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Abstract. Delay spikes on Internet paths can cause spurious TCP timeouts lead-
ing to significant throughput degradation. However, if TCP is too slow to detect
that a retransmission is necessary, it can stay idle for a long time instead of trans-
mitting. The goal is to find a Retransmission Timeout (RTO) value that balances
the throughput degradation between both of these cases. In the current TCP im-
plementations, RTO is a function of the Round Trip Time (RTT) alone. We show
that the optimal RTO that maximizes the TCP throughput need to depend also
on the TCP window size. Intuitively, the larger the TCP window size, the longer
the optimal RTO. We derive the optimal RTO for several RTT distributions. An
important advantage of our algorithm is that it can be easily implemented based
on the existing TCP timeout mechanism.

1 Introduction

In most cases the Internet does not provide any explicit information about the network
conditions. Thus, it is up to the transport protocol to form its own estimates, and then to
use them to adapt as efficiently as possible. For these reasons congestion avoidance and
control have become critical to the use of the Internet. Jacobson [12] pioneered the con-
cepts of TCP congestion avoidance and control based on additive increase/multiplicative
decrease (AIMD). This scheme allows to avoid the congestion collapse as shown by
Floyd and Fall [9]. TCP was later augmented with fast retransmission and fast recovery
algorithms to avoid inefficiency caused by retransmission timeouts [13, 25].

Despite the conventional wisdom of relying less on timeout-based mechanisms, it
has been indicated that a large number of lost packets in the Internet is recovered by
retransmission timeouts [3, 21]. The problem is that delays on Internet paths can be
highly variable resulting for instance from route flipping [4, 2]. On the one hand, under-
estimation of RTT leads to a premature retransmission timeout in case there is no loss
or the retransmission could be handled by the fast retransmission mechanism. On the
other hand, overestimation of RTT leads to a late retransmission timeout, in case there
is a loss that cannot be captured by the fast retransmission mechanism. Therefore, it is
crucial for the TCP performance to find a Retransmission Timeout (RTO) value that is
an equilibrium point balancing between both of these cases.
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Dolev et al. [6] study retransmission timeout setting for a simple transmission proto-
col by means of competitive analysis. Ludwig and Katz [17] propose the Eifel algorithm
to eliminate the unnecessary retransmissions that can result from a spurious retransmis-
sion timeout. Gurtov and Ludwig [11] present an enhanced version of the Eifel algorithm
and show its performance benefits on paths with a high bandwidth-delay product. Ekstr
and Ludwig [7] propose a new algorithm for calculating the RTO, named the Peak-
Hopper-RTO (PH-RTO), which improves upon the performance of TCP in high loss
environments. Significant efforts have been also devoted to modeling such a complex
protocol as TCP [16, 15, 18, 20].

In this paper we study how to find the optimal RTO maximizing the TCP throughput
using the model of [20]. Our main contribution is to show that the optimal RTO need to
depend on the TCP window size. We derive the optimal RTO as a function of RTT and
the TCP window size for a general and some specific distributions of RTT. Intuitively,
the larger the TCP window size, the longer the optimal RTO. We note that the heavy-
tailed Pareto distribution has been shown to approximate most accurately the actual RTT
distribution in the Internet [1, 2, 10, 5]. An important advantage of our algorithm is that
it can be easily implemented on the top of the existing TCP timeout mechanism.

RFC 3649 [8] proposes a modification of TCP congestion control that adapts the
increase strategy and makes it more aggressive for high bandwidth links (i.e. for large
window sizes). In this work we demonstrate that for such scenarios TCP throughput
could be further increased by selecting a larger RTO. Our results are strengthened by
simulations in [11], which show that proper handling of spurious timeouts on paths with
a high bandwidth-delay product can increase TCP throughput by up to 250%.

The rest of the paper is organized as follows. Summary of our results appears in
Section 2. In Section 3 we describe the TCP model. Section 4 contains an analytic
derivation of the optimal RTO.A general RTT distribution and some specific distributions
are considered in Section 5 and Section 6, respectively.

2 Summary of Results

In this section we give an overview of our main results while the formal definitions and
proofs are deferred to the following sections. We assume that RTT behaves like a random
variable and derive the optimal retransmission timeout as a function of the mean and the
variance of RTT and the TCP window size.

