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Abstract. In a combinatorial auction k different items are sold to n
bidders, where the objective of the seller is to maximize the revenue. The
main difficulty to find an optimal allocation is due to the fact that the
valuation function of each bidder for bundles of items is not necessarily
an additive function over the items. An auction with budget constraints is
a common special case where bidders generally have additive valuations,
yet they have a limit on their maximal valuation. Auctions with budget
constraints were analyzed by Lehmann, Lehmann and Nisan [11], as part
of a wider class of auctions, where they have shown that maximizing the
revenue is NP-hard, and presented a greedy 2-approximation algorithm.
In this paper we present exact and approximate algorithms for auctions
with budget constraints. We present a randomized algorithm with an
approximation ratio of e

e−1
≈ 1.582, which can be derandomized. We

analyze the special case where all bidders have the same budget con-
straint, and show an algorithm whose approximation ratio is between
1.3837 and 1.3951. We also present an FPTAS for the case of a constant
number of bidders.

1 Introduction

Auctions are a popular mechanism for selling and purchasing goods when
traditional market mechanisms based on supply and demand are not sat-
isfying, or are not implementable. In a combinatorial auction, a number
of items is sold to a group of bidders whose valuation function may not
be additive, meaning that a valuation of a bundle of items may express
relations between subsets of items.
Mechanisms dealing with combinatorial auctions face several challenges.
For instance, if there are k items then each bidder has to submit 2k bids to
fully express her valuation function. This exponential growth would make
such an approach infeasible in practice. An alternative typical approach
is to assume that bidders have simple preferences that can be expressed
compactly.
Another important issue is computational, namely, deciding on the al-
location of the items to the bidders. The allocation should maximize an
objective function of the auctioneer, which is usually either the auction-
eer’s revenue or the economic efficiency. Finding an optimal allocation
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is computationally hard in general, although it is tractable in certain
cases [14, 15, 17]. There are various methods to tackle this difficulty, such
as finding an approximate allocation rather than the optimal one [11, 6]
or developing mechanisms which work well in practice, though do not
necessarily have a formal guarantee [6, 10, 14, 16].
Lehmann, Lehmann and Nisan [11] have concentrated on combinatorial
auctions where bidders’ valuations are known to be subadditive. A very
natural subclass of subadditive valuations is decreasing marginal utilities
(also known as submodular valuations), where the valuation a bidder
gives to an item monotonically decreases as the set of items he already
purchased grows. Formally, if V (·) denotes the valuation function of a
bidder, then for any two bundles S and T such that S ⊆ T and for any
item x such that x /∈ T , we have V (S ∪ {x}) − V (S) ≥ V (T ∪ {x}) −
V (T ). Lehmann et al. [11] presented a greedy algorithm for auctions with
decreasing marginal utilities, and proved that it is a 2-approximation.
In this paper we concentrate on auctions with budget constraints, which
are a special case of auctions with decreasing marginal utilities. In such
auctions bidder i has a budget limit of di, and the valuations are additive
as long as the limit is not met. Once the limit is reached, the valuation
equals the budget limit. Namely, the valuation of bidder i for a bundle A
is given by min(di,

∑
j∈A

bij), where bij is the bid of bidder i for item j.
Art dealers and collectors, for example, are likely to have valuations with
budget constraints, since they valuate each item separately, but have a
limit on their total expenses.
Bidding in auctions with budget constraints is a rather concise process,
since each bidder has to submit only k bids, where k is the number of
auctioned items, and also submit the budget limit. Each bidder is charged
according to the valuation of the items allocated to her. Our goal is to
maximize the revenue of the auctioneer.
We prove that finding an optimal allocation that maximizes the revenue
is NP-hard even if there are only two bidders with identical valuations.
We show that an exact solution can be found in time O(min(n4k, k24k +
nk)), where k denotes the number of items and n denotes the number
of bidders. If the number of bidders is constant, there is also a pseudo-
polynomial algorithm.
Our main results are polynomial time approximation algorithms. We
present a randomized algorithm which is a e

