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Abstract. This work studies external regret in sequential prediction
games with arbitrary payoffs (nonnegative or non-positive). External re-
gret measures the difference between the payoff obtained by the forecast-
ing strategy and the payoff of the best action. We focus on two important
parameters: M , the largest absolute value of any payoff, and Q∗, the sum
of squared payoffs of the best action. Given these parameters we derive
first a simple and new forecasting strategy with regret at most order of√

Q∗(ln N) + M ln N , where N is the number of actions. We extend the
results to the case where the parameters are unknown and derive similar
bounds. We then devise a refined analysis of the weighted majority fore-
caster, which yields bounds of the same flavour. The proof techniques we
develop are finally applied to the adversarial multi-armed bandit setting,
and we prove bounds on the performance of an online algorithm in the
case where there is no lower bound on the probability of each action.

1 Introduction

The study of online forecasting strategies in adversarial settings has received con-
siderable attention in the last few years in the computational learning literature
and elsewhere. The main focus has been on deriving simple online algorithms
that have low external regret. The external regret of an online algorithm is the
difference between its expected payoff and the best payoff achievable using some
strategy from a given class. Usually, this class includes a strategy, for each action,
which always plays that action. In a nutshell, one can show that the average ex-
ternal regret per time step vanishes, and much of the research has been to both
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improve and refine the bounds. Ideally, in an adversarial setting one should be
able to show that the regret with respect to any action only depends on the vari-
ance of the observed payoffs for that action. In a stochastic setting such a result
seems like the most natural bound, and deriving its analogue in an adversarial
setting would be a fundamental result. We believe that our results make a sig-
nificant step toward this goal, although, unfortunately, fall short of completely
achieving it.

In order to describe our results we first set up our model and notations, and
relate them to previous works. In this paper we consider the following game-
theoretic version of the prediction-with-expert-advice framework [5, 11, 13]. A
forecaster repeatedly assigns probabilities to a fixed set of actions. After each
assignment, the real payoff associated to each action is revealed and new payoffs
are set for the next round. The forecaster’s reward on each round is the average
payoff of actions for that round, where the average is computed according to
the forecaster’s current probability assignment. The goal of the forecaster is to
achieve, on any sequence of payoffs, a cumulative reward close to X∗, the high-
est cumulative payoff among all actions. As usual, we call regret the difference
between X∗ and the cumulative reward achieved by the forecaster on the same
payoff sequence.

The special case of “one-sided games”, when all payoffs have the same sign
(they are either always non-positive or always nonnegative) has been considered
by Freund and Schapire [9], and by Auer et al. [3] in a related context. These
papers show that Littlestone and Warmuth’s weighted majority algorithm [11]
can be used as a basic ingredient to construct a forecasting strategy achieving a
regret of O(

√
M |X∗| ln N) in one-sided games, where N is the number of actions

and M is a known upper bound on the size of payoffs. (If all payoffs are non-
positive, then the absolute value of each payoff is called loss and |X∗| is the
cumulative loss of the best action.) By a simple rescaling of payoffs, it is possible
to reduce the more general “signed game”, in which each payoff might have an
arbitrary sign, to either one of the one-sided games (note that this reduction
assumes knowledge of M). However, the regret becomes O(M

√
n ln N), where

n is the number of game rounds. Recently, Allenberg and Neeman [2] proposed
a direct analysis of the signed game avoiding this reduction. Before describing
their results, we introduce some convenient notation and terminology.

Our forecasting game is played in rounds. At each time step t = 1, 2, . . .
the forecaster computes an assignment pt = (p1,t, . . . , pN,t) of probabilities over
the N actions. Then the payoff vector xt = (x1,t, . . . , xN,t) ∈ R

N for time t is
revealed and the forecaster’s reward is x̂t = x1,tp1,t + . . . + xN,tpN,t. We define
the cumulative reward of the forecaster by X̂n = x̂1+. . .+x̂n and the cumulative
payoff of action i by Xi,n = xi,1 + . . .+xi,n. For all n, let X∗

n = maxi=1,...,N Xi,n

be the cumulative payoff of the best action up to time n. The forecaster’s goal
is to keep the regret X∗

n − X̂n as small as possible uniformly over n.
The one-sided games, mentioned above, are the loss game, where xi,t ≤ 0

for all i and t, and the gain game, where xi,t ≥ 0 for all i and t. We call
signed game the setup in which no assumptions are made on the sign of the
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payoffs. For the signed game, Allenberg and Neeman [2] show that weighted
majority (used in conjunction with a doubling trick) achieves the following: on
any sequence of payoffs there exists an action j such that the regret is at most
of order

√
M(ln N)

∑n
t=1 |xj,t|, where M = maxi,t |xi,t| is a known upper bound

on the size of payoffs. Note that this bound does not relate the regret to the
sum |x∗

1|+ . . .+ |x∗
n| of payoff sizes for the optimal action (i.e., the one achieving

X∗
n). In particular, the bound O(

√
M |X∗

n| ln N) for the one-sided games is only
obtained if an estimate of X∗

n is available in advance.
In this paper we show new regret bounds for the signed game. Our analysis

has two main advantages: first, no preliminary knowledge of the payoff size M or
about the best cumulative payoff X∗

n is needed; second, our bounds are expressed
in terms of sums of squared payoffs, such as x2

i,1 + . . . + x2
i,n and related forms.

