
Competitive On-Line Paging Strategies for Mobile Users
Under Delay Constraints

[Extended Abstract]

Amotz Bar-Noy
Computer&Information Science Department

Brooklyn College
2900 Bedford Ave., Brooklyn, NY 11210

amotz@sci.brooklyn.cuny.edu

Yishay Mansour
∗

School of Computer Science
Tel Aviv University

Tel Aviv 69978, Israel

mansour@cs.tau.ac.il

ABSTRACT
A mobile user is roaming in a zone of n cells in a cellular
network system. When a call for the mobile arrives, the
system pages the mobile in these cells since it never reports
its location unless it leaves the zone. A delay constraint
paging strategy must find the mobile after at most 1 ≤ D ≤
n paging rounds each pages a subset of the n cells. The goal
is to minimize the number of paged cells until the mobile is
found. Optimal solutions are known for the off-line case, for
which an a priori probability of a mobile residing in any one
of the cells is known. In this paper we address the on-line
case. An on-line paging strategy makes its decisions based
only on past locations of the mobile while trying to learn its
future locations.

We present deterministic and randomized on-line algo-
rithms for various values of D (number of paging rounds)
as a function of n (number of cells) and evaluate them using
competitive analysis. In particular, we present a constant
competitive on-line algorithm for the two extreme cases of
D = 2 and D = n. The former is the first nontrivial delay
constraint case and the latter is the case for which there
are no delay constraints. We then show that the constant
competitiveness can be attained already for D ≥ log2 n. All
of the above algorithms are deterministic. Our randomized
on-line algorithm achieves a near optimal performance for
all values of D. This algorithm is based on solutions to the
best expert problem.

Categories and Subject Descriptors
F.2.2 [ANALYSIS OF ALGORITHMS AND PROB-

LEM COMPLEXITY]: Nonnumerical Algorithms and Prob-
lems—Computations on discrete structures

∗This research was supported in part by a grant from the
Israel Science Foundation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’04, July 25–28, 2004, St. Johns, Newfoundland, Canada.
Copyright 2004 ACM 1-58113-802-4/04/0007 ...$5.00.

General Terms
Algorithms

Keywords
Best Experts, Competitive Analysis, Location Management,
Mobile Computing

1. INTRODUCTION
In the last decade, we have witnessed two revolutions:

availability of information and availability of people. The
Internet makes it possible to access information indepen-
dent of the physical distance. Cellular phone systems make
it possible to talk with people even if they are not residing
in predetermined locations (as is the case with conventional
phone systems). Both the Internet and cellular phone sys-
tems require new methods for searching specific information
or specific people. For the Internet we see many search en-
gines that improve by far the accessibility of the informa-
tion. However, we do not see many sophisticated methods
for cellular phone systems.

We consider cellular systems with many cells and mobile
users (mobiles) that are roaming among the cells ([15, 19]).
If a mobile reports its new location whenever it enters a new
cell, then the system would know its exact location at any
time and therefore finding (paging) this mobile becomes a
trivial task. However, future cellular networks are expected
to have more cells (micro-cells). As a result, a mobile might
cross boundaries of cells very frequently, making it infeasible
to report its new location each time it enters a new cell. This
is mostly due to the scarcity of up-link wireless communica-
tion and the short life of hand-held device batteries. Indeed,
many existing location management schemes (reporting and
paging strategies) allow mobiles to report less often. For ex-
ample, a common location management scheme partitions
the cells into zones each with a few dozens of cells and a
mobile reports its new location only when it crosses bound-
aries between zones (e.g., [13, 12]). When a call to a mobile
is coming, the system need to locate the cell where the mo-
bile currently resides by paging many cells (sometimes all
the cells in a particular zone). Although the choice of a lo-
cation management scheme to minimize the overall use of
wireless bandwidth depends on many parameters, the com-
mon feature of such schemes is that the system must page
a set of cells when a mobile needs to be found.

Suppose that a particular mobile is roaming in a zone of n
cells and that it is possible to page any subset of these cells
in a unit of time and find out if this mobile is located in one
of the cells paged. The trivial solution would page all the
n cells at once and clearly use the highest possible amount
of wireless bandwidth but would require the lowest possi-
ble time. The papers [16, 21, 24] describe how to tradeoff
bandwidth for time assuming an a priori knowledge of the
likelihood of finding a mobile in any one of the cells. The
authors design an efficient paging strategy that uses at most
D units of time (D rounds of paging), 1 ≤ D ≤ n, and min-
imizes the expected number of cells paged until the mobile
is located. Given the parameters n and D, a paging strat-
egy can be viewed as a schedule that partitions the n cells
into D disjoint sets. Naturally, we would like to minimize
both the number of paging rounds and the overall number
of cells paged until the mobile is found. These are our two
main criteria in evaluating the efficiency of a specific paging
strategy. The first corresponds to the delay incurred until
the mobile is found which is important to the mobiles and
the second corresponds to the amount of wireless bandwidth
used which is crucial to the system.

