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Abstract

We consider the most realistic reinforcement learn-
ing setting in which an agent starts in an unknown
environment (the POMDP) and must follow one
continuous and uninterrupted chain of experience
with no access to “resets” or “offline” simula-
tion. We provide algorithms for general connected
POMDPs that obtain near optimal average reward.
One algorithm we present has a convergence rate
which dependsexponentiallyon a certain horizon
time of an optimal policy, but hasno dependence
on the number of (unobservable) states. The main
building block of our algorithms is an implemen-
tation of anapproximatereset strategy, which we
show always exists in every POMDP. An interest-
ing aspect of our algorithms is how they use this
strategy when balancing exploration and exploita-
tion.

1 Introduction
We address the problem of lifelong learning in a partially ob-
servable Markov decision process (a POMDP). We consider
the most general setting where an agent begins in an unknown
POMDP and desires to obtain near optimal reward. In this
setting, the agent is forced to obey the dynamics of the envi-
ronment, which, in general, do not permit resets.

The problem of lifelong learning has been well studied
for observable MDPs. Kearns and Singh (1998) provide the
E3 algorithm, which has finite (polynomial) time guarantees
until the agent obtains near optimal reward. Unfortunately,
such an algorithm is not applicable in the more challenging
POMDP setting. In fact, none of the guarantees in the litera-
ture for learning in the limit for MDPs apply to POMDPs, for
reasons which are essentially due to the partially observabil-
ity.

For POMDPs, the problem of balancing exploitation with
exploration has received rather little attention in the literature
— typically most results in POMDPs are on planning (see for
example Sondik (1971); Lovejoy (1991a, 1991b); Hauskrecht
(1997); Cassandra (1998)). Most of the existing learning
algorithms such as Parr and Russell (1995); Peshkin et al.
(2000) either assume a goal state or assume a reset button.
In fact, to the best of our knowledge, the literature does not

contain even asymptotic results for general POMDPs which
guarantee that the average reward of an agent will be near
optimal in the limit.

Part of the technical difficulty is that there are currently no
general results for belief state tracking with an approximate
model showing that divergence in the belief state does not
eventually occur. Crudely, the issue is that if a belief state
is being tracked in an approximate manner, then it is impor-
tant to show that this approximation quality does not contin-
ually degrade with time — otherwise the agent will eventu-
ally loose track of the belief state in the infinite horizon (this
of course is not an issue in an MDP where the current state
is observable). Boyen and Koller (1998) address the issue
of approximate belief state tracking, but in their setting the
model is known perfectly and their goal is to keep a compact
representation of the belief state. Note that approximate be-
lief state tracking is much simpler if the agent is only acting
over a fixed finite horizon, since then one can bound the error
accumulation as a function of the horizon.

We present new algorithms for learning in POMDPs which
guarantee that the agent will obtain the optimal average re-
ward in the limit. Furthermore, we provide a finite time con-
vergence rates for one of our algorithms which has anexpo-
nentialdependence on a certain horizon time (of an optimal
strategy) but hasno dependenceon the number of states in
the POMDP. This result is reminiscent of the trajectory tree
algorithm of Kearns et al. (1999) which has similar depen-
dencies (though there they assumed access to a generative
model, which allowed simulation of the POMDP). Given the
plethora of complexity results in the literature on planning in
POMDPs (see Lusena et al. (2001)), we feel these depen-
dencies are the best one could hope for in the most general
setting.

Central to our algorithms is the implementation of an ap-
proximate reset strategy or ahoming strategy. The idea of a
reset strategy is not new to the literature — homing sequences
were used in the learning of deterministic finite automata (see
Rivest and Schapire (1993), though there the sequence pro-
vided exactresets). Here, the agent follows a homing strat-
egy in order to moveapproximatelytowards a reset. We show
that such a strategy always exists, and our finite convergence
rates also depend on a characteristic time it takes to approx-
imately reset. However, note that existence of such a strat-
egy alone does not imply that such a strategy will be useful.