These quantities replace the larger terms M(|xi,1| + . . . + |xi,n|) appearing in
the previous bounds. As an application of our results we obtain, without any
preliminary knowledge on the payoff sequence, an improved regret bound for the
one-sided games of the order of

√
(Mn − |X∗

n|)(|X∗
n|/n)(ln N).

Expressions involving squared payoffs are at the core of many analyses in the
framework of prediction with expert advice, especially in the presence of limited
feedback. (See, for instance, the bandit problem [3] and more generally predic-
tion under partial monitoring [6, 7, 12]). However, to the best of our knowledge,
our bounds are the first ones to explicitely include second-order information
extracted from the payoff sequence. In particular, our bounds are stable under
many transformations of the payoff sequence, and therefore are in some sense
more “fundamental”.

Some of our bounds are achieved using forecasters based on weighted major-
ity run with a dynamic learning rate. However, we are able to obtain second-
order bounds of a different flavour using a new forecaster that does not use the
exponential probability assignments of weighted majority. In particular, unlike
virtually all previously known forecasting schemes, the weights of this forecaster
can not be represented as the gradient of an additive potential [8].

In bandit problems and, more generally, in all incomplete information prob-
lems like label-efficient prediction or prediction with partial monitoring, a crucial
point is to estimate the unobserved losses. In such settings, a probability distri-
bution is formed by using weighted averages of the cumulative estimated losses,
and a common practice is to mix this probability distribution, so that the result-
ing distribution have all the probabilities above a certain value. Technically, this
is important since it is common to divide by the probabilities (see [3, 6, 7, 10, 12]).
We show that, for the algorithm of [3], using our proof technique one can simply
use the original probability distribution computed with the estimates without
any adjustments.

2 A New Algorithm for Sequential Prediction

We introduce a new forecasting strategy for the signed game. In Theorem 3, the
main result of this section, we show that, without any preliminary knowledge of
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the sequence of payoffs, the regret of a variant of this strategy is bounded by
a quantity defined in terms of the sums Qi,n = x2

i,1 + . . . + x2
i,n. Since Qi,n ≤

M(|xi,1| + . . . + |xi,n|), such second-order bounds are generally better than the
previously known bounds (see Section 4).

Our basic forecasting strategy, which we call prod(η), has an input parameter
η > 0 and maintains a set of N weights. At time t = 1 the weights are initialized
with wi,1 = 1 for i = 1, . . . , N . At each time t = 1, 2, . . ., prod(η) computes
the probability assignment pt = (p1,t, . . . , pN,t), where pi,t = wi,t/Wt. After the
payoff vector xt is revealed, the weights are updated using the rule wi,t+1 =
wi,t(1+ ηxi,t). We use the notation Wt = w1,t + . . .+wN,t. The following simple
fact, whose proof is omitted, plays a key role in our analysis.

Lemma 1. For all z ≥ −1/2, ln(1 + z) ≥ z − z2.

Lemma 2. Assume there exists M > 0 such that the payoffs satisfy xi,t ≥ −M
for t = 1, . . . , n and i = 1, . . . , N . For any sequence of payoffs, for any action
k, for any η ≤ 1/(2M), and for any n ≥ 1, the cumulative reward of prod(η) is
lower bounded as

X̂n ≥ Xk,n − ln N

η
− η Qk,n .

Proof. For any k = 1, . . . , N , note that xk,t ≥ −M and η ≤ 1/(2M) imply
ηxk,t ≥ −1/2. Hence, we can apply Lemma 1 to ηxk,t and get

ln
Wn+1

W1
= − ln N + ln

n∏

t=1

(1 + ηxk,t) = − ln N +
n∑

t=1

ln(1 + ηxk,t)

≥ − ln N +
n∑

t=1

(
ηxk,t − η2x2

k,t

)
= − ln N + ηXk,n − η2Qk,n . (1)

On the other hand,

ln
Wn+1

W1
=

n∑

t=1

ln
Wt+1

Wt
=

n∑

t=1

ln

(
N∑

i=1

pi,t (1 + ηxi,t)

)

≤ ηX̂n (2)

where in the last step we used ln(1+ zt) ≤ zt for all zt = η
∑N

i=1 xi,tpi,t ≥ −1/2.
Combining (1) and (2), and dividing by η > 0, we get

X̂n ≥ − lnN

η
+ Xk,n − η Qk,n

which completes the proof of the lemma. ��

By choosing η appropriately, we can optimize the bound as follows.