Previous schedules where off-line in their nature. They
assumed an a priori knowledge of probabilities for the loca-
tions of the mobiles. This paper addresses the on-line case
in which such probabilities are not known in advance. We
further assume that the time elapsed between two successive
paging events is large enough to avoid dependencies between
the whereabouts of the mobile during these paging events.
This is a reasonable assumption for “quiet” mobiles (those
who do not use the system frequently) or for fast moving
mobiles. Moreover, these assumptions enable us to focus on
the paging strategy alone to better understand its nature
and difficulties.

We are looking for a “good” paging strategy for a sequence
of T paging events. We distinguish between on-line algo-
rithms and off-line algorithms by restricting the on-line al-
gorithm to select for any paging event a schedule based only
on past locations of the mobiles. We consider static off-line
algorithms, that use the same schedule for all the paging
events. An optimal static off-line algorithm can be com-
puted given the frequencies of locations for a mobile based
on its locations in all the T paging events. Considering a
dynamic off-line algorithm, one that knows the future lo-
cations, is not interesting either theoretically or practically.
Theoretically, since it always has minimal cost because it
pages only one cell. Practically, because this would require a
huge encoding, growing linearly with T , which seems impos-
sible to implement. Therefore, our competitive ratio would
be the worst case ratio between the on-line cost and the op-
timal static off-line cost. Note that since we restrict ourself
to static off-line schedules, the on-line algorithm may out-
perform it, however, in the worst case the competitive ratio
would be at least 1.

Our work draws interesting connections with the best ex-
pert problem, which has been extensively studied in the com-
putational learning theory literature (see [20, 11, 4, 17]). In
this problem, there are several experts, and in each time
step each expert suggests an action. An on-line algorithm
needs to select an action based on one (or more) of the ex-
perts. After the on-line algorithm performs its action, it
observes the loss of all the experts. The objective is to min-
imize the total loss. A specific performance measure is to

compare the on-line algorithm total loss to that of the best
expert whose total loss is minimal among all experts. This
is done in an adversarial setting, where the adversary con-
trols the loss of each expert, and no assumptions, stochastic
or otherwise, are made regarding an expert’s future behav-
ior given its past performance. In our setting, we can view
any possible static off-line schedule as an expert (there are
exponentially many). Since the known bound depends only
logarithmically on the number of experts, the overall bound
is polynomial. The main difficulty in using directly the best
expert algorithms is computational, since we need to keep
track on an exponential number of experts.

Prior art and related work: Modelling uncertainty of
mobile locations as a probability distribution vector is stud-
ied in e.g., [23]. The paper discusses a framework for mea-
suring uncertainty. A similar technique for modelling uncer-
tainty of mobile locations through k-Markov model and al-
gorithms for finding mobiles is studied in [9]. Papers [16, 21,
24, 18] describe the optimal off-line solution for one paging
event for given n and D. Using dynamic programming, they
show how to find a D-round paging strategy that locates a
mobile with minimum expected number of cells paged. Us-
ing relaxation to a continuous model, paper [24, 18] studies
how to minimize the expected number of paged cells given
a bound on the expected number of rounds. Papers [1, 27,
28] present sub-optimal heuristics that are computationally
more efficient than the dynamic programming optimal algo-
rithm. The problem of off-line paging more than one user
for a conference call is studied in [6, 7, 14].

The combined cost of reporting and paging is studied by
many papers (see the survey [2]). The main issue in this line
of research is for mobiles to reduce the overall wireless cost
by reporting their new locations according to some rules.
The combined cost of backbone search, reporting, and pag-
ing is studied in a different model by [3, 5, 8, 22]. The effect
of queuing on paging delay when search requests arrive to
the system according to some random process and each re-
quest is to search for a single user is studied by [25, 16].

The paper [9] also deals with on-line performance but for
the combined cost of paging and reporting and with an anal-
ysis that depends on some mobility patterns. Moreover, the
solutions rely on the time elapsed between reporting and
paging events.

The best expert problem has been extensively studied
in the computational learning theory community and tight
bounds have been derived on its behavior [20, 11, 4]. In a
nutshell, one can reach almost the loss of the best expert,
assuming that it is allowed to output a linear combination of
the experts (or alternatively allowed to use randomization).
An extension of the best expert algorithm to a randomized
online algorithm appear in [17, 10].