e−1
≈ 1.582 approximation,

and also derandomize it. We then exhibit improved approximation ratios
when all bidders have the same budget constraint (but possibly different
valuations), and prove that the approximation ratio is between 1.3837
and 1.3951. We also present a FPTAS for the case of a constant number
of bidders. (We remark that the greedy allocation algorithm of [11] for
auctions with budget constraints, even if there are only two bidders, has
approximation ratio 2.)
An issue that we have not covered in this paper is the effect of the pricing
scheme on the bidding strategies of the bidders. Bidders may lie about
their valuations if it suits their personal interest, and therefore there is
an incentive to search for a pricing mechanism that will induce truthful-
ness, i.e. reporting the true valuation is a dominant strategy. Designing
truthful mechanisms that use approximate allocations is a challenging



task, and was successfully accomplished under certain assumptions on
the bidders’ valuations and the auctioned items [1, 2, 4, 5, 7, 13]. In con-
trast, we concentrate only on maximizing the auctioneer’s revenue given
the bids of the bidders. This approach is reasonable if the bidders are in-
different to the allocation mechanism, as long as the pricing is according
to their revealed bids.
The rest of this paper is organized as follows: Section 2 formally defines
the auction with budget constraints problem, Section 3 presents algo-
rithms for exact solutions and hardness results, and Section 4 presents
algorithms for approximate solutions.

2 Model and Notations

An auction with budget constraints consists of n bidders and k items.
Let bij denote the bid of bidder i for item j, which is the maximal price
that the bidder is willing to pay for this item, assuming that the budget
constraint is not met. Let di denote the budget constraint of bidder i.
Let zij ∈ {0, 1} denote the allocation of the items, where zij = 1 if
bidder i receives item j and zij = 0 otherwise. Given an allocation, the

price that each bidder is willing to pay is pi = min{di,
∑k

j=1
zijbij}. The

objective of allocation with budget constraints is maximizing the total
payment of all bidders.
This allocation problem can be presented formally as the following Inte-
ger Programming (IP) problem:

max
∑n

i=1
pi s.t. /∗maximizing revenue ∗/

pi ≤
∑k

j=1
zijbij 1 ≤ i ≤ n /∗additive valuations ∗/

pi ≤ di 1 ≤ i ≤ n /∗budget constraints ∗/∑n

i=1
zij ≤ 1 1 ≤ j ≤ k /∗one copy of each item∗/

zij ∈ {0, 1} 1 ≤ j ≤ k, 1 ≤ i ≤ n/∗integral allocation ∗/

(1)

Without loss of generality, we assume that the budget constraint is con-
sistent with the bids, i.e. di ≥ bij , ∀i, j, 1 ≤ i ≤ n, 1 ≤ j ≤ k, and that

the budget constraint is effective, i.e. di ≤
∑k

j=1
bij , ∀i, 1 ≤ i ≤ n. We

also assume that all bids and budget constraints are non negative.

3 Exact Solutions

Lehmann, Lehmann and Nisan [11] have analyzed auctions where the
bidders have submodular valuations, meaning that the marginal utility
that each bidder gains for any item decreases as the set of items already
allocated to this bidder increases. They prove that finding an optimal
allocation is NP-hard even if there are only two bidders with additive
valuations up to budget constraints. The following theorem (the proof is
based on a reduction from PARTITION [9]), strengthens this result.

Theorem 1. Finding the optimal allocation for an auction with budget
constraints is NP-hard even for two bidders with identical bids and budget
constraints.



Using dynamic programming [3], an exact solution can be found in a
time complexity that is exponential in the number of items. In the i-th
stage of the dynamic programming, optimal allocations of any subset of
the k items are computed over the first i bidders, by using the optimal
allocations from the previous stage. This process yields the following:

Theorem 2. An exact optimal allocation for an auction with budget
constraints can be found in time complexity of O(n4k)

For n >> k, since in an optimal allocation each item is sold only to
one of the k highest bidders, the time complexity can be reduced to
O(k24k +nk). When the number of bidders is a constant, then a pseudo-
polynomial algorithm based on dynamic programming exists. The details
are omitted due to space constraints.

4 Approximate Solutions

In this section we present our main results, which include approximation
algorithms for the case that the number of bidders is constant and for
the general case. We also present improved bounds when all bidders have
the same budget constraint, yet possibly different valuations.

