.1. Algorithm BalanceMultipleSpeed is a 1-
Nash rerouting policy.

Next we characterize a class of policies, which
converge fast.

Definition 4.1. A policy is fast convergent if, for
some constant c > 0, it has the following properties:

1. For any configuration, g, link M , time t and δ < 1,
if dt = |L(M) − L̄| ≥ c ln(1/δ), then dt+1 ≤√

cdt ln(1/δ′) with probability at least 1− δ.

2. For any configuration, g, link M , time t and δ <
1, if dt ≤ c ln(1/δ), then dt+1 ≤ c ln(1/δ) with
probability at least 1− δ.

3. For any configuration g, and link M , if d =
|L(M) − L̄|, then M is balanced in on stage with
probability at least O(1/

√
d).

Next we show that given a link under any fast con-
vergent policy, the link is balanced with high probability
in Õ(ln ln(n) + ln(1/δ)) stages. (The proof is similar to
the proof of Theorem 3.1 and omitted.)

Lemma 4.2. Given a link M , and any initial configura-
tion, M is balanced after O(ln ln(n))+Õ(ln(1/δ)) stages
with probability at least 1− δ under any fast convergent
policy.

The next proposition shows that a fast convergent
policy indeed converges fast to Nash equilibrium, later
we show that both BalanceMultipleSpeed and Nash
rerouting policy are fast convergent policies and enjoy
rapid convergence rate.

Proposition 4.1. If in every stage a fast convergent
policy is used, the all links are balanced after
O (ln ln(n))+Õ (ln(m/δ)) stages with probability at least
1− δ.

Proof. By Lemma 4.2, each link is balanced with prob-
ability at least 1− δ

m in O(ln ln(n))+Õ(ln(m/δ)) stages.
Taking the union bound we obtain that all links are bal-
anced in Õ (ln ln(n) + ln(m/δ)) stages with probability
at least 1− δ. �

The next lemma shows that Algorithm
BalanceMultipleSpeed produces a fast convergent
policy.

Lemma 4.3. The policy generated by Algorithm
BalanceMultipleSpeed is a fast convergent policy.

Proof. Given a link M at time t, for any configuration
g we let dt = Lt(M) − L. We show that the policy
generated by Algorithm BalanceMultipleSpeed satis-
fies all three properties of the fast convergent policy
class. We begin by showing that if |dt| ≥ 3 ln(1/δ),
then |dt+1| ≤

√
3|dt| ln(1/δ). When dt ≥ 3 ln(1/δ) we

apply Lemma 2.1 with n/m + dt i.i.d random variables,
Z1, . . . , Zn/m+dt

, where
∑n/m+dt

i=1 E[Zi] = dt

n/m+dt
, thus

dt+1 ≤
√

3dt ln(1/δ) with probability at least 1 − δ.
When dt ≤ −3 ln(1/δ) we apply the relative Cher-
noff bound with K independent random variables,
Z1, . . . , ZK , where n/m + dt < K < n − n/m + dt and∑K

i=1 E[Zi] = dt, to obtain that |dt+1| ≤
√

3|dt| ln(1/δ).
Showing that if |dt| ≤ 3 ln(1/δ), then |dt+1| ≤ 3 ln(1/δ),
is done similarly using the relative Chernoff bound. By
Lemma 2.2 the probability of terminating in one stage
(for both underloaded and overloaded links) is at least
O(

√
1/|dt|)). �

By Lemma 4.3 and Proposition 4.1 we derive the
following theorem.

Theorem 4.2. With probability at least 1 − δ al-
gorithm BalanceMultipleSpeed terminates within
O(ln ln(n)) + Õ(ln(m/δ)) stages, and it terminates in
expected O(ln ln(n) + ln(m)) stages.