Our Contribution: Our first contribution is the introduc-
tion of a model to evaluate on-line paging strategies. Our
main objective is to show that natural algorithms with a cor-
rect setting of parameters yield constant competitive perfor-
mance. We then develop both deterministic and randomized
on-line algorithms. The deterministic algorithms are ana-
lyzed in two stages. We first compare the on-line strategy
with a near-optimal off-line strategy and then compare the
near-optimal strategy with the optimal strategy. The final
competitive ratio is the product of the two ratios computed
in these two stages. The randomized algorithms are based
on solutions to the best experts problem.

We present the following deterministic algorithms. We
describe a 6-competitive greedy algorithm for D = 2. Un-
fortunately, we show that a natural generalization of this
algorithm to the D = 3 case fails. For D = n, we show a
2− ǫ competitive algorithm and prove that no deterministic
on-line algorithm could perform better. For D = log2 n, we
show a 3-competitive algorithm. The same algorithm and
bound holds for D ≥ log2 n, since we compare the perfor-
mance to that of the off-line schedule with D = n. We gen-
eralize the algorithm for D = log2 n into a h+1-competitive

algorithm for the D ≈ logh(n), which implies an O(n1/D)-
competitive algorithm for a general D ≤ log2 n.

We present the following randomized algorithms. We show
a randomized on-line algorithm whose competitiveness is
1 + ǫ. However, this competitive factor is attained for a
“long” sequence of paging events. We describe another al-
gorithm for D = 2 that converges faster. This improved
algorithm generalizes to any D with a running time that is
polynomial in n but exponential in D.

We note that the three cases D = 2, D = n, and D =
log2 n are very important. D = 2 is the first nontrivial case.
When D = n there are no delay constraints. The D ≥ log2 n
case is important since we achieve a small constant compet-
itive ratio while reducing the number of rounds from n to
log n. We leave open the problem of finding “good” compet-
itive deterministic algorithms for all values of D between 2
and log n.

Paper organization: Due to page limitations, we omitted
some of the proofs. Section 2 describes the off-line model
and the on-line model. Sections 3, 4, and 5, respectively,
present the near-optimal off-line algorithms, the competitive
deterministic algorithms, and the competitive randomized
algorithms. Some open problems are discussed in Section 6.

2. MODEL
We first describe the off-line model in details. This enables

us to come with a clearer description of the on-line environ-
ment. Assume a system with n cells denoted by 1, . . . , n.
Mobiles are roaming in the system and a vector distribution
p of length n is given, where pi is the probability that the
mobile is located in cell i. Assume that the mobile always
exists, and hence

∑n
i=1 pi = 1. Without loss of general-

ity, p1 ≥ p2 ≥ · · · ≥ pn. Given a subset S of [1, n], let

p(S) =
∑

i∈S pi. For S = [1, k] let p(S) = qk =
∑k

i=1 pi.
Paging a mobile is conducted in rounds. In each round,

a subset of the cells is paged until a subset that contains
the actual location of the mobile is found. The goal is
to minimize the expected number of cells paged under the
constraint that the paging must be complete in at most D
rounds for a given parameter 1 ≤ D ≤ n. In other words,
the goal is to find an ordered partition of the cells into D
disjoint subsets to minimize the expected number of paged
cells. We call this partition a schedule.

Given an ordered partition S of the cells, let cost(S) be
the expected number of paged cells given the distribution p.
Denote by OPT (D) the cost of the optimal schedule for D
paging rounds.

Note that by definition, some of the subsets in the par-
tition may be empty. However, it is always better to page
at least one cell in each round. The following observation
relates the location probabilities and the order of paging the
cells.

Observation 1. The paging is conducted following the
non-decreasing order of probabilities. That is, for any pair
of rounds 1 ≤ i < j ≤ D, all the cells that are paged in round
j are associated with smaller or equal probabilities than all
the cells that are paged in round i.

To gain some intuition, let us consider a few special cases
for the value of D. For D = 1, all the cells must be paged in
the first and only round. Trivially, the cost of this strategy
is n. For D = 2, the goal is to find a subset of the cells to
be paged in the first round. Then in the second round, if
the mobile is not found, the rest of the cells must be paged.
By Observation 1, the goal is to find a number 1 ≤ k ≤ n
such that in the first round only the cells [1, k] are paged.
Denote by Tk the schedule that pages the cells [1, k] in the
first round and recall that qk = p(Tk). It follows that

cost(Tk) = qkk + (1 − qk)n

= n − qk(n − k)

= k + (1 − qk)(n − k) . (1)

For D = n, the paging is implied by Observation 1. Simply,
the optimal schedule OPT pages cell i in round i for 1 ≤
i ≤ n. In this case the cost is

cost(OPT) = OPT (n) =
n
∑

i=1

ipi . (2)