4.1 Constant Number of Bidders

If the number of bidders is constant then there exists a fully polynomial
time approximation scheme (FPTAS), meaning that the approximate
allocation is at least 1 − ε (for any ε > 0) times the optimal allocation,
and the running time is polynomial in the number of items k and in
1
ε
. (The algorithm is an adaptation of the FPTAS for the scheduling

problem with unrelated machines of Horowitz and Sahni [8].)
The algorithm uses sets of tuples (v1, a1, v2, a2, . . . , vn, an, t) to construct
the approximation. Each tuple represents an allocation of a subsets of
items to the users. Let vi be the benefit of bidder i from the items
allocated to her, and let ai be a bit-vector indicating which items were
allocated to this bidder. Let t be the total benefit of the partial allocation.
The set Sj contains tuples representing allocations of the first j items.
Algorithm Dynamic Programming Allocation (DPA)
1. Let γ = max{di}.
2. Divide the segment [0, nγ] into nk

ε
equal intervals of length γε

k
each.

3. Initialize S0 = (0, 0, . . . , 0).
4. For each item j,

(a) Construct Sj from Sj−1, by replacing each tuple s with n tuples
s1, . . . , sn, where tuple si represents the same allocation as s,
with item j allocated to bidder i.

(b) For any tuple s = (v1, a1, . . . , vn, an, t), if there is a tuple s′ =
(v′1, a

′
1, . . . , v

′
n, a′n, t′) such that vi, and v′i are in the same interval

for every i, and t′ ≤ t, remove s′ from Sj .
5. Return the allocation represented by the tuple from Sk with the

largest total benefit.



Analyzing Algorithm DPA yields the following (proof omitted):

Theorem 3. Algorithm DPA is a FPTAS for the auction with budget
constraints problem with a constant number of bidders.

Since DPA requires space for representing O
((

k
ε

)n)
tuples, its space

complexity is polynomial in 1
ε
. We note that there exists an approxima-

tion algorithm with space complexity polynomial in log 1
ε
, which is the

space required for representing the value ε. The approximation, however,
is a PTAS, but not a FPTAS, i.e. the running time is not polynomial in 1

ε
.

The description of this algorithm is omitted due to space considerations.

4.2 General Number of Bidders

In this section we analyze an algorithm with a provable approximation
ratio of 1.582 for an arbitrary number of bidders.
In order to find an approximation to this allocation problem, we use the
following Linear Programming (LP), which solves a relaxed version of
the original Integer Programming (1):

max
∑n

i=1

∑k

j=1
xijbij s.t.∑k

j=1
xijbij ≤ di 1 ≤ i ≤ n∑n

i=1
xij ≤ 1 1 ≤ j ≤ k

xij ≥ 0 1 ≤ j ≤ k, 1 ≤ i ≤ n

(2)

The relaxation replaces the original Boolean variables zij by variables xij ,
indicating a fractional assignment of items. The equations are simplified
by removing the pi variables, which become redundant in the LP. As
is the case with any relaxation method, our main task is to round the
fractional assignments to an integral solution.

Algorithm Random Rounding (RR) is an approximation algorithm for
the auction with budget constraints problem with a variable number of
bidders.

Algorithm RR
1. Find an optimal fractional allocation using LP.
2. For each item j, assign it to bidder i with probability xij .

Obviously, Algorithm RR is randomized, outputs a feasible allocation,
and terminates in polynomial time complexity. The following theorem
proves the approximation ratio of the algorithm.

Theorem 4. The expected approximation ratio of Algorithm RR is at
most e

e−1
≈ 1.582.

Proof. Let Zi be a random variable indicating the revenue from bidder i
after the allocation. The expected total revenue is

∑
i
E(Zi). Therefore,

it is sufficient to prove that for any bidder, the expected ratio between
the benefit of the fractional allocation and the final integer allocation is
at most e

e−1
.



We analyze separately the expected revenue from each bidder i. Without
loss of generality, when considering bidder i we normalize the bids and the
budget constraint such that di = 1, in order to simplify the calculations.
Let Bi =

∑
j
xijbij indicate the revenue from bidder i generated by the

fractional assignment. We prove that E(Zi) ≥ e−1
e

Bi. Without loss of
generality, we assume that the indices of the items assigned (fully or
fractionally) to bidder i are 1, . . . , r.
Let Xij be a random variable, which indicates whether item j is allo-
cated to bidder i. The random variable Xij is 1 with probability xij

and 0 otherwise. The expected revenue from bidder i is therefore Zi =
min(1,

∑r

j=1
Xijbij).