The reason is that the agent must take actions to reset, which
might otherwise be better spent exploring or exploiting. It
turns out that our algorithms use the homing strategy while
both exploring and exploiting. In fact, they use the homing
strategies infinitely often, which, unfortunately, detracts from
exploiting. However, we are able to show that the ratio of the
time these homing strategies are used compared to the time
spent exploiting is decreasing sufficiently rapidly, such that
near optimal average reward can be obtained.

2 Preliminaries
A Partially Observable Markov Decision Process (POMDP)
is defined by a finite set of statesS, an initial states0, a set
of actionsA, a set of observationsO, with an output model
Q, whereQ(o, r|s, a) is the probability of observingo and
rewardr after performing actiona at states (we assume that
r ∈ [0, 1]), and a set of transitions probabilitiesP , where
P (s′|a, s) is the transition probability froms to s′ after per-
forming actiona. We definer(s, a) as the expected reward
underQ(·|s, a) after performing actiona in states.

A history h is a sequence of actions, rewards
and observations of some finite length,i.e. h =
{(a1, r1, o1), ..., (at, rt, ot)}. A strategy or policy in
a POMDP is defined as a mapping from histories to
actions. We define abelief stateB to be a distribu-
tion over states. Given an initial belief stateB0 let
Pr[h|B0] = Pr[r1, o1. . . . , rt, ot|a1, . . . , at, B0] be the
probability of observing the sequence of reward-observations
(r1, o1, . . . rt, ot) after performing the actionsa1 . . . at.

For each strategyπ we define its t-horizon ex-
pected reward from a belief stateB as Rπ

t (B) =
(1/t)Eh∼π[

∑t
i=1 r(si, ai)|B0 = B]. A t-Markov strategy

is a strategy that depends only on the lastt observations. The
optimal t-Markov strategy’s expected return from initial be-
lief stateB is defined asR∗

t (B).
The only assumption we make is that the POMDP iscon-

nected, i.e. for all statess, s′, there exists a strategyπ which
can reachs′ with positive probability starting froms. (We do
not make any ergodicity assumptions, since strategies are by
definition non-stationary). Note that if the POMDP is discon-
nected, then the best statement we could hope for is to obtain
the optimal average reward for one of its connected compo-
nents.

Connectivity implies that there exists a strategyπ∗ that
maximizes the average reward. More formally, there exists
a π∗ such that: i) for everyB, limt→∞ Rπ∗

t (B) exists and
does not depend onB, which we denote byR∗, and ii) for all
π andB, R∗ ≥ limt→∞ supRπ

t (B). Hence, for allε > 0
there exist aτ , such that for allB andt ≥ τ :

|R∗ −Rπ∗

t (B)| ≤ ε

and we refer toτ as theε-horizon timeof the optimal strategy.
Essentially,τ is the timescale in which the optimal strategy
achieves close to its average reward.

When we say that werestart a t-Markov strategyπ from
a belief stateB we mean specifically that we reset the his-
tory, i.e.,h = ∅, and runπ starting from a states distributed
according toB.

3 Homing Strategies

Clearly, having an action which resets the agent to some des-
ignated state would be useful, as it would allow us to test and
compare the performance of various policies, starting at the
same start state. However, in general, such an action is not at
our disposal.

Instead our algorithms utilize an approximate reset, which
we show always exists. There are a few subtle points when
designing such a reset. First, we must select actions to
achieve the approximate reset,i.e. the approximate reset is
done through the use of ahoming strategy. Hence, while
homing, the agent is neither exploring nor exploiting. Sec-
ond, rather than moving to a fixed state, the homing strategy
can only hope to move to toward a fixed (unknown) belief
state. Third, as we shall see, since the POMDP might be
periodic the stopping time must be a random variable1. To
implement this randomized stopping time, we introducefic-
titious ’stay’ actions, in which the agent does not take an ac-
tion that period. By this, we mean that if the homing strategy
decides to take a ’stay’ action at some time — which may not
be possible if the true POMDP does not permit ’stay’ actions
— then the agent just ignores this ’stay’ action and obtains
another action from the homing strategy to execute. Hence,
after the agent has takent homing actions(which are either
real or ’stay’ actions), the agent has takent −m real actions
in the POMDP andm stay actions. We now define an approx-
imate reset strategy.