In general, for any 1 ≤ D ≤ n, let S = {S1, . . . , SD} be
an ordered partition of [1, n], and let ni be the size of the
subset Si. Then

cost(S) =

D
∑

i=1

(

i
∑

j=1

nj

)

p(Si) =

D
∑

i=1

(

D
∑

j=i

p(Sj)

)

ni . (3)

The above definitions are for one paging event with a given
set of probabilities. Suppose instead that a sequence of T
paging events is given where at each time t, for 1 ≤ t ≤ T ,
the mobile may be located in any one of the n cells. Let
ℓt be the location of the mobile in time t and mi(t) be the
number of times the mobile was in cell i during the time
interval [1, t]. An algorithm is on-line, if at each time t, it
decides on a schedule based only on the mobile locations at
times t′ < t. An algorithm is static off-line (off-line in short)
if it is given the entire location sequence (or equivalently, it
is given a frequency vector p, where pi = mi(T)/T) and
outputs a single schedule that is used for all paging events.
We compare an on-line algorithm which is a sequence of T
schedules to an optimal off-line schedule, and the competi-
tive ratio would be the worst case ratio between the on-line
and the off-line costs. We do not make any stochastic as-
sumptions regarding the locations of the mobile.

3. OFF-LINE SCHEDULES
In this section, we describe near-optimal off-line schedules

for various values of D and compute their approximation
factors when compared with the optimal off-line schedule.
This is our first stage in proving competitiveness of on-line
algorithms. In the second stage, we compute the compet-
itive ratio of an on-line algorithm when compared with a
near-optimal schedule. The competitive ratio of the on-line
algorithm compared to the optimal schedule is the prod-
uct of the two previously computed ratios. The reason we

cannot directly compare our on-line algorithm to the op-
timal off-line schedule is that this schedule is found via a
dynamic programming and therefore does not have a sim-
ple structure. On the other hand, our near-optimal off-line
algorithms are very simple and structured enabling us to
compare them with our on-line algorithms.

In the first subsection, we address the D = 2 case and
discuss several natural greedy strategies that are based on
the properties of the optimal off-line schedule. We then
describe the simple solution for the other extreme of D = n
when there are no delay constraints. In the last subsection,
we address the entire range of D. For the D = log2 n case,
we show a constant approximation, which implies a constant
approximation for any D ≥ log2 n. We also derive cruder
relationships for the range 3 ≤ D ≤ log2 n. This is because
except for the case D = 2, the value for OPT (n) serves
us as the value of OPT (D) when computing approximation
factors of off-line schedules and competitive factors of on-
line strategies.

3.1 Two paging rounds
Assume that D = 2. In this case, a schedule is simply a

partition of the n cells into two sets. Recall that by Observa-
tion 1, the first set must be of type [1, k] for some 1 ≤ k < n.
The following lemma shows a simple formula to determine
the optimal partition.

Lemma 2. For D = 2 paging rounds, the optimal subset
Sopt of cells that are paged in the first round is [1, k] such
that pk > qk−1/(n − k) and pk+1 ≤ qk/(n − k − 1).

Proof. Assume that it is known that in the first round
the optimal strategy pages cells [1, k], and we would like to
see if it is worth to page cell k + 1 as well. By Equation 1,
it follows that if

kqk + (1 − qk)n > qk+1(k + 1) + (1 − qk+1)n

then the optimal strategy should page cell k+1 as well. This
implies that,

pk+1 >
qk

n − k − 1

Since pk decreases with k, qk increases with k, and 1/(n −
k − 1) increases with k, there is a single crossing point and
we proved the following theorem.

Based on the above lemma, we derive some useful prop-
erties of the optimal partition.

Corollary 3. For D = 2 paging rounds, the optimal sub-
set Sopt of cells that are paged in the first round has the
following properties:

1. If pk ≥ 2/n then k ∈ Sopt.

2. |Sopt| ≤ n/2.

3. p(Sopt) ≥ 1/2 − 2/n.

4. If pk+1 ≤ 1/2n then k + 1 6∈ Sopt.

Proof. For property (1), note that there are at most n/2
cells for which pk ≥ 2/n. Therefore, qk/(n−k) ≤ 1/(n/2) =
2/n ≤ pk, for pk ≥ 2/n and the claim follows by Lemma 2.

For property (2), by Theorem 2, pk > qk/(n − k) if cell
k = ⌈n/2⌉ is paged. Since, qk ≥ kpk, it follows that pk >
(k/(n − k))pk which can hold only for k < n/2.