Theorem 1. Assume there exists M > 0 such that the payoffs satisfy xi,t ≥ −M
for t = 1, . . . , n and i = 1, . . . , N . For any Q > 0, if prod(η) is run with

η = min
{

1/(2M),
√

(ln N)/Q
}
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then for any sequence of payoffs, for any action k, and for any n ≥ 1 such that
Qk,n ≤ Q,

X̂n ≥ Xk,n − max
{

2
√

Q ln N, 4M ln N
}

.

To achieve the bound stated in Theorem 1, the parameter η must be tuned using
preliminary knowledge of a lower bound on the payoffs and an upper bound on
the quantities Qk,n. The next two results remove these requirements one by one.
We start by introducing a new algorithm that, using a doubling trick over prod,
avoids any preliminary knowledge of a lower bound on the payoffs.

Let prod-M(Q) be the prediction algorithm that receives a number Q > 0
as input parameter and repeatedly runs prod(ηr), where ηr = 1/(2Mr) and Mr

is defined below. We call epoch r the sequence of time steps when prod-M is
running prod(ηr). At the beginning, r = 0 and prod-M(Q) runs prod(η0), where

M0 =
√

Q/(4 ln N) and η0 = 1/(2M0) =
√

(ln N)/Q .

The last step of epoch r ≥ 0 is the time step t = tr when maxi=1,...,N |xi,t| > Mr

happens for the first time. When a new epoch r + 1 begins, prod is restarted
with parameter ηr+1 = 1/(2Mr+1), where Mr+1 = maxi 2�log2 |xi,tr |�. Note that
M1 ≥ M0 and, for each r ≥ 1, Mr+1 ≥ 2Mr.

Theorem 2. For any sequence of payoffs, for any action k, and for any n ≥ 1
such that Qk,n ≤ Q, the cumulative reward of algorithm prod-M(Q) is lower
bounded as

X̂n ≥ Xk,n − 2
√

Q ln N − 4M (2 + 3 ln N)

where M = max1≤i≤N max1≤t≤n |xi,t|.

Proof. We denote by R the index of the last epoch and let tR = n. If we have
only one epoch, then the theorem follows from Theorem 1 applied with a lower
bound of −M0 on the payoffs. Therefore, for the rest of the proof we assume
R ≥ 1. Let

Xr
k =

∑tr−1
s=tr−1+1 xk,s, Qr

k =
∑tr−1

s=tr−1+1 x2
k,s, X̂r =

∑tr−1
s=tr−1+1 x̂s ,

where the sums are over all the time steps t in epoch r except the last one,
tr. (Here t−1 is conventionally set to 0.) Applying Lemma 1 to each epoch
r = 0, . . . , R we get that X̂n − Xk,n is equal to

R∑

r=0

(
X̂r − Xr

k

)
+

R−1∑

r=0

(x̂tr
− xk,tr

) ≥ −
R∑

r=0

ln N

ηr
−

R∑

r=0

ηrQ
r
k +

R−1∑

r=0

(x̂tr
− xk,tr

) .

We bound each sum separately. For the first sum note that

R∑

r=0

ln N

ηr
=

R∑

r=0

2Mrln N ≤ 6MR ln N
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since MR ≥ 2R−rMr for each r ≥ 1 and M0 ≤ MR. For the second sum, using
that the ηr decrease, we have

R∑

r=0

ηrQ
r
k ≤ η0

R∑

r=0

Qr
k ≤ η0Qk,n ≤

√
ln N

Q
Q =

√
Q ln N .

Finally,
R−1∑

r=0

|x̂tr
− xk,tr

| ≤
R∑

r=1

2Mr ≤ 4MR .

The resulting lower bound 2MR(2 + 3 ln N) +
√

Q ln N implies the one stated in
the theorem by noting that, when R ≥ 1, MR ≤ 2M . ��

We now show a regret bound for the case when M and the Qk,n are both
unknown. Let k∗

t be the index of the best action up to time t; that is, k∗
t ∈

argmaxk Xk,t (ties are broken by choosing the action k with minimal associated
Qk,t). We denote the associated quadratic penalty by

Q∗
t = Q∗

k∗
t

=
∑t

s=1 x2
k∗

t ,s .