Suppose we replace bi1 and xi1 with b̂i1 = 1 and x̂i1 = bi1xi1. The size
of the fractional item assigned by the Linear Programming is b̂i1x̂i1 =
bi1xi1, meaning that the benefit of bidder i in the fractional assignment
remains unchanged. We observe the effect of replacing Xi1 with the cor-
responding X̂i1 on Zi, when the remaining variables are kept constant.
We denote Zi1 = min(1,

∑r

j=2
Xijbij) and observe that Zi−Zi1 is a ran-

dom variable that denotes the marginal contribution of Xi1 to the total
revenue. We examine how replacing Xi1 with X̂i1 effects the possible
values of Zi − Zi1.
1. If 0 ≤ Zi1 ≤ 1− bi1: The marginal contribution of Xi1 is either 0 or

bi1, so the expected contribution is bi1xi1. The contribution of X̂i1

is either 0 or 1 − Zi1 ≤ 1, so the expected marginal contribution is
at most x̂i1 = bi1xi1

2. If 1 − bi1 < Zi1 ≤ 1: The marginal contribution of both variables
is either 0 or 1 − Zi1. The expected marginal contribution of Xi1

is (1 − Zi1)xi1. The expected marginal contribution of X̂i1 is (1 −
Zi1)xi1bi1 ≤ (1− Zi1)xi1.

In both cases, by replacing Xi1 with X̂i1 we can only decrease E(Zi),
without changing Bi. Similarly, for each 2 ≤ j ≤ r we replace bij with
b̂ij = 1, xij with x̂ij = bijxij and Xij with X̂ij . Since each replace-
ment does not increase E(Zi), we have E(Ẑi) = E(min(1,

∑r

j=1
X̂ij)) ≤

E(min(1,
∑r

j=1
Xij)).

Since for each j, X̂ij is either 0 or 1, then Ẑi is also either 0 or 1.
Therefore:

E(Ẑi) = P (Ẑi = 1) = 1− P (Ẑi = 0) = 1−
r∏

j=1

(1− x̂ij) (3)

The expectation is minimized when
∏r

j=1
(1− x̂ij) is maximized. Under

the constraint Bi =
∑r

j=1
bijxij =

∑r

j=1
x̂ij , the maximum is when all

x̂ij are equal to Bi/r. Therefore:

E(Ẑi) ≥ 1−
(
1− Bi

r

)r

≥ 1− e−Bi ≥ Bi(1− e−1) (4)

The last inequality follows since 1 − e−x ≥ x(1 − e−1) for x ∈ [0, 1].
Therefore, we have:

Bi

E(Zi)
≤ Bi

E(Ẑi)
≤ e

e− 1
≈ 1.582 (5)



Since the approximation holds for the expected revenue of each bidder
separately, it also holds for the expected total revenue. ut

The following theorem claims that in the worst case, RR has an approx-
imation ratio of e

e−1
.

Theorem 5. The expected approximation ratio of Algorithm RR is at
least e

e−1
≈ 1.582.

Proof. The lower bound of e
e−1

for the approximation ratio is achieved
in the following setting: n + 1 bidders, A0, A1, . . . , An, compete on 2n
items, I1, I2, . . . , I2n. Bidder A0 has a budget constraint d0 = n, bids
b1i = n for items I1, . . . In, and bids b1j = 0 for items In+1, . . . I2n. The
other bidders all have a budget constraint of di = n−1. For 1 ≤ i ≤ n,
bidder Ai bids bij = n−1 for item Ii, bij = n−2 for item In+i, and bij = 0
for the other items.
The Linear Programming finds a unique fractional assignment which
satisfies all budget constraints: for each 1 ≤ i ≤ n, bidder Ai receives
item In+i (fully) and a n−1

n
fraction of item Ii. The remaining fraction

of 1
n

of item Ii is given to bidder A0. The revenue from the fractional
assignment is n + 1.