Definition 3.1 H is an(ε, k)-approximate reset (or homing)
strategy if for every two belief statesB1 and B2, we have
‖HE(B1) − HE(B2)‖1 ≤ ε, whereHE(B) is the expected
belief state reached fromB afterk homing actions ofH (so at
mostk real actions have been taken) andH(B) is a random
variable such thatHE(B) = EH(B)∼H,B [H(B)].

The above definition only states thatH will approximately
reset, but this approximation quality could be poor. We now
show how to amplify the accuracy of an approximate hom-
ing strategy, and then we show that an approximate homing
strategy always exists.

Lemma 3.1 Suppose thatH is an (ε, k) approximate reset
thenH` is an (ε`, k`) approximate reset, whereH` consec-
utively implementsH for ` times. Furthermore, this implies
there exists a unique belief stateBH such thatHE(BH) =
BH .

Proof: The proof is a standard contraction argument, and
we use induction. Forl = 1, the claim follows by definition.
Assume now that‖H`−1

E (B1) − H`−1
E (B2)‖1 ≤ ε`−1. Let

H l−1
E (B1) = Q1 and H l−1

E (B2) = Q2, so
∑

s |Q1(s) −
Q2(s)| ≤ ε`−1. For an arbitrary states′, and using the fact

1Without randomizing over the stopping times (i.e. allowing
’stay’ actions), the state transition matrix may be periodic and no
stationary distribution may exist,e.g. if the states deterministically
alternate between states1 and2.



thatH is a linear operator, we have

‖H`
E(B1)−H`

E(B2)]‖1

= ‖HE(Q1)−HE(Q2)]‖1

= ‖
∑

s

(Q1(s)−Q2(s))HE(s)‖1

= ‖
∑

s

(Q1(s)−Q2(s))HE(s′)‖1

+‖
∑

s

(Q1(s)−Q2(s))(HE(s)−HE(s′))‖1

= 0 +
∑

s

|Q1(s)−Q2(s)|ε

≤ ε`

where the first term is0 since for any two distributions∑
s Q1(s) − Q2(s) = 1 − 1 = 0 (and the vectorH(s′)

is constant in this sum), and we have used the fact that
‖H(s)−H(s′)‖1 ≤ ε (by definition ofH). �

We now show that the random walk strategy (includ-
ing ’stay’ actions) is an approximate reset strategy in every
POMDP (including periodic ones), though with prior knowl-
edge we might have better approximate reset strategies at our
disposal.

Lemma 3.2 For all POMDPs, the random walk strategy (us-
ing ’stay’ actions) constitutes an(ε, k) approximate reset
strategy for somek ≥ 1 and0 < ε < 1

2 .

Proof: By our connectivity assumption, for all statess and
s′, there exists some strategy that reachess′ from s with pos-
itive probability. This implies that underH (the random walk
strategy), there is positive probability of moving from one
state to another,i.e. the Markov chain is irreducible. Fur-
thermore, sinceH performs ’stay’ actions, then the Markov
chain is aperiodic. Thus, there exists a unique stationary dis-
tribution. We choosek to be the time at which the error in
convergence is less than1/2, from all starting states. Hence,
by linearity of expectation, the error is less than1/2 from all
belief states ink steps. �

4 Reinforcement Learning with Homing
We now provide two algorithms which demonstrate how
near-optimal average reward can be obtained, with different
rates of convergence. The key to the success of these algo-
rithms is their use of homing sequences inboth exploration
and in exploitation. For exploration, the idea is that each
time we attempt some exploration trajectory we do it after
implementing our reset strategy — hence our information is
(approximately) grounded with respect to the belief stateBH

(recallHE(BH) = BH ). The idea of exploration is to find
a goodt-Markov strategŷπ∗t from BH . During exploitation,
the goal is to use thist-Markov strategy. Unfortunately, we
have only guaranteed thatπ̂∗t performs wellstarting fromBH

and only fort steps. Hence, after each time we exploit with
π̂∗T , we run our homing sequence to get back close toBH (and
then we rerun̂π∗t ). We gradually increaset in the process.