Ideally, our final regret bound should depend on Q∗
n. However, note that the

sequence Q∗
1, Q

∗
2, . . . is not necessarily monotone, as Q∗

t and Q∗
t+1 cannot be

possibly related when the actions achieving the largest cumulative payoffs at
rounds t and t + 1 are different. Therefore, we cannot use a straightforward
doubling trick, as this only applies to monotone sequences. Our solution is to
express the bound in terms of the smallest nondecreasing sequence that upper
bounds the original sequence (Q∗

t )t≥1. This is a general trick to handle situations
where the penalty terms are not monotone. Allenberg and Neeman [2] faced a
similar situation, and we improve their results.

We define a new (parameterless) prediction algorithm prod-MQ in the follow-
ing way. The algorithm runs in epochs using prod-M(Q) as a subroutine. The
last step of epoch r is the time step t = tr when Q∗

t > 4r happens for the first
time. At the beginning of each new epoch r = 0, 1, . . ., algorithm prod-M(Q) is
restarted with parameter Q = 4r.

Theorem 3. For any sequence of payoffs and for any n ≥ 1, the cumulative
reward of algorithm prod-MQ satisfies

X̂n ≥ X∗
n − 8

√

(ln N)max
{

1, max
s≤n

Q∗
s

}
− 12M

(
2 + log4 max

s≤n
Q∗

s

)
(1 + lnN)

where M = max1≤i≤N max1≤t≤n |xi,t|.

Proof. We denote by R the index of the last epoch and let tR = n. Assume that
R ≥ 1 (otherwise the proof is concluded by Theorem 2). Similarly to the proof
of Theorem 2, for all epochs r and actions k introduce

Xr
k =

∑tr−1
s=tr−1+1 xk,s , Qr

k =
∑tr−1

s=tr−1+1 x2
k,s , X̂r =

∑tr−1
s=tr−1+1 x̂s
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where t−1 = 0. We also denote kr = k∗
tr−1 the index of the best overall expert

up to time tr −1 (one time step before the end of epoch r). We have that Qr
kr

≤
Qkr,tr−1 = Q∗

tr−1. Now, by definition of the algorithm, Q∗
tr−1 ≤ 4r. Theorem 2

(applied to time steps tr−1 + 1, . . . , tr − 1) shows that X̂r ≥ Xr
kr

− Φ (M, 4r),
where Φ(M,x) = 2

√
x ln N +4M(2+3 ln N). Summing over r = 0, . . . , R we get

X̂n =
R∑

r=0

X̂r + x̂kr,tr
≥

R∑

r=0

(
x̂kr,tr

+ Xr
kr

− Φ (M, 4r)
)

. (3)

Now, since k1 is the index of the expert with largest payoff up to time t1 − 1,
we have that Xk2,t2−1 = X1

k2
+ xk2,t1 + X2

k2
≤ X1

k1
+ X2

k2
+ M . By a simple

induction, we in fact get

XkR,tR−1 ≤
R−1∑

r=0

(
Xr

kr
+ M

)
+ XR

kR
. (4)

As, in addition, XkR,tR−1 and Xk∗
n,n may only differ by at most M , combining (3)

and (4) we have indeed proven that

X̂n ≥ Xk∗
n,n −

(

2(1 + R)M +
R∑

r=0

Φ (M, 4r)

)

.

The sum over r is now bounded as follows
R∑

r=0

Φ (M, 4r) ≤ 4M(1 + R) (2 + 3 ln N) + 2R+1
(
2
√

ln N
)

.

The proof is concluded by noting that, as R ≥ 1, sups≤n Q∗
s ≥ 4R−1 by definition

of the algorithm. ��

3 Second-Order Bounds for Weighted Majority

In this section we derive new regret bounds for the weighted majority forecaster
of Littlestone and Warmuth [11] using a time-varying learning rate. This allows
us to avoid the doubling trick of Section 2 and keep the assumption that no
knowledge on the payoff sequence is available to the forecaster beforehand.

Similarly to the results of Section 2, the main term in the new bounds depends
on second-order quantities associated to the sequence of payoffs. However, the
precise definition of these quantities makes the bounds of this section generally
not comparable to the bounds obtained in Section 2.

The weighted majority forecaster using the sequence η2, η3, . . . > 0 of learning
rates assigns at time t a probability distribution pt over the N experts defined
by p1 = (1/N, . . . , 1/N) and

pi,t =
eηtXi,t−1

∑N
j=1 eηtXj,t−1

for i = 1, . . . , N and t ≥ 2. (5)
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Note that the quantities ηt > 0 may depend on the past payoffs xi,s, i = 1, . . . , N
and s = 1, . . . , t − 1. The analysis of Auer, Cesa-Bianchi, and Gentile [4], for a
related variant of weighted majority, is at the core of the proof of the following
lemma (proof omitted from this extended abstract).