Algorithm RR achieves an expected revenue of n(1− (1− 1
n
)n)+ n2−n+1

n2

which is approximately n(1− e−1) + 1 for sufficiently large n. ut

From Theorems 4 and 5 we have the following corollary.

Corollary 1. the approximation ratio of Algorithm RR is exactly e
e−1

.

4.3 Derandomized Rounding

A natural derandomization of Algorithm RR which maintains the e
e−1

approximation ratio would be to sequentially assign each item such that
the expected revenue maintains above the expectation. Although calcu-
lating exactly the expected revenue may be computationally hard, this
difficulty can be resolved by replacing the exact expected revenue with
lower bounds, which are derived by techniques similar to those used in
the proof of Theorem 4.
This section discusses alternative deterministic algorithms for rounding
the fractional assignments. Among all possibilities to round the fractions
in a solution to a LP instance, we refer to the rounding with the high-
est total revenue as an optimal rounding. Obviously, an algorithm that
returns an optimal rounding has an approximation ratio of at most any
other rounding algorithm, including RR.
A convenient method to observe the output of the LP is by constructing
a bipartite graph G = (N, K, E), where the nodes N and K correspond
to the bidders and items, respectively, and the edges E indicate that a
bidder was assigned an item (or a fraction of an item).
The original allocation problem can be divided into several subproblems,
where each subproblem consists only bidders and items from the same
component in G. Solving the Linear Programming separately for each



subset of bidders and items should return the same allocation. Therefore,
we may concentrate on each component of G separately.
The LP includes nk + n + k constraints using nk variables. In the solu-
tion of the LP, at least nk of the constraints are satisfied with equality,
meaning that at most n + k of the xij variables are non-zero. Each non
zero variable xij matches one edge in G, and therefore G contains at
most n+k edges. On the other hand, since G is connected and has n+k
nodes, it must have at least n+k−1 edges. Therefore, G is either a tree,
or has exactly one cycle.
The following lemma claims that if G has a cycle, then the optimal
solution to the LP can be modified, such that one edge will be deleted
from G, and therefore G will be a tree while maintaining the optimality
of the solution (proof omitted).

Lemma 1. There is a node in the polyhedron of the LP which maximizes
the objective function and induces a graph without cycles, and can be
found in polynomial running time.

By applying Lemma 1, the fixed graph is a tree. Therefore, out of at most
n + k constraints in the LP that are not satisfied with equality, exactly
n+k−1 of them are of type xij ≥ 0. This means that at most one of the
non-trivial constraints is not strict: Either there is at most one item which
is not fully distributed, yet all bidders reach their budget constraint, or
there is at most one bidder that doesn’t reach its budget constraint, yet
all items are fully distributed. We have the following observation:

Observation 1 For each component in G, at most one bidder has not
met its budget constraint.

Algorithm Semi Optimal Rounding (SOR), returns an allocation that
has a total revenue of at least 1− ε times the optimal rounding, for any
ε > 0. The algorithm applies a recursive ‘divide and conquer’ process on
the tree graph representing the fractional allocations to choose a nearly
optimal rounding.

Algorithm SOR(G, ε)
1. Find an optimal fractional solution using LP.
2. Construct a bipartite graph G representing the LP allocation.
3. For each component Gi in G:

(a) If Gi contains a cycle, convert Gi to a tree by modifying the LP
solution.

(b) Apply ROUND(Gi, ε)

We use the following notation in process ROUND: for a tree T and a
node v, let Tv,i denote the i-th subtree rooted at v. Let T+

v,i denote the
tree containing the subtree Tv,i, the node v and the edge connecting v
to Tv,i. When node v denotes a bidder, let ui denote the i-th item node
shared by v and bidders in Tv,i. Let T−v,i denote the same tree as Tv,i,

with item ui replaced with a dummy item u−i , which has zero valuations



from all bidders.

Process ROUND(T , ε)

1. If T Includes only one bidder, allocate all the items to this bidder.
If there are no bidders in T , return a null assignment.