The problem is that while homing, we are wasting time and
neither exploiting nor exploring. Furthermore, since we use

Input : H /*a (1/2,KH) approximate reset strategy */
for t = 1 to∞ do

/*Exploration in Phaset */;

kt
1 = O

(
1
ε2t

log(t2|Πt|)
)

;

foreachPolicyπ in Πt do
for i = 1 to kt

1 do
Runπ for t steps;
Repeatedly runH for log(1/εt) times;

end
Let vπ be the average return ofπ in from these
kt
1 trials;

end
/*Exploitation in Phaset */;
Let π̂∗t = arg maxπ∈Πt vπ;

kt
2 = O

(
1
εt

([current time T]

+[time in t + 1-th exploration phase])
)

;

for i = 1 to kt
2 do

Runπ̂∗t for t steps;
Repeatedly runH for log(1/εt) times;

end
end

Algorithm 1 : Policy Search

the homing sequence betweeneveryrun ofπ̂∗t , asymptotically
we never stop homing. Nonetheless, we able to show that
there exists an algorithm which obtains near optimal reward
in a POMDP, since the ratio of the time spent exploiting vs.
homing decreases sufficiently fast.

Theorem 4.1 There exists an algorithmA, such that in any
connected POMDP,A obtains the optimal average reward in
the limit, with probability1.

We later provide an algorithm with a better convergence
rate (see Theorem 4.5). However, we start with a simpler pol-
icy search algorithm which establishes the above Theorem.

4.1 Policy Search
Algorithm 1 takes as input a(1/2,KH)-approximate reset
strategy, which could be the random walk strategy with a
very crude reset. The algorithm works in phases, interleav-
ing exploration phases with exploitation phases. Let us start
by describing the exploration phases. LetΠt be the set of
all t-Markov strategies. An estimate of the value of a policy
π ∈ Πt can be found by first resetting and then runningπ for t
steps. The exploration phase consists of obtaining an estimate
vπ of the return of each policyπ ∈ Πt, where each estimate
consists of an average ofk1 trials (followed by approximate
resets).

These estimates have both bias and variance. The variance
is just due to the stochastic nature of the POMDP. The bias is
due to the fact that we never can exactly reset toBH . How-
ever, if we runH for log 1/εt times (whereεt is an error pa-
rameter in thet-th phase, which will be fixed latter) then, by
lemma 3.1, all expected belief states we could approach will
be (1/2)log 1/εt = εt close toBH . The following lemma
shows that accurate estimates can be obtained.



Lemma 4.2 In phaset, if kt
1 = O

(
1
ε2t

log(t2|Πt|)
)

and each

reset consists of using the homing sequencelog 1/εt times,
then for all policiesπ ∈ Πt, the estimatedt-horizon reward,
vπ, satisfies|Rπ

t (BH) − vπ| ≤ 2εt with probability greater
than1− 1

2t2 .

Proof: First, let us deal with the bias. Any expected belief
statesb that results from using the homing sequencelog 1/εt

times must satisfy‖b− BH‖ ≤ (1/2)log 1/εt ≤ εt. Now it is
straightforward to see that ifb andBH are belief states such
that ‖b − BH‖1 ≤ ε, then for every strategyπ, |Rπ

t (b) −
Rπ

t (BH)| ≤ ε. To see this, let the belief states at timet bebt

andBt
H , which result from following eitherπ starting from

b or BH , respectively. By linearity of expectation, it follows
that ‖bt − Bt

H‖1 ≤ ε. This directly implies that|Rπ
t (b) −

Rπ
t (BH)| ≤ ε.
For the variance, the Hoeffding bound and our choice ofkt

1
imply that the average return of each policy isεt close to its
expectation (the expectation is both over the initial state and
on the policy trajectory) with probability1− 1/(2t2). �

Now during exploitation, the algorithm uses the policyπ̂∗t
which had the highest return in the exploration phase (and by
the previous lemma this is close to the policy with largest re-
turn). Note that we have only guaranteed a large return for
executinĝπ∗t fromBH for t steps. However, we would like to
exploit for a longer period of time thant. The key is that we
again resetlog(1/εt) times after each time we run̂π∗t , which
resets us closeεt close toBH . Unfortunately, this means we
spendKH log 1/εt steps betweeneachrun of π̂∗. Hence, our
average return could beO( 1

t KH log 1/εt) less than we would
like, sinceO( 1

t KH log 1/εt) is the fraction of time we spend
resetting. Note that this fraction could be large if we desire
that εt be very small (thought this would guarantee very ac-
curate resets).

Now, when we do exploit (and reset), we run the exploita-
tion phase long enough (forkt

2 time) such that ouroverall
average reward is comparable to the average reward in the
last exploitation phase.

Lemma 4.3 At any timeT after phaset, the average reward
from time1 to time T satisfies: 1

T

∑T
i=1 ri ≥ R∗

t (BH) −
O(εt + 1

t KH log(1/εt)) with probability at least1− 1
t2 .

Before proving this lemma, let us state a corollary from
which Theorem 4.1 follows.

Corollary 4.4 Let εt = 1/t. Then 1
T

∑T
i=1 ri ≥ R∗

t (BH) −
O(KH log(t)

t ) with probability at least1− 1
t2 .

Importantly, note the loss term goes to0 ast goes to infin-
ity. Furthermore, for a large enough phaset, we know that
R∗

t (BH) will approach the optimal average rewardR∗ (since
R∗ is independent of the startingB). Theorem 4.1 follows.
Essentially, although we have to home infinitely often, the ra-
tio of time spent homing to the time spent using ourt-step
exploitation policies is going asO( log t

t ), which goes to0.
Proof: First, let us show that the average reward,

1
T

∑T
i=1 ri ≥ R∗

t (BH), is no less thanεt from the average
reward obtained in thet-th exploitation phase. To do this, we
set the time of exploitation phase,kt

2, to be1/εt times greater

than previous amount of time spent in the MDP time plus the
amount of time that will be spent in the next exploration phase
(this latter factor accounts for the case in which timeT lies in
the exploration phase immediately aftert).

Now we bound the average reward obtained in the exploita-
tion phase. First. let us show that thet-average reward of the

policy used,Rπ̂∗t
t , satisfiesR∗

t (BH) − R
π̂∗t
t (BH) ≤ 4εt with

probability at least1 − 1
2t2 . By Lemma 4.2 for each policy

π ∈ Πt, we have|Rπ
t (BH) − vπ| ≤ 2εt with probability at

least1− 1
2|Πt|t2 . Therefore,̂π∗t is 4εt-optimal with probabil-

ity 1−1/(2t2). Now the observed average return ofπ̂∗t in the
exploitation period is2εt close toR∗

t (BH) with probability at
least1− 1

2t2 , since our observed average return in exploitation
is least as good as those used to findvπ̂∗t (sincekt

2 > kt
1).

However, the average return during the exploitation phase
is not the observed average return ofπ̂∗t , since we re-
set after eacht exploitation steps for a number of steps
that is KH log(1/εt). The resets in the exploitation pe-
riod can change the average reward by at most a fraction
1
t KH log(1/εt). �

4.2 A Model Based Algorithm

The previous algorithm was the simplest way to demonstrate
Theorem 4.1. However, it is very inefficient, since it is testing
all t-Markov policies — there are doubly exponential, int,
such polices2. Here, we provide a more efficient model based
algorithm, which resembles the algorithms given in Kearns
et al. (1999); McAllester and Singh (1999), and is exponen-
tial in the horizon time, yet it still has no dependence on the
number of states in the POMDP.