Lemma 3. Consider any nonincreasing sequence η2, η3, . . . of positive learning
rates and any sequence x1,x2, . . . ∈ R

N of payoff vectors. Define the nonnegative
function Φ by

Φ(pt, ηt, xt) = −
N∑

i=1

pi,txi,t +
1
ηt

ln
N∑

i=1

pi,te
ηtxi,t =

1
ηt

ln

(
N∑

i=1

pi,te
ηt(xi,t−x̂t)

)

Then the weighted majority forecaster (5) run with the sequence η2, η3, . . . satis-
fies, for any n ≥ 1 and for any η1 ≥ η2,

X̂n − X∗
n ≥ −

(
2

ηn+1
− 1

η1

)
ln N −

n∑

t=1

Φ(pt, ηt, xt) .

Let Zt be the random variable with range {x1,t, . . . , xN,t} and law pt. Note that
EZt is the expected payoff x̂t of the forecaster using distribution pt at time t.
Introduce

Var Zt = EZ2
t − E

2Zt =
N∑

i=1

pi,tx
2
i,t −

(
N∑

i=1

pi,txi,t

)2

.

Hence Var Zt is the variance of the payoffs at time t under the distribution pt

and the cumulative variance Vn = Var Z1 + . . . Var Zn is the main second-order
quantity used in this section. The next result bounds Φ(pt, ηt, xt) in terms of
Var Zt.

Lemma 4. For all payoff vectors xt = (x1,t, . . . , xN,t), all probability distribu-
tions pt = (p1,t, . . . , pN,t), and all learning rates ηt ≥ 0, we have

Φ(pt, ηt, xt) ≤ 2M

where M is such that |xi,t| ≤ M for all i. If, in addition, 0 ≤ ηt|xi,t| ≤ 1/2 for
all i = 1, . . . , N , then

Φ(pt, ηt, xt) ≤ (e − 2)ηt Var Zt .

Proof. The first inequality is straightforward. To prove the second one we use
ea ≤ 1 + a + (e− 2) a2 for |a| ≤ 1. Consequently, noting that ηt|xi,t − x̂t| ≤ 1 for
all i by assumption, we have that

Φ(pt, ηt, xt) =
1
ηt

ln

(
N∑

i=1

pi,te
ηt(xi,t−x̂t)

)

≤ 1
ηt

ln

(
N∑

i=1

pi,t

(
1 + ηt(xi,t − x̂t) + (e − 2)η2

t (xi,t − x̂t)2
)
)

.
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Using ln(1 + a) ≤ a for all a ≥ −1 and some simple algebra concludes the proof
of the second inequality. ��

In [3] a very similar result is proven, except that there the variance is further
bounded (up to a multiplicative factor) by the expectation x̂t of Zt.

We now introduce a time-varying learning rate based on Vn. For any sequence
of payoff vectors x1,x2, . . . and for all t = 1, 2, . . . let Mt = 2k, where k is the
smallest nonnegative integer such that maxs=1,...,t maxi=1,...,N |xi,s| ≤ 2k. Now
let the sequence η2, η3, . . . be defined as

ηt = min

{
1

2Mt−1
, C

√
ln N

Vt−1

}

for t ≥ 2, with C =

√
2

e − 2

(√
2 − 1

)
. (6)

Note that ηt depends on the forecaster’s past predictions. This is in the same
spirit as the self-confident learning rates considered in [4].

We are now ready to state and prove the main result of this section.

Theorem 4. Consider the weighted majority forecaster using the time-varying
learning rate (6). Then, for all sequences of payoffs and for all n ≥ 1,

X̂n − X∗
n ≥ −4

√
Vn ln N − 16 max{M, 1} ln N − 8 max{M, 1} − M2

where M = maxt=1,...,n maxi=1,...,N |xi,t|.

Proof. We start by applying Lemma 3 using the learning rate (6), and setting
η1 = η2 for the analysis,

X̂n − X∗
n ≥ −

(
2

ηn+1
− 1

η1

)
ln N −

n∑

t=1

Φ(pt, ηt, xt)

≥ −2max
{

2Mn ln N, (1/C)
√

Vn ln N
}
−

n∑

t=1

Φ(pt, ηt, xt)

= −2max
{

2Mn ln N, (1/C)
√

Vn ln N
}

−
∑

t∈T
Φ(pt, ηt, xt) −

∑

t�∈T
Φ(pt, ηt, xt)

where C is defined in (6), and T is the set of times rounds t ≥ 2 when ηt|xi,t| ≤
1/2 for all i = 1, . . . , N (note that 1 �∈ T by definition). Using the second bound
of Lemma 4 on t ∈ T and the first bound of Lemma 4 on t �∈ T , which in this
case reads Φ(pt, ηt, xt) ≤ 2Mt, we get

X̂n − X∗
n ≥ −2max

{
2Mn ln N, (1/C)

√
Vn lnN

}

− (e − 2)
∑

t∈T
ηt Var Zt −

∑

t�∈T
2Mt (7)
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(where 2M1 appears in the last sum). We first note that

∑

t�∈T
Mt ≤

�log2 max{M,1}�∑

r=0

2r ≤ 21+�log2 max{M,1}� ≤ 4 max{M, 1} .