4.3 Nash Rerouting policies for Multiple Links
We define a very natural class of policies, where users
reroute only from overloaded links and only to under-
loaded links. In addition we require that the deviation
from a Nash rerouting policy would not be too large.
This set clearly includes the various BALANCE policies.
We will show that this set also includes a Nash rerout-
ing policy. In addition, any rerouting, which at every
stage uses some policy from this set, converges fast.

Definition 4.2. For any g ∈ G let OVER(UNDER) be the
set of overloaded (underloaded) links in g. Let Π(g) be
the set of user policies satisfying the following properties
for P ∈ Π(g):

1. Every user on a link in OVER does not move to a
different link in OVER. I.e., for every i such that
g(i), j ∈ OVER and g(i) 6= j we have pi(j) = 0.

2. Every user on a link in UNDER does not move to
any other link. I.e., for every i ∈ UNDER we have
pi(g(i)) = 1.

3. The expected load of every link Mi, with respect to
P , is in the interval (L̄− 1/si, L̄ + 1/si)

4. All the users on a link share the same policy. I.e.,
for every Mi for all users j and k such that g(j) =
i = g(k) we have Pj = Pk.

The lemma next relates the class Π(g) to the fast
convergent policies class. (The proof is similar to the
proof of Lemma 4.3 and omitted.)

Lemma 4.4. If for every configuration, g, a policy in
Π(g) is used then the resulting policy is a fast convergent
policy.

The following theorem relates Π(g) to the con-
vergence rate and its proof follows immediately from
Lemma 4.4 and Proposition 4.1.

Theorem 4.3. If during every stage of the rerouting
some policy in P t ∈ Π(gt) is used, then the system
converges to Nash equilibrium, with probability at least
1− δ, within O(ln ln(n)) + Õ(ln(m/δ)) stages.

Next we show that for any configuration g ∈ G, the
set Π(g) contains a Nash rerouting policy for g. (The
proof, in Appendix A, is similar to the proof that a
symmetric game has a symmetric Nash equilibrium, and
is based on Brouwer fixed point theorem.)

Theorem 4.4. For every configuration g ∈ G, there
exists a Nash rerouting policy in Π(g).

Theorem 4.3 and Theorem 4.4 imply that there ex-
ists a Nash rerouting policy that converges in expected
O(ln lnn + lnm) stages to Nash equilibrium.

The next observation is regarding the Nash rerout-
ing policies structure.A two phases rerouting policy is
a policy that behaves as follows: every user from an
overloaded link k leaves link k with probability pk. Any
user that leaves an overloaded link, moves to an un-
derloaded link j with probability qj . (Note that the
various Balance algorithms are a two phase rerouting
policy.) We show that for some configurations no two
phase rerouting policy is a Nash rerouting policy, (proof
is in appendix A).

Lemma 4.5. There exists a configuration g ∈ G, in
which no two phases rerouting policy is a Nash rerouting
policy.

Next we present an algorithm, which computes Nash
rerouting policy. The algorithm is based on the fact
that given the support of each user, we can compute the
Nash rerouting policy by solving set of linear equations.
Thus by enumerating all possible supports of all users,
we can compute a Nash rerouting policy.

Theorem 4.5. Computing a Nash rerouting policy can
be done in O(2m2

).

Acknowledgements

We would like to thank Alexander Kesselman for many
helpful insights and discussions.

References

[1] S. Alpern and D. Reyniers, ”Spatial Dispersion as a
Dynamic Coordination Problem”, Theory & Decision
, 53:1, pp. 29-59, 2002.

[2] D. Angluin and L. G. Valiant. Fast probabilistic
algorithms for hamiltonian circuits and matchings.
Journal of Computer and System Sciences, 18:155-193,
1979.

[3] B. Awerbuh, Y. Azar, and Y. Richter, “Analysis of
worse case Nash equilibria for restricted assignment”,
WOWA 2003.

[4] L. E. J. Brouwer. Uber abbildung von mannig-
faltigkeiten. Mathematische Annalen, 71:97-115, 1912.