For property (3), assume that S = [1, k− 1] and therefore
p(Sopt) = qk−1. Since k is not paged, Theorem 2 implies that
pk(n − k) ≤ qk. By the order of the probabilities, it follows
that p([k + 1, n]) ≤ pk(n − k) and hence p([k + 1, n]) ≤ qk.
Since qk + p([k + 1, n]) = 1, it follows that qk ≥ 1/2. As a
result, p(S) + pk ≥ 1/2. The claim follows from property
(1).

For property (4), note that qk ≥ 1/2, since 1 − qk ≤
n(2/n) = 1/2. Since qk/(n − k) > 1/2n, by Theorem 2 we
have that pk+1 6∈ Sopt.

The above corollary gives rise to three types of greedy
schedules. Recall that the goal is to find the best schedule
Tk that pages the cells [1, k] in the first round. In other
words, we are looking for a set S of cells to be paged in the
first round.

Threshold cell probability: Add to S all the cells whose
probabilities are greater or equal to x for some param-
eter x > 0. For a given x, define Sx to be this set:
Sx = {i|pi ≥ x}. In the optimal strategy, by the first
property of Corollary 3, we know that x ≤ 2/n.

Threshold number locations: Take S = [1, k] (i.e., strat-
egy Tk) for some value of k that can be a function of n
and the distribution vector p. In the optimal strategy,
by the second property of Corollary 3, we know that
k < n/2.

Threshold round probability: Add pi to S if p(S∪{i}) ≤
r for some 0 ≤ r ≤ 1. For a given r, define Rr to be
this set: Rr = {i|qi ≤ r and qi+1 > r}. In the optimal
strategy, by the third property of Corollary 3, we know
that r must be greater or equal to 1/2 − 2/n.

The following claims demonstrate that each of the three
greedy schedules gives a very different quality of approxima-
tion. On one hand Threshold cell probability has 2 ap-
proximation for the threshold x = 2/n. On the other hand
both Threshold number locations and Threshold round

probability do not have a constant approximation factor.
Our on-line algorithm will be compared to the Threshold
cell probability schedule.

Claim 4. For the Threshold cell probability sched-
ule, cost(S2/n) ≤ 2cost(Sopt) where Sx = {i|pi ≥ x}.

Proof. By Corollary 3 we know that S2/n ⊂ Sopt. It is
easy to see that the worst case competitive ratio is when
S2/n = ∅, in which case cost(S2/n) = n. For the optimal we
have,

cost(Sopt) = |Sopt| + (1 − p(Sopt))(n − |Sopt|)
= n − p(Sopt)(n − |Sopt|)

≥ n − |Sopt| 2
n

(n − |Sopt|)

where we used the fact that all the locations in Sopt \ S2/n

have probability at most 2/n. Now, consider the following
ratio:

cost(OPT)

cost(S2/n)
≥ n − |Sopt| 2

n
(n − |Sopt|)
n

≥ 1 − 2
|Sopt|

n
+ 2(

|Sopt|
n

)2

The minimum ratio is at |Sopt|/n = 1/2 which gives a com-
petitive ratio of 2.

Claim 5. For the Threshold number locations sched-
ule with parameter k =

√
n, cost(Sopt)

√
n ≥ cost(T√

n) Also,
for any value of the parameter k, cost(Tk) = Ω(

√
n cost(Sopt)).

Proof. If |Sopt| ≥
√

n, we are done since cost(T√
n) ≤ n.

If |Sopt| ≤
√

n, we have Sopt ⊂ T√
n. This implies that the

probability of reaching the second round is larger with Sopt

than T√
n. Since |Sopt|

√
n ≥ |T√

n| =
√

n we are done.
For the lower bound consider two scenarios, depending on

the value of k. The scenario first, for k ≥ √
n, has almost

probability one on a single location. The optimal cost is 1
and the cost of Tk is k. The second scenario, for k <

√
n

has probability 1/2k assign to 2k locations. The optimal
has cost 2k and Tk has cost k +(1/2)(n−k) > n/2, and the
ration is Ω(n/k) = Ω(

√
n).

Claim 6. For any parameter r of the Threshold round

probability schedule, there exists a probability vector p,
and a set Rr, such that p(Rr) ≥ r, cost(Rr) ≥ n/2, and
cost(Sopt) < 3.

Proof. For r ≤ 1 − 1/n, let p1 = 1/2, p2 = 1/2 − 1/n
and pi = 1/(n(n − 2)). Then cost(Sopt) = 3 − 1/n. For
r ∈ [1/2, 1 − 1/n] we have S = {1} and otherwise S = ∅,
therefore cost(S) = (n + 1)/2 or cost(S) = n.