We now denote by T the first time step t when Vt > M2. Using that ηt ≤ 1/2
for all t and VT ≤ 2M2, we get

∑

t∈T
ηt Var Zt ≤ M2 +

n∑

t=T+1

ηt Var Zt . (8)

We bound the sum using ηt ≤ C
√

(ln N)/Vt−1 for t ≥ 2 (note that, for t > T ,
Vt−1 ≥ VT > M2 > 0). This yields

n∑

t=T+1

ηt Var Zt ≤ C
√

ln N

n∑

t=T+1

Vt − Vt−1√
Vt−1

.

Let vt = Var Zt = Vt − Vt−1. Since Vt ≤ Vt−1 + M2 and Vt−1 ≥ M2, we have

vt√
Vt−1

=
√

Vt +
√

Vt−1√
Vt−1

(√
Vt −

√
Vt−1

)
≤ (

√
2 + 1)

(√
Vt −

√
Vt−1

)
. (9)

Therefore, using that
√

2 + 1 = 1/(
√

2 − 1),

n∑

t=T+1

ηt Var Zt ≤
C
√

ln N√
2 − 1

(√
Vn −

√
VT

)
≤ C√

2 − 1

√
Vn ln N .

When
√

Vn ≥ 2CMn

√
ln N , using Mn ≥ M we have that X̂n − X∗

n is at least

− 2
C

√
Vn ln N − C(e − 2)√

2 − 1

√
Vn ln N − 8 max{M, 1} − (e − 2)M2

≥ −4
√

Vn ln N − 8 max{M, 1} − M2

where we substituted the value of C and obtained a constant for the leading
term equal to 2

√
2(e − 2)/

√√
2 − 1 ≤ 3.75. When

√
Vn ≤ 2CMn

√
ln N , using

Mn ≤ max{1, 2M} we have that X̂n − X∗
n is at least

− 8M ln N − C24(e − 2)√
2 − 1

max{1/2, M} ln N − 8 max{M, 1} − (e − 2)M2

≥ −16 max{M, 1} ln N − 8 max{M, 1} − M2 .

This concludes the proof. ��
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4 Applications

To demonstrate the usefulness of the bounds proven in Theorems 3 and 4 we
show that they lead to several improvements or extensions of earlier results.

Improvements for Loss Games. Recall the definition of quadratic penalties Q∗
t in

Section 2. In case of a loss game (i.e., all payoffs are non-positive), Q∗
t ≤ ML∗

t ,
where L∗

t is the cumulative loss of the best action up to time t. Therefore,
maxs≤n Q∗

s ≤ ML∗
n and the bound of Theorem 3 is at least as good as the

family of bounds called “improvements for small losses” (see, e.g., [4]), whose
main term is of the form

√
ML∗

n ln N . However, it is easy to exhibit examples
where the new bound is far better by considering sequences of outcomes where
there are some “outliers” among the xi,t. These outliers may raise the maximum
M significantly, whereas they have only little impact on the maxs≤n Q∗

s.

Using Translations of Payoffs. Recall that Zt is the random variable which takes
the value xi,t with probability pi,t, for i = 1, . . . , N . The main term of the
bound stated in Theorem 4 contains Vn = VarZ1 + . . .+VarZn. Note that Vn is
smaller than all quantities of the form

∑n
t=1

∑N
i=1 pi,t (xi,t − µt)

2 where (µt)t≥1

is any sequence of real numbers which may be chosen in hindsight, as it is not
required for the definition of the forecaster. (The minimal value of the expression
is obtained for µt = x̂t.) This gives us a whole family of upper bounds, and we
may choose for the analysis the most convenient sequence of µt.

To provide a concrete example, denote the effective range of the payoffs
at time t by Rt = maxi=1,...,N xi,t − minj=1,...,N xj,t and consider the choice
µt = minj=1,...,N xj,t + Rt/2. The next result improves on a result of Allenberg
and Neeman [2], who show a regret bound, in terms of the cumulative effective
range, whose main term is 5.7

√
2(ln N)M

∑n
t=1 Rt, for a given bound M over

the payoffs.

Corollary 1. The regret of the weighted majority forecaster with variable learn-
ing rate (6) satisfies

X̂n − X∗
n ≥ −2

√√√√(ln N)
n∑

t=1

R2
t − 16 max{M, 1} ln N − 8 max{M, 1} − M2 .