2. Otherwise, find vertex v ∈ T , which is a center of T .
3. If v represents an item, for each subtree Tv,i recursively compute

ROUND(Tv,i, ε) and ROUND(T+
v,i, ε). Allocate v to a bidder such

that the total revenue is maximized (explanation follows).
4. If v represents a bidder, for each subtree Tv,i recursively compute

ROUND(Tv,i,
ε
2
) and ROUND(T−v,i,

ε
2
). Find a combination of the

partial allocations, whose revenue is at least 1− ε
2

times an optimal
combination (explanation follows).

When the central node v represents an item, combining the partial allo-
cations of the subtrees is a simple process, since only one subtree may
receive item v. Formally, we enumerate on v’s neighbors to calculate

maxj

(
ROUND(T+

v,j , ε) +
∑

i6=j
ROUND(Tv,i, ε)

)
.

However, if v represents a bidder, the number of combinations is expo-
nential in the degree of v, and this is why an approximation is preferred
over an exact solution. The approximation process is as follows:
Let r be the degree of node v. Let bvi be the bid of bidder v for the item
shared with bidders in the i-th subtree. Let Ci = ROUND(Tv,i,

ε
2
) be the

approximated revenue of rounding the i-th subtree when v does not get
the i-th item it shares. Let ci = ROUND(T−v,i,

ε
2
) be the approximated

revenue of rounding the i-th subtree when v gets the i-th item (while
the bidders in T−v,i share a dummy item with no value). We construct
the following allocation problem with 2 bidders: The items are a subset
of the original items, reduced to those allocated (partially or fully) to v,
denoted as I1, I2, . . . , Ir plus r special items I ′1, I

′
2, . . . , I

′
r. Bidder 1 has

the same budget constraint as the bidder represented by v, and the same
bids on I1, . . . Ir. Bidder 1 bids 0 on the special items I ′1, . . . , I

′
r. Bidder

2 has an unbounded budget constraint, and bids ci for each special item
I ′i, and max{0, Ci − ci} for the original items Ii.
The new allocation problem is a reduction of the original rounding prob-
lem. Any rounding possibility matches an allocation with the same ben-
efit. Therefore, if we approximate the reduced allocation solution, we get
an approximation to the original rounding problem. Since there are only
two bidders in the reduced problem, we use Algorithm DPA, of Theorem
3, to approximate an optimal allocation.
The following holds for SOR (proof omitted):

Theorem 6. Algorithm SOR has an approximation ratio of at most
e

e−1
+ ε and a polynomial running time for any ε > 0.

By applying both SOR and the sequential rounding discussed at the
beginning of this section we can get rid of the additional factor of ε and
guarantee an approximation ratio of e

e−1
. This bound is not tight, as

the lower bound of 4
3

for rounding algorithms (presented in Section 4.5)
holds also for this algorithm.



4.4 Bidders with Identical Budget Constraints

In this section we show improved approximation bounds for RR in the
case where all bidders have the same budget constraint. The approxima-
tion ratio of e

e−1
is due to a bound of 1 − (1− 1/r)r on the expected

valuation of each bidder, where r is the number of items owned or shared
by a bidder. Actually, by considering items fully assigned to the same
bidder as one large item, we achieve a tighter bound of 1− (1− 1

a+1
)
a+1

,
where a is the number of partial assignments of items to a bidder. When
a goes to infinity, the bound goes to e−1

e
, however not all bidders will

have infinitely many fractional items. If all bidders have identical budget
constraints, we can use this property to derive a tighter analysis for RR.
Assuming the bipartite graph G, constructed from the solution to LP
has only one component, let G′ be the subgraph of G where nodes cor-
responding to items that are allocated only to one bidder are removed.
Therefore, G′ represents only the items shared among several bidders.
Let Ni denote the node in G′ corresponding to bidder i and let Kj denote
the node in G′ corresponding to item j. We define the following sets:

Definition 1. Let Ra be the bidders corresponding to the set of nodes in
G′ such that {Ni|Deg(Ni) = a}, and let Sa be the items corresponding
to the set of nodes in G′ such that {Kj |Deg(Kj) = a}.