For r ≥ 1−1/n let p1 = 1−2/(n−1), and pi = 2/(n−1)2.
Then cost(Sopt) = 3 − 2/(n − 1) and cost(S) = n, since
S = ∅.

3.2 n paging rounds
Let D = n which is the case where there are no restrictions

on the number of rounds. Recall that mi(T) is the number
of times the user was in location i during time interval [1, T].
Clearly,

∑n
i=1 mi(T) = T . Fix the time T , set mi = mi(T),

and without loss of generality assume that m1 ≥ m2 ≥ · · · ≥
mn. By Observation 1, the optimal schedule pages the cells
in the order of their frequencies which is equivalent to the
order of their probabilities.

Theorem 7. For D = n paging rounds, the optimal off-
line schedule is to page cell i at round i until the mobile is
found, and its cost is OPT (n) =

∑n
i=1 i · mi.

3.3 Arbitrary number of paging rounds
We first describe an off-line schedule for D = ⌈log2 n⌉

rounds. For a clearer presentation, we assume that n = 2D−
1 and that D = log2 n although D = log2(n + 1) = ⌈log2 n⌉.
We call this schedule L2. Assume again that m1 ≥ m2 ≥
· · · ≥ mn. The main idea is that L2 doubles the size of the
set of cells it pages in a round if it fails to find the mobile
in the previous round.

Schedule L2: In round i, 1 ≤ i ≤ D, L2 pages the cells
[2i−1, 2i − 1] following the non-decreasing order of mi. In
particular, L2 pages cell 1 in the first round, cells 2 and 3 in
the second rounds, and the last 2D−1 cells in the last round.

We compare L2 with OPT (n) and not OPT (D) since we
do not know the structure of OPT (log2 n). Surprisingly the
approximation factor is only 2.

Lemma 8. The cost of L2 is less than 2 · OPT (n).

Proof. Fix a round i for 1 ≤ i ≤ D. Note that the
size of the set of cells paged in this round is 2i−1. When
L2 pages the cells [2i−1, 2i − 1] in this round, it is because
the mobile was not found in cells [1, 2i−1 − 1]. This paging

is successful exactly
∑2i−1

j=2i−1 mj times for a total cost of

(2i − 1)
∑2i−1

j=2i−1 mj . This is because the number of cells

paged in the first i rounds is 2i − 1. It follows that the
overall cost of all rounds is

Cost(L2) =

D
∑

i=1

(2i − 1)

2i−1
∑

j=2i−1

mj .

Note that the coefficient of mj is at most 2j, and therefore

Cost(L2) ≤
n
∑

j=1

2j · mj .

The result is now implied by Theorem 7.

The next theorem follows since we compare the sched-
ule L2 with OPT (n) and since by adding “dummy” paging
rounds any off-line schedule for x rounds can be transformed
to a schedule for y > x rounds with at least the same per-
formance.

Theorem 9. For any D paging rounds, log2 n ≤ D ≤ n,
there exists an off-line schedule whose cost is at most twice
the optimal off-line schedule cost.

We now generalize L2 to a schedule Lh for an integer
2 ≤ h ≤ log2 n. Again, we omit all ceilings and assume that

n = hD−1
h−1

. The main idea is that instead of doubling the
size of the new set of cells to be paged, Lh multiplies this
size by h.

Schedule Lh: In round i, 1 ≤ i ≤ D, Lh pages the cells

[hi−1−1
h−1

+ 1, hi−1
h−1

] following the non-decreasing order of mi.

Lemma 10. The cost of Lh is less than h · OPT (n).

Proof. Fix a round i for 1 ≤ i ≤ D and let ai = hi−1−1
h−1

+

1 and bi = hi−1
h−1

. By definition, Lh pages the cells [ai, bi] in

round i. Note that Lh pages hi cells in round i since bi−ai+
1 = hi. When Lh pages these cells, it is because the mobile
was not found in cells [1, ai − 1]. Thus, a successful round i

pages bi cells. Since this happens
∑bi

j=ai
mj times, it follows

that the total cost of a successful round i is bi

∑bi
j=ai

mj .
Therefore, the overall cost of all rounds is

Cost(Lh) =

D
∑

i=1

bi

bi
∑

j=ai

mj .

Note that if j ∈ [ai, bi] then the coefficient of mj is bi. Since
bi/ai < h, we get that this coefficient is at most h · j, and
therefore

Cost(Lh) ≤
n
∑

j=1

h · j · mj .

The result is now implied by Theorem 7.

With proper definitions of sets to be paged in each round,
we can define a schedule Lx for any real number 2 ≤ x ≤
log2 n and can prove that the cost of Lx is at most x ·
OPT (n). Fixing D and setting x accordingly imply the
following

Theorem 11. For any 3 ≤ D ≤ log2 n paging rounds,

there exists a schedule whose cost is at most n1/D times
OPT (n).