The bound proposed by Corollary 1 shows that for an effective range of M , say
if the payoffs all fall in [0,M ], the regret is lower bounded by a quantity equal to
−2M

√
n ln N (a closer look at the proof of Theorem 4 shows that the constant

factor may be even equal to 1.9). The best leading constant for such bounds is,
to our knowledge,

√
2 (see [8]). This shows that the improved dependence in the

bound does not come at a significant increase in the magnitude of the leading
coefficient.

Improvements for One-sided Games. The main drawback of Vn, used in Theo-
rem 4, is that it is defined directly in terms of the forecaster’s distributions pt.
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We now show how this dependence could be removed. Assume |xi,t| ≤ M for
all t and i. The following corollary of Theorem 4 reveals that weighted majority
suffers a small regret in one-sided games whenever |X∗

n| or Mn − |X∗
n| is small

(where |xi,t| ≤ M for all t and i); that is, whenever |X∗
n| is very small or very

large. Improvements of the same flavour were obtained by Auer, Cesa-Bianchi,
and Gentile [4] for loss games; however, their result cannot be converted in a
straightforward manner to a corresponding useful result for gain games. Allen-
berg and Neeman [2] proved, in a gain game and for a related algorithm, a bound
of the order of 11.4

√
M min

{√
X∗

n,
√

Mn − X∗
n

}
. That algorithm was specifi-

cally designed to ensure a regret bound of this form, and is different from the
algorithm whose performance we discussed before the statement of Corollary 1.
Our weighted majority forecaster achieves a better bound, even though it was
not directly constructed to do so.

Corollary 2. Consider the weighted majority forecaster using the time-varying
learning rate (6). Then, for all sequences of payoffs in a one-sided game (i.e.,
payoffs are all non-positive or all nonnegative),

X̂n −X∗
n ≥ −4

√

|X∗
n|
(

M − |X∗
n|

n

)
ln N − 65 max {1 ,M}max {1 , ln N}− 5M2

where M = maxt=1,...,n maxi=1,...,N |xi,t|.

Proof. We give the proof for a gain game. Since the payoffs are in [0,M ], we can
write

Vn ≤
n∑

t=1

⎛

⎝M

N∑

i=1

pi,txi,t −
(

N∑

i=1

pi,txi,t

)2
⎞

⎠ =
n∑

t=1

(M − x̂t)x̂t

≤ n

⎛

⎝MX̂n

n
−
(

X̂n

n

)2
⎞

⎠ = X̂n

(

M − X̂n

n

)

where we used the concavity of x �→ Mx−x2. Assume that X̂n ≤ X∗
n (otherwise

the result is trivial). Then, Theorem 4 ensures that

X̂n − X∗
n ≥ −4

√√√
√X∗

n

(

M − X̂n

n

)

ln N − κ

where κ = 16 max{M, 1} ln N +8 max{M, 1}+M2. We solve for X̂n obtaining

X̂n − X∗
n ≥ −4

√

X∗
n

(
M − X∗

n

n
+

κ

n

)
ln N − κ − 16

X∗
n

n
ln N .

Using the crude upper bound X∗
n/n ≤ M and performing some simple algebra,

we get the desired result. ��
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Quite surprisingly, a bound of the same form as the one shown in Corollary 2 can
be derived as a Corollary of Theorem 3. The derivation uses a payoff translation
technique similar to the one we discussed in the previous paragraph. However,
unlike the approach presented there for the weighted majority based forecaster,
here the payoffs have to be explicitely translated by the forecaster. (And each
translation rule corresponds to a different forecaster.)

A simplified Algorithm for Bandit Loss Games. We close this section with a
result that is not a direct consequence of Theorems 3 or 4. Rather, we derive it
via an extension of Lemma 4, one of our key results at the core of the second-
order analysis in Section 3.

Recall that payoffs xi,t in loss game are all non-positive. We use �i,t = −xi,t

to denote the loss of action i at time t. Similarly, �̂t = �1,tp1,t + . . . + �N,tpN,t is
the loss of the forecaster using pt as probability assignment at time t. We make
the simplifying assumption �i,t ∈ [0, 1] for all i, t.

The bandit loss game (see [3] and references therein) is a loss game with the
only difference that, at each time step t, the forecaster has no access to the loss
vector �t = (�1,t, . . . , �N,t). Therefore, the loss �̂t cannot be computed and the
individual losses �i,t can not be used to adjust the probability assignment pt.
The only information the forecaster receives at the end of each round t is the
loss �It,t, where It takes value i with probability pi,t for i = 1, . . . , N .