The input parameters to our algorithm are the RTT mean µ, the RTT variance σ2

and the TCP window size W . (We assume that both µ and σ are finite.) Our goal is to
find the optimal RTO maximizing the TCP throughput. We show that it is an increasing
function on W .

First we obtain some upper bounds on the optimal RTO for a general RTT distri-
bution. These bounds may be considered as worst-case bounds since they hold for any
distribution. The results are presented in Table 1. We show that for any RTT distribution
the optimal RTO is bounded from above by W

√
log W/3 times the mean of RTT. Pro-

vided that higher moments of RTT exist, we establish bounds which are mostly driven
by those moments while the effect of the window size becomes insignificant. Notice that
when RTT is a fixed constant, we obtain an upper bound which tends to RTT.
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Table 1. General distribution

Moment RTO – Upper Bound
First moment 1√

3
W

√
log WE[RTT ]

k’th moment
(

W2 log W
3

) 1
k+1 (

E[RTT ]E[RTT k]
) 1

k+1

Table 2. Specific distributions

RTT Distribution RTO – Optimal Value
Normal µ + σ · O

(√
ln W + ln µ

σ

)
Exponential µ · O(ln W )

Pareto
(

W2 log Wµ
3

)1−1/µ

Next we derive the optimal RTO for some specific distributions. The corresponding
results are presented in Table 2. Basically, we would like the probability of a premature
retransmission timeout to be very small. The rational is that the throughput degradation
due to a premature retransmission timeout is much higher than that due to a late retrans-
mission timeout. Our model sets the probability of a premature retransmission timeout
at about 1/W 2, for optimizing the TCP throughput.

In case RTT is distributed according to the Normal distribution, one would expect the
optimal RTO to be a sum of the mean plus the standard deviation times some factor, as our
analysis indeed shows. The factor of µ/σ is due to the fact that when RTO = µ+σ ·A,
the expected number of rounds wasted as a result of a late retransmission timeout is
A · σ/µ. This setting is similar to the RTO calculation of Jacobson [12] while the main
difference is the dependence on the window size.

For the Exponential RTT distribution, we show that the optimal RTO is proportional
to the mean of RTT and the logarithm of the window size. The logarithmic factor of the
window size follows from the form of the density function.

Finally, we consider the heavy-tailed Pareto distribution of RTT and establish that
the optimal RTO is the mean of RTT multiplied by a power of the window size. Such a
dependence is due to the heavy-tail property of the Pareto distribution.

3 TCP Model

We adopt the model of [20] that is based on Reno version of TCP. The TCP’s congestion
avoidance behavior is modeled in terms of "rounds." The duration of a round is equal
to the round trip time and is assumed to be independent of the window size. We define
a round of TCP to be a time period starting from transmitting a window of W packets
back-to-back and ending upon receiving the acknowledgments for these packets.

We make the following simplifying assumptions. There is always data pending at
the sender, such that the sender can always transmit data as permitted by the congestion
window while the receiver’s advertised window is sufficiently large to never constrain
the congestion window. Every packet is assumed to be individually acknowledged (the
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delayed acknowledgment algorithm is not in effect). A packet is lost in a round indepen-
dently of any packets lost in other rounds. However, packet losses are correlated among
the back-to-back transmissions within a round: if a packet is lost, all the consequent
packets transmitted until the end of that round are also lost1. We define packet loss prob-
ability p to be the probability that a packet is lost, given that either it is the first packet
in a round or the preceding packet in the round is not lost.

We call the congestion avoidance phase a steady state. We assume that timeout
expiration does not occur during a slow start phase and concentrate on the timeout
setting in a steady state. We also assume that the mean and the variance of RTT are
available or could be estimated.

We approximate the packet loss probability as a function of the TCP window size in
a steady state, which is a simplification of [20], as p ≈ 1

W 2 . We note that the model of
[20] captures the effect of TCP’s timeout mechanism on throughput.