The sets Ra and Sa have the following property, which is based on the
fact that G′ is a tree:

Lemma 2. |R1| = 2 +
∑

a≥3
(a− 2)|Ra|+

∑
a≥3

(a− 2)|Sa|
According to Lemma 2, the number of bidders who have only one fraction
of an item is fairly large: There are two of these bidders to begin with.
Each bidder that has more than two fractions of items enforces another
bidder in R1 for each extra fraction. Also, Each item shared between
three or more bidders adds another bidder to R1 for each share over the
second. We can use this property to prove the following:

Theorem 7. When all bidders have the same budget constraint, the ap-
proximation ratio of algorithm RR is at most 27

19
≈ 1.421.

Proof. Without loss of generality assume that the identical budget con-
straint is 1, and that G′ is a tree. For each bidder from Ra (a > 2) we
match a − 2 bidders from R1. By Lemma 2 this is possible, leaving at
least 2 bidders from R1 unmatched.
We first assume all bidders reach their budget constraint. Bidders from
R2 are unmatched, and have an expected valuation of at least 1 −
(1− 1/3)3 = 19

27
each. Bidders from set Ra have an expected valuation of

at least 1−(1− 1/(a + 1))(a+1), which is less than 19
27

for a ≥ 3, but they
are matched with a−2 bidders from R1 who have an expected valuation
of at least 1−(1− 1/2)2 = 3/4, each. On average, the expected valuation
is larger than 19

27
, for any a ≥ 3.

If not all bidders reach their budget constraint, by Observation 1 only
one bidder u has not met the constraint. If u belongs to Ra, then the
expected valuation of u is still at least 1− (1− 1/(a + 1))(a+1) times the



valuation achieved by the fractional assignment. If bidder u participates
in a match, the ratio between the total expected valuation of the bidders
in the match and the fractional valuation will remain above 19

27
as long

as u does not belong to R1. If u ∈ R1 it is possible to replace u with
an unmatched bidder from R1, since by Lemma 2 at least 2 bidders that
are in R1 are unmatched.
For each group of matched bidders, the ratio between the total expected
valuation to the fractional valuation is at least 19

27
. Unmatched bidders

remain only in R1 or R2 and therefore also have an expected valuation of
at least 19

27
times the fractional valuation. Therefore, the approximation

ratio is at most 27
19
≈ 1.421. ut

Theorem 7 implies that bidders from R2 are the bottleneck of the anal-
ysis, as they are not matched with bidders from R1. If this bottleneck
can be resolved, the approximation ratio could drop to 1.3951, which is
induced by bidders from R3, who are matched with bidders from R1,
therefore their average expectation is 1

2
( 3
4

+ 175
256

) ≈ 0.7168 = (1.3951)−1.
By using the sets Sa the following theorem claims that this improvement
is indeed achievable.

Theorem 8. When all bidders have the same budget constraint, the ap-
proximation ratio of algorithm RR is at most 1.3951.

The following lower bound nearly matches the upper bound:

Theorem 9. The approximation ratio of Algorithm RR with identical
budget constraints is at least 1.3837

4.5 Fractional Versus Integral Allocations

In this section we derive a general lower bound for algorithms that are
based on solving the LP and rounding the fractional assignments. The
following theorem proves a lower bound for any algorithm that uses the
relaxed LP.

Theorem 10. LP has an integrality ratio of at least 4
3
. Also, the optimal

solution of the IP can be 4
3

times any solution that is based on rounding
nonzero fractional allocations of the LP.

Proof. The integrality ratio if 4
3

is achieved in the following case: Observe
the following auction with 2 bidders, A and B, and 3 items x, y and z.
Bidder A bids 1 for x, 0 for y and 2 for z and has a budget constraint of 2.
Bidder B bids 0 for x, 1 for y and 2 for z and has a budget constraint of
2. Optimally, A get x, B gets y and either bidder gets z, and the revenue
is 3. However, the LP produces an optimal fractional assignment, which
divides z between both bidders, and achieves a revenue of 4.
The ratio of 4

3
between the optimal integral solution and any other so-

lution that is based on rounding the LP solution is achieved in a similar
auction, but now both A and B bid 1 for x and y and bid 2 for z (the
budget constraints remain 2). Optimally, A gets both x and y while B
gets z, and the revenue is 4. However, the LP might produce a fractional
assignment, such as x for A, y for B, and z divided between both bidders.
The revenue is also 4, but any rounding technique will either grant z to
A or to B, either way the revenue is 3. ut
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