In bandit problems and, more generally, in all incomplete information prob-
lems like label-efficient prediction or prediction with partial monitoring, a cru-
cial point is to estimate the unobserved losses. In bandit algorithms based on
weighted majority, this is usually done by shifting the probability distribution
pt so that all components are larger than a given threshold. Allenberg and
Auer [1] apply the shifting technique to weighted majority obtaining, in ban-
dit loss games, a regret bound of order

√
NL∗

n ln N +N ln(nN) ln n where L∗
n is

the cumulative loss of the best action after n rounds (note that using the results
of [3], derived for gain games, one would only obtain

√
Nn ln(nN)). We show

that without any shifting, a slight modification of weighted majority achieves a
regret of order N

√
L∗

n ln n + N ln n. The new bound becomes better than the
one by Allenberg and Auer when L∗

n is so small that L∗
n = o((ln n)3).

The bandit algorithm, which we call Exp3Light, performs the weight update
wi,t+1 = wi,t e−η�̃i,t . The pseudo-losses �̃i,t are defined by �̃i,t = (�i,t/pi,t)Zi,t for
i = 1, . . . , N . The Bernoulli random variable Zi,t takes value 1 if the forecaster
has drawn action i at time t; i.e., It = i.

We start with a variant of Lemma 4 for loss games (proof omitted from this
extended abstract).

Lemma 5. For all η > 0, all losses �i,t ≥ 0, and all sets St ⊆ {1, . . . , N},

Φ(pt, η, −�t) ≤
η

2

∑

i∈St

pi,t �2i,t +
∑

i∈St

pi,t �i,t .

Lemma 5 is applied as follows (the proofs of Proposition 1 and Theorem 5 are
omitted from this extended abstract).
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Proposition 1. Assume the forecaster Exp3Light plays a bandit loss game,
with losses bounded between 0 and 1. For all η > 0, the cumulative pseudo-loss
of Exp3Light satisfies

L̃n ≤ (ln N) + N(ln n)
η

+
η

2
NL̃∗ + ∆n

where L̃n =
n∑

t=1

N∑

i=1

pi,t�̃i,t , L̃k,n =
n∑

t=1

�̃k,t , L̃∗ = min
k=1,...,N

L̃k,n ,

and ∆n is a random variable with expectation less than 2N .

Theorem 5. Consider the forecaster that runs algorithm Exp3Light in epochs
as follows. In each epoch r = 0, 1 . . . the algorithm uses

ηr =

√
2 ((ln N) + N ln n)

N4r

and epoch r stops whenever the pseudo-loss L̃∗ in this epoch is larger than 4r.
For any bandit loss game with �i,t ∈ [0, 1] for all i and t, the expected cumulative
loss of this forecaster satisfies

E

[
n∑

t=1

�It,t

]

− L∗
n ≤ 2

√
2 ((lnN) + N ln n) N (1 + 3L∗

n)

+(2N + 1) (1 + log4(3n + 1)) .

5 Discussion and Open Problems

Though the results of Sections 2 and 3 cannot be easily compared, the two un-
derlying algorithms apply to loss games, gain games, as well as to signed games.
In addition, note that the bounds proposed by Theorem 3 and by Theorem 4
(or, more precisely, the variant of this bound using payoffs translated by x̂t)
are both stable under many transformations, such as translations or changes of
signs. Consequently, and most importantly, they are invariant under the change
�i,t = M − xi,t, that converts bounded nonnegative payoffs into bounded losses,
and vice versa. However, the occurrence of terms like max{M, 1} and M2 makes
these bounds not stable under rescaling of the payoffs. This means that if the
payoffs are all multiplied by a positive number α (which may be more or less
than 1), then the bounds on the regret are not necessarily multiplied by the
same quantity α.

Modifying the proof of Theorem 4 we also obtained a regret bound equal to
−4

√
Vn lnN − 16M ln N − 8M − 2M log M2/V1. This bound is indeed stable

under rescalings and improves on Theorem 4 for instance when M much smaller
than 1, or even when M is large and V1 is not too small. We hope that the
unconvenient factor 1/V1 could be removed soon.
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A practical advantage of the weighted majority forecaster is that its update
rule is completely incremental and never needs to reset the weights. This in
contrast to the forecaster prod-MQ of Theorem 3 that uses a nested doubling
trick. On the other hand, the bound proposed in Theorem 4 is not in closed
form, as it still explicitely depends through Vn on the forecaster’s rewards x̂t.
Several issues are left open. The following list mentions some of them.

– Design and analyze incremental updates for the forecaster prod(η) of Sec-
tion 2.

– Obtain second order bounds with updates that are not multiplicative; for
instance, updates based on the polynomial potentials (see [8]).

– Extend the analysis of prod-MQ to obtain an oracle inequality of the form

X̂n ≥ max
k=1,...,N

(
Xk,n − γ1

√
Qk,n ln N

)
− γ2M ln N

where γ1 and γ2 are absolute constants. Inequalities of this form can be
viewed as game-theoretic versions of the model selection bounds in statistical
learning theory.
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