We now state a convergence rate in terms ofτ , the ε-
horizon time of an optimal policy (see Section 2) and and
in terms of the homing timeKH (recall, such a time exists
for every POMDP using a random walk policy).

Theorem 4.5 There exists an algorithmA, such that in any
connected POMDP and with probability greater than1 − δ,
A achieves an average reward that is2ε close to the optimal
average reward in a number of steps in the POMDP which is
polynomial in|A|,|O|,KH and log(1/δ) and exponential in
τ . Furthermore the computational runtime of this algorithm
is polynomial in|A|,|O|, andlog(1/δ) and exponentialτ .

We provide such an algorithm in the next page. In explo-
ration phase, the algorithm builds an approximate model of
the transition probabilities after some history has occurred
starting fromBH . In the t-th phase, it builds a model with
respect to the set of allt-length histories, which we denote by
Ht. In the exploitation phase, it uses the bestt Markov strat-
egy with respect to this model. The use of homing strategies
is similar to that in the previous algorithm.

Let L = |A||O|, and note that2Lt ≥ |Ht|. In the ex-
ploration phase, the algorithm takes actions uniformly at ran-
dom for t steps and then resets (running the homing strategy

2The number of histories of lengtht is exponential int, and the
number oft-Markov polices is exponential in the number oft-length
histories



Input : H /*an (1/2,KH) approximate reset strategy */
Let L = |A| · |O|;
for t = 1 to∞ do

kt
1 = O

(
L4t

ε2t
log(t2|Ht|)

)
;

for kt
1 timesdo

RunRANDOMfor t steps;
RunH for KH log(Lt/εt) steps.

end
for h ∈ Ht, a ∈ A ando ∈ O do

P̂r[o|h, B0, a] = 0;
if P̂r[h(a, o)|B0] ≥ εt

Lt then

P̂r[o|h, B0, a] = P̂r[h(a,o)|B0]

P̂r[h|B0] Pr[a]

end
end
Computêπ∗t usingP̂r[o|B0, h, a];
kt
2 = O

(
1
εt

([current time T]

+[time in t + 1-th exploration phase])
)

;

for kt
2 timesdo

Runπ̂∗t for t steps;
RunH for KH log(1/εt) steps;

end
end

Algorithm 2 : Model based

for log(Lt/εt) times). This is donekt
1 times.3 Then using

the empirical frequencies in these trajectories the algorithm
forms estimatesP̂r[o|h, BH , a], which is just the empirical
probability of observingo conditioned on historyh followed
by taking actiona. For historiesh which are unlikely, these
empirical estimates could be very bad, though, as we shall
see, we do not need accurate estimates ofP̂r[o|h, BH , a] for
such histories. Leth(a, o) be a history withh followed by
(a, o).

Lemma 4.6 In phaset, if kt
1 = O

(
L4t

ε2t
log(t2|Ht|)

)
and

each reset consists of using the homing sequencelog(Lt/εt)
times, then: (1)|P̂r[h|B0] − Pr[h|B0]| ≤ εt

L2t , and (2) for
everyh(a, o) ∈ Ht such thatPr[h(a, o)|B0] ≥ εt

Lt , we have

|P̂r[o|h, B0, a] − Pr[o|h, B0, a]| ≤ 2|A|
Lt , with probability at

least1− 1
t2 .

Proof: We first note that, with probability1 − 1/t2, for
every historyh ∈ Ht we have|P̂r[h|B0] − Pr[h|B0]| ≤ εt

L2t

(using the Hoeffding bound). The error,|Pr[o|h, B0, a] −

3We can use in the algorithm any approximate homing strategy
H. However, ifH is simply the random policy, then the reset and
exploration would both use the same policy, and the algorithm would
slightly simplify.