Proof. Fix D in the range [3, log2 n]. We are looking for
x such that

n =
xD − 1

x − 1
.

This happens when x ≈ n1/D. The lemma follows by Lemma
10.

4. COMPETITIVE DETERMINISTIC
ON-LINE ALGORITHMS

In this section, we describe on-line deterministic algo-
rithms for various values of D. We compare them with
the near-optimal off-line schedules from the previous section
by computing their relative competitive ratio. Particularly,
We present a 6-competitive greedy algorithm forD = 2. We
show that a natural generalization of this algorithm to D = 3
fails. For D = n, we show a 2 − ǫ competitive algorithm
and prove that no deterministic on-line algorithm could per-
form better. For D = log2 n, we show a 3-competitive algo-
rithm that generalizes to a h + 1-competitive algorithm for
D ≈ logh n. The former implies a 3-competitive algorithm

for log2 n ≤ D ≤ n and the latter implies an O(n1/D)-
competitive algorithm for D ≤ log2 n.

4.1 Two paging rounds
Assume that D = 2. In this case, an on-line algorithm, at

any time t, partitions the n cells into two sets. Therefore, a
full specification of the algorithm is to define a set of cells
to be paged in the first round of any paging event. We first
design an on-line algorithm assuming that the number of
paging events T is given in advance, and we are interested
only in the cost after the last paging event.

Algorithm Cell Threshold I (CL-I): Let Qt be the set of
all cells i whose corresponding mi(t) is greater than 2T/n
times, i.e., Qt = {i : mi(t) ≥ 2T/n}. At time t+1, page the
cells of Qt in the first round.

Theorem 12. For D = 2 paging rounds, algorithm Cell

Threshold I is 6 competitive.

Proof. We compare the performance of algorithm CL-I

to the schedule that pages the set of cells S2/n composed
of all the cells of final frequency 2/n after T paging events.
Note that Qt is monotone and that QT = S2/n. Therefore,
the cost of both CL-I and S2/n on the cells not in S2/n is
n. For a cell ℓ in S2/n, after the first 2T/n times that the
mobile was in cell ℓ, the cost of CL-I is at most that of S2/n.
This implies that for the above two cases the cost of CL-I
is either the same or less than S2/n. During the first 2T/n
times that the mobile is in cell ℓ ∈ S2/n, we have that the
cost of CL-I is n while that of S2/n is |S2/n|. This implies
that

cost(CL-I) ≤ cost(S2/n) + |S2/n|(n − |S2/n|)2T/n

≤ cost(S2/n) + 2T |S2/n|
≤ 3cost(S2/n) .

The last inequality follows since each paging round in S2/n

has cost of at least |S2/n|. By Claim 4, the cost of S2/n is
at most twice the cost of Sopt. Hence, CL-I is 6 competi-
tive.

We now omit the assumption that the value of T is known
in advance and define the following on-line algorithm that

relies on the local threshold 2t/n instead of the global thresh-
old 2T/n.

Algorithm Cell Threshold II (CL-II): Let Qt be the set
of all cells i whose corresponding mi(t) is greater than 2t/n
times, i.e., Qt = {i : mi(t)/t ≥ 2/n}. At time t + 1 page in
the first round the cells of Qt.

Theorem 13. For D = 2 paging rounds, algorithm Cell

Threshold II is 6 competitive.

Proof. As for algorithm CL-I, we will compare the per-
formance to that of the off-line schedule that pages the set of
cells S2/n composed of all the cells of final frequency 2/n af-
ter T paging events whose cost is at most twice the optimal
cost. However, we do the accounting somewhat differently.
For cells not in S2/n, we sum the cost when they where
paged (which is at most n) and the number of times they
are in Qt. For cells in S2/n, each time they are paged, they
will be charged as follows: (1) if they are in Qt they are
charged |Qt ∩ S2/n|, which is bounded by |S2/n| (2) if they
are not in Qt they are charged n.

We claim that the sum of the charges bounds the online
cost. We show this according to the type of the cell. If a
cell is not in S2/n or a cell is in S2/n and not in Qt, we
charge n, which clearly upper bounds the cost of the paging
round. For a cell in S2/n ∩ Qt, we charge |S2/n ∩ Qt| the
cell we paged, however the online incurs a cost of |Qt|. For
each cell in Qt \ S2/n, we charge one for each time it is in
Qt, and therefore, we have that this additional charge is
|Qt \ S2/n|. Summing the two types of charges gives a total
of |Qt|, which is the online cost.