4 TCP Timeout Optimization

In this section we consider optimization of the retransmission timeout. The goal is to
maximize the throughput of TCP. Notice that the optimal RTO is the actual RTT, which is
unknown to our algorithm. Thus, the online decision must be based only on the available
estimates of the mean and the variance of RTT. We try to find the value of RTO that
balances throughput degradation between a premature retransmission timeout and a late
retransmission timeout, which are so called “bad events” (that will be formally defined
later). Recall that in our model bad events occur only in a steady state.

When a bad event happens, we consider the convergence period T during which
TCP reaches a steady state. We compare the throughput of TCP during T with that of an
optimal algorithm that uses the actual RTT as its RTO and sends in average W packets
every round. We call to the number of extra packets sent by the optimal algorithm during
T throughput degradation. The goal is to minimize the expected throughput degradation
due to bad events.

First we will derive the expected duration of the convergence period. In the case
of a premature retransmission timeout, it takes exactly log W rounds for TCP to reach
a steady state since the TCP window grows exponentially during a slow start phase.
In the case of a late retransmission timeout, TCP is idle instead of transmitting during
RTO − RTT time units. Thus, the expectation of the length of T in rounds is:

E[length(T ) | RTO > RTT ] =
1

P [RTO > RTT ]

∫ RTO

0
(RTO − RTT )dRTT.

We approximate the expected number of rounds using the Law of Large Numbers as
E[length(T )]/µ:

E[# rounds in T | RTO > RTT ] ≈ 1
P [RTO > RTT ]

∫ RTO

0

RTO − RTT

µ
dRTT.

1 Such situation naturally occurs when the tail-drop policy is deployed by the bottleneck router.
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Assuming that there is a sequence of one or more losses in a given round, the proba-
bility of retransmission timeout is min(1, 3

W ) [20]. In the sequel, we assume that W > 3.
Next we will define the bad events more formally.

Premature retransmission timeout. We say that a timeout occurred prematurely if
no packet in the round is lost or the loss can be captured by the fast retransmission
mechanism. Note that RTO must be smaller than RTT. The probability of this event is:

P1 = P [RTO < RTT ] ·
(

(1 − p)W +
(
1 − (1 − p)W

)(
1 − 3

W

))
≈ P [RTO < RTT ].

The throughput degradation due to this event is: L1 = W log W . Observe that
during the slow start phase, TCP sends at most W packets. We obtain that the expected
throughput degradation as a result of a premature retransmission timeout is:

P1 · L1 = P [RTO < RTT ] · W log W.

Late retransmission timeout. We say that a timeout occurred lately if some packets in
the round are lost and the loss cannot be captured by the fast retransmission mechanism.
Note that RTO must be larger than RTT. The probability of this event is:

P2 = P [RTO > RTT ] · (1 − (1 − p)W
) 3

W
≈ P [RTO > RTT ]

3
W 2 .

The throughput degradation due to this event is:

L2 = W
1

P [RTO > RTT ]
·
∫ RTO

0

RTO − RTT

µ
dRTT.

We get that the expected throughput degradation as a result of a late retransmission
timeout is:

P2 · L2 =
3
W

∫ RTO

0

RTO − RTT

µ
dRTT.

The optimal RTO, RTO∗, minimizes the expected throughput degradation, that is:

P1(RTO) · L1(RTO) + P2(RTO) · L2(RTO).

Thus, given the probability distribution of RTT, the optimal RTO minimizes:

P [RTO < RTT ] · W log W +
3
W

∫ RTO

0

RTO − RTT

µ
dRTT.

For simplicity, we will derive an approximation for the optimal RTO, the balanced
RTO∗∗, for which the expected throughput degradation is the same for both of the bad
events:

P [RTO < RTT ] · W log W =
3
W

∫ RTO

0

RTO − RTT

µ
dRTT ). (1)

Note that in the worst case the expected throughput degradation for the balanced
RTO is at most twice as large as that for the optimal RTO.
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5 General Distribution

In this section we study what is the worst case effect of the TCP window size on the
maximal value of the optimal RTO. We derive upper bounds on the optimal RTO that hold
for any distribution of RTT. In our analysis we use a simplified form of (1): P [RTO <
RTT ]W log W = 3

W
RTO

µ .
First we show that for any RTT distribution with finite mean, the optimal RTO

is bounded from above by W
√

log W/3 times the mean of RTT. Applying Markov
inequality to (1) we get: µ

RTOW log W ≥ 3
W

RTO
µ , and thus RTO ≤ 1

3W
√

log Wµ.
In case higher moments of RTT exist, applying the general form of Chebyshev

inequality and using (1) we obtain an upper bound that depends on both those moments

and the window size: E[RTT k]
RTOk W log W ≥ 3

W
RTO

µ , and we obtain

RTO ≤
(

1
3
W 2 log W

) 1
k+1 (

E[RTT ]E[RTT k]
) 1

k+1 .