P̂r[o|h, B0, a]|, is then∣∣∣∣∣Pr[h(a, o)|B0]
Pr[h|B0] Pr[a]

− P̂r[h(a, o)|B0]
P̂r[h|B0] Pr[a]

∣∣∣∣∣
≤ 1

Pr[a]

∣∣∣∣Pr[h(a, o)|B0] + εt

L2t

Pr[h|B0]− εt

L2t

− Pr[h(a, o)|B0]
Pr[h|B0]

∣∣∣∣
=

1
Pr[a]

∣∣∣∣ εt

L2t

Pr[h|B0]− εt

L2t

+
2 Pr[h(a, o)|B0] εt

L2t

Pr[h|B0](Pr[h|B0]− εt

L2t )

∣∣∣∣
≤ 2|A|

Lt
,

where the first inequality holds with probability1 − 1
t2 , and

in the last inequality we used the fact thatPr[h|B0] ≥ εt

Lt . �
The exploitation policy can be found using dynamic pro-

gramming with the model. Note that the POMDP is equiva-
lent to an MDP where the histories are states. In the exploita-
tion phase, the algorithm uses the bestt-Markov policy, π̂∗t ,
(with respect to the approximate model) interleaving it with
KH log(1/εt) homing steps.

Lemma 4.7 In phaset, the exploitation policŷπ∗t , satisfies

|R∗
t (BH) − R

π̂∗t
t (BH)| ≤ t(εt + 2|A|

Lt ) + (2εt + 2εt

Lt ) with
probability at least1− 1

t2 .

Proof: (sketch) We observe that by ignoring all histories
(which we view as nodes in a tree) such thatP̂r(h|B0) ≤ εt

Lt ,
the return of an optimal strategy in this empirical model is
decreased by at most2t(εt + εt

Lt ), due to the fact that the true
history probability is bounded byεt

Lt + εt

L2t , the return from
each node is bounded byt and the total number of such nodes
is bounded by2Lt. Next we prove that the return of the opti-
mal policy in the empirical model loses at mostt2(εt + 2|A|

Lt )
due to the tree approximation on the other nodes (the other
histories). Using backward induction, we show that the pol-
icy π̂∗t has return not less thank2(εt + 2|A|

Lt ) in comparison to
the true optimal value, starting from(t − k + 1)-length his-
tories. The base case, for the leaves (thet-length histories),
holds since the reward (which is encoded through the obser-
vations) is withinεt + 2|A|

Lt , where the first error is due to the
imperfect reset and the second is due to the marginal distribu-
tion error that is bounded by2|A|Lt by Lemma 4.6. Assume the
induction assumption holds fork − 1. There are two sources
of error, the first is due to the current estimation error (of both
the marginal distribution and the immediate reward) which is
bounded by(εt + 2|A|

Lt )k and the second is due to errors from

the previous levels and is bounded by(k − 1)2(εt + 2|A|
Lt ) by

the induction assumption. Summing the terms completes the
induction step. �

Similarly to Subsection 4.1, we exploit long enough such
that the overall average reward is essentially the average re-
ward in the last exploitation period.

Lemma 4.8 At any timeT after phaset, the average reward
from time1 to time T satisfies: 1

T

∑T
i=1 ri ≥ R∗

t (BH) −
O(tεt + |A|t

Lt + (1/t)KH log(1/εt)) with probability at least
1− 1

t2 .



Using the above lemma, Theorem 4.5 follows immediately
if we setεt = 1/t2.

Proof: (sketch) We first note that all exploitations and ex-
plorations from phases1 to T and from the next,(T + 1)-th,
exploration phase can effect the average reward by at most
εt. By Lemma 4.7, the exploitation policy is near optimal and

satisfies,|R∗
t (BH)− R

π̂∗t
t (BH)| ≤ t(εt + 2|A|

Lt ) + (εt + εt

Lt )
with probability1 − 1/(2t2). As in Lemma 4.2, we observe
that the bias of the exploitation policy isεt and the variance
due to Hoeffding’s bound and the large exploitation time is
bounded byεt with probability1 − 1/(2t2). The last source
for loss is the resets in the exploitation period and its effect
can be bounded byKH log(1/εt)

t . �
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