[5] A. Czumaj, P. Krysta and B. Vocking, “Selfish traffic
allocation for server farms,” in Proceedings of the 34th
Symposium on Theory of Computing,pp. 287-296, 2002.

[6] A. Czumaj and B. Vocking, “Tight bounds on worse
case equilibria”, In Proceedings of the Thirteenth An-
nual ACM-SIAM Symposium on Discrete Algorithms,
pp. 413-420, 2002.

[7] Devdatt P. Dubhashi and Desh Ranjan. Balls and bins:
A study in negative dependence, Random Structures
and Algorithms, 13:2, pp. 99-124,1998.

[8] E. Even-Dar, A. Kesselman and Y. Mansour, “Conver-
gence Time To Nash Equilibria,” In Proceedings of the
30th ICALP, pp. 502-513, 2003.

[9] Paul Goldberg, “Bounds for the convergence rate of
randomized local search in multiplayer games, uniform
resource sharing game”, In Proceedings of the Twenty-
Third PODC, pp. 131-140, 2004.

[10] T. Grenager, R. Powers and Y. Shoham, ”Dispersion
games: general definitions and some specific learning
results”, In Eighteenth national conference on Artificial
intelligence, pp 398-403, 2002.

[11] D. Fotakis, S. Kontogiannis, E. Koutsoupias, M.
Mavronicolas, and P. Spirakis, “The Structure and
Complexity of Nash Equilibria for a Selfish Routing
Game,” In Proceedings of the 29th ICALP, Malaga, pp
123-134, 2002.

[12] E. Koutsoupias, C. H. Papadimitriou, “Worst-case
equilibria,”in Proceedings of 16th STACS, pp. 404–413,
1999.

[13] L. Libman and A. Orda, ”Atomic Resource Sharing in
Noncooperative Networks ”, Telecommunication Sys-
tems, 17:4, pp 385-409, 2001.

[14] P. Marbach ”Priority service and max-min fairness”,
IEEE/ACM Trans. Netw., 11:5, pp 733-746, 2003.

[15] M. Mitzenmacher, A. Richa and R. Sitaraman, ”The
power of two random choices: A survey of the tech-
niques and results”. In Handbook of Randomzied Com-
puting, Rajasekaran et al., Kluuwer Academic Press,
2000.

[16] V. Mirrokni and A. Vetta, ”Convergence issues in com-
petitive games”, In Proceedings of the 7th International
Workshop on Approximation Algorithms for Combina-
torial Optimization, 2004.

[17] J. F. Nash, “Non-cooperative games,” Annals of Math-
ematics, Vol. 54, pp. 286-295, 1951.

[18] A. Orda, R. Rom and N. Shimkin, “Competi-
tive routing in multi-user communication networks,”
IEEE/ACM Transaction on Networking, Vol 1, pp.
614-627, 1993.

[19] T. Roughgarden and E, Tardos, “How Bad is Selfish
Routing?,” Journal of the ACM, 49(2):236–259, 2002.

A Proofs from Subsection 4.3

We first give characterization of every Nash equilibria
which will be useful in the proof of Theorem 4.4.

Lemma A.1. In every Nash equilibrium, in which all
users on the same link share the same policy, if a
user from an overloaded link Mi reroutes with positive
probability to an underloaded link Mj at time t, then
E[Lt+1(Mi)] ≥ E[Lt(Mj)]

Proof. Since the system is in Nash equilibrium, then the
expected load on the links excluding one user on Mi is
identical. Suppose by contradiction that E[Lt+1(Mi)] <
E[Lt(Mj)], thus pt

i(j) > pt
i(i) but this implies that load

on Mj is larger than the load on Mi excluding the last
user, which is contradiction. �

Proof of Theorem 4.4 : We first note that any
Nash equilibrium must satisfy the third condition. By
restricting users actions in the game we can obtain the
first and second condition. Therefore, it remains to
prove that there exists an equilibrium in which all the
users on a link share the same policy. We prove it by
using Brouwer Fixed Point Theorem [4]. (The proof
is almost identical to the Nash equilibrium existence
proof.) Let ∆ be the set of all possible policies, i.e. if
P ∈ ∆ then Pi,j is the probability of the user i to move
from its link g(i) to link j and

∑
j Pi,j = 1. For every

policy, P we define the policy P̄i,j =
∑

i′:g(i)=g(i′) Pi′,j∑
i′:g(i)=g(i′) 1P

i′,j
,

where 1Pi′,j is 1 if Pi′,j > 0 and 0 otherwise. Intuitively,
P̄ averages the policies of users that share the same link,
it remains to show that P̄ can be an equilibrium. We
define the utility function of the distribution P̄ as,

ui(P̄) = EjvP̄i,j
EP̄−i

[L(Mj)] + 1/sj

Next we define the utility of switching deterministically
to link j.

Zi,j = max{ui(j, P̄−i)− ui(P̄), 0}

After defining these rewards define the mapping y :
∆ 7−→ ∆, with i, jth component

yi,j =
pi,j + Zi,j

1 +
∑

j Zi,j

Note that this mapping is continuous and ∆ is a
compact and convex set. Therefore, there exists a fixed
point for this mapping, we would like to show that there
exists at least one fixed point which is an equilibrium
and all the users on the same link share the same policy.
We show that if P is an equilibrium then P̄ is an
equilibrium. If P is an equilibrium then for any link
j such that Pi,j > 0 the move from g(i) to j is best
response with respect to P̄ . Thus every distribution on
these link is a best response including P̄ . It remains to
show that an equilibrium in the restricted game is an
equilibrium in the original game as well. By Lemma A.1,
if a user on an overloaded link would like to reroute
to a different overloaded link, then there is also an
underloaded link with less or equal load that he would
like to move to, thus the system was not in equilibrium
in the restricted game. If a user on an underloaded
link would like to reroute then there exists a user on an
overloaded link that would like to reroute to that link
as well, which is contradiction to the the fact that it is
an equilibrium in the restricted game.
Proof of Lemma 4.5 : We consider a case where
there are four links; Two overloaded links M1,M2

with load n + d1, n + d2 and two underloaded links
M3,M4 with load n − d3, n − d4. We let p1(p2) be
the probability leaving M1(M2) and q3(q4) be the
probabilities of reaching M3(M4) if a user moves.
Clearly all probabilities are strictly positive. A
Nash equilibrium must satisfy the following equations:
(n + d1 − 1)(1− p1) = n− d3 + p1(n + d1 − 1)q3

+p2(n + d2)q3

(n + d1 − 1)(1− p1) = n− d4 + p1(n + d1 − 1)q4

+p2(n + d2)q4

(n + d2 − 1)(1− p2) = n− d3 + p1(n + d1)q3

+p2(n + d2 − 1)q3

(n + d2 − 1)(1− p2) = n− d3 + p2(n + d1)q4

+p2(n + d2 − 1)q4

By subtracting Eq.1 form Eq.2 and Eq.3 from Eq.4
we obtain,

d4 − d3 = p1(n + d1 − 1)(q4 − q3) + p2(n + d2)(q4 − q3)

d4 − d3 = p1(n + d1)(q4 − q3) + p2(n + d2 − 1)(q4 − q3).

Therefore, p1(q4 − q3) = p2(q4 − q3) which implies
that either p1 = p2 or q3 = q4. By taking d1 = n, d2 =
1, d3 = 1, d4 = n, we show that both conditions cannot
be satisfied. If q3 = q4 then the load on M4 would be
strictly smaller which is contradiction. If p1 = p2, then

either the load on M1 is greater then n + 2 or the load
on M2 is smaller than n − 1. In the first case a user
on M1 would leave with probability 1 and in the second
case a user on M2 would stay with probability 1.