Notice that when RTT is almost constant, that is E[RTT k] ≈ µk, for sufficiently large
k the resulting upper bound tends to µ.

6 Specific Distributions

In this section we study the case in which RTT is distributed according to a given known
distribution and derive the optimal value of RTO for some well-known distributions.

6.1 Normal Distribution

In this section we consider the Normal distribution of RTT with the mean µ and the
variance σ2, the density function f(x) = 1

σ
√

2π
e−(x−µ)2/2σ2

and distribution function

F (x) = Φ(x−µ
σ ). To avoid negative values, we can take RTT to be max(D, N(µ, σ)) for

some D < µ, which does not really affect the analysis that is concentrated on the tail of
RTT values larger than µ. Since the Normal distribution is invariable under transforming
the mean, one would expect the RTO bound to be a sum of the mean plus the standard
deviation times some factor, which is indeed the case as we show.

Substituting to (1), P [RTO < RTT ] = 1−Φ(RTO−µ
σ ), E[RTT ] = µ, d(RTT ) =

1
σ

√
2π

e−(x−µ)2/2σ2
dx and y = x−µ

σ we obtain:(
1 −

∫ r

0

1√
2π

e− y2

2 dy

)
W log W =

3
Wµ

(
RTO

∫ r

0

1√
2π

e− y2

2 dy − E[RTT | RTT < RTO]
)

.

Provided that RTT is sufficiently large, we can assume thatE[RTT |RTT < RTO] ≈
µ. Having done some calculations, we derive the following RTO: RTO = µ + σ ·
O
(√

lnW + ln µ
σ

)
.

The interesting factor is O(
√

lnW ), which guarantees that the probability of a pre-
mature retransmission timeout is small.
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6.2 Exponential Distribution

In this section we consider the Exponential distribution of RTT with the rate parameter λ,
the mean E[x] = 1/λ, the density function f(x) = λe−λx and the distribution function
F (x) = 1 − e−λx. We show that the optimal RTO is proportional to the mean of RTT
and the logarithm of the TCP window size.

Substituting to (1), P [RTO < RTT ] = e−λRTO, E[RTT ] = 1/λ and d(RTT ) =
λe−λxdx we get:

e−λRTOW log W =
3
W

λ

((
1 − e−λRTO

)
RTO −

∫ RTO

0
xλe−λxdx

)
.

This gives us the following RTO: RTO ≈ 1
λ ln

(
W 2 log W

3

)
= 1

λO(lnW ). The loga-

rithm ofW achieves the effect of setting the premature retransmission timeout probability
to be order of 1/W 2.

6.3 Pareto Distribution

In this section we consider the heavy-tailed Pareto distribution of RTT with the shape
parameter a > 1, the mean E[x] = a

a−1 , the density function f(x) = a
xa+1 and the

distribution function F (x) = 1 − ( 1
x )a. We show that the optimal RTO is the mean of

RTT multiplied by a power of the window size, which is due to the heavy-tail property
of the Pareto.

Substituting to (1), P [RTO < RTT ] =
( 1

RTO

)a
, E[RTT ] = a

a−1 and d(RTT ) =
a

xa+1 dx gives us:

(
1

RTO

)a

W log W =
3
W

a − 1
a

·
((

1 −
(

1
RTO

)a)
RTO −

∫ RTO

1
RTT

a

xa+1 dx

)
.

Solving this equation derives the following RTO: RTO ≈
(

W 2 log Wµ
3

)1−1/µ

. An

interesting setting is a = 2 where E[RTT ] = 2. In this case we get that RTO ≈
W

√
log W , which justifies the form of the bound we have for an arbitrary distribution.
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