By definition, cells that are not in S2/n have frequency
k < 2T/n. Such a cell can be in at most kn/2 different Qt.
Its cost is at most kn, when it is paged, and at most kn/2
when other cells are paged. Summing the two, we bound
the cost by (3/2)kn. In the S2/n schedule, this cell cost is
kn.

Cells in S2/n are paged at least ℓ ≥ 2T/n times, out of
which at most k < 2T/n times they are not in Qt. The
online cost of such a cell is bounded by ℓ|S2/n| + kn, which
is bounded by ℓ|S2/n| + 2T . The cost of that cell in S2/n

is ℓ|S2/n|. Summing over all cells in S2/n, we get a cost
of |S2/n|(2T +

∑

i∈S
2/n

ℓi), which is bounded by 3T |S2/n|.
Clearly the cost of S2/n is at least T |S2/n|.

Consequently, algorithm Cell Threshold II is at most 3
times the cost of S2/n and is 6-competitive by Claim 4.

One might hope that a similar scheme can be used for
D = 3. Namely, have two thresholds, α and β, and define an
algorithm A(α, β) as follows. All the cells with frequencies
more than α are paged in the first round. All the cells with
frequencies between α and β are paged in the second round.
In the third round, all the cells with frequencies less than
β are paged. The following theorem states that this would
yield a “bad” approximation even in the off-line setting.

Theorem 14. There exists a vector of frequencies p, such
that cost(A(α, β)) = Ω(n1/5cost(OPT (3))) for any α and β.

Proof. Let ρ be the competitive ratio of algorithm A(α, β).
Consider the following three scenarios and denote by ρ1, ρ2, ρ3

the ratio between the cost of the algorithm and the optimal
cost in the three scenarios respectively.

Scenario I: There is one cell with probability 1−√
α, 1/

√
α

cells with probabilities slightly more than α, and the other

cells have negligible probabilities. The optimal schedule
pages the first cell in the first round, pages the 1/

√
α cells

in the second round, and pages the rest of the cells in the
third round. The cost of the optimal schedule is at most 2.
Algorithm A(α, β) pages all the 1 + 1/

√
α “heavy” cells in

the first round, with a cost of 1 + 1/
√

α. Hence,

ρ1 ≥
1 + 1√

α

2
≥ 1

2
√

α
.

Scenario II: There are 1/β cells with probabilities slightly
less than β, while the other cells have negligible probability.
The optimal schedule pages half of the 1/β cells in the first
round, the other half in the second round, and the rest of
the cells in the third round. The optimal cost is 3/(4β).
Algorithm A(α, β) pages all the cells in one round and has
cost n. Hence,

ρ2 ≥ n
3
4β

≥ βn .

Scenario III: There are (1 − ǫ)/α cells with probabilities
slightly less than α, ǫ/β cells with probabilities slightly more
than β, and the other cells have negligible probabilities. The
optimal schedule pages the (1 − ǫ)/α “heavy” cells in the
first round, the next ǫ/β cells in the second round, and the
rest of the cells in the third round. The optimal cost is
(1−ǫ)/α+ǫ2/β. The algorithm A(α, β) pages all the “heavy”
cells in one round and has cost (1 − ǫ)/α + ǫ/β. Set ǫ =
√

β/α. The cost of the optimal schedule is at most 2/α.
The cost of algorithm A(α, β) is at least 1/

√
αβ. Hence,

ρ3 ≥
1√

α
√

β

2
α

≥
√

α

2
√

β
.

We now prove that the competitive ratio of algorithm

A(α, β) is Ω
(

n1/5
)

for the following three cases for the val-

ues of α and β.

Case 1/n > α > β: Consider only the first scenario. Thus
ρ ≥ ρ1, and therefore

ρ ≥ 1

2
√

α
≥

√
n

2
= Ω

(

n1/2
)

.

Case α ≥ 1/n > β: Consider scenarios I and III. Thus
ρ ≥ max {ρ1, ρ3}, and therefore

ρ ≥ max

{

1

2
√

α
,

√
α

2
√

β

}

= Ω
(

n1/4
)

.

Case α > β ≥ 1/n: Consider all three scenarios. Thus
ρ ≥ max {ρ1, ρ2, ρ3}, and therefore

ρ ≥ max

{

1

2
√

α
, βn,

√
α

2
√

β

}

= Ω(n1/5).

4.2 n paging rounds
Assume that D = n. We introduce an on-line algorithm

that “imitates” the optimal schedule using the frequencies
known before the t-th paging event. We show, unlike the set-
ting in [17, 10], that there is no need to add randomization
to achieve a good competitive ratio.

Follow the optimal (FTO): After the paging event t, com-
pute the optimal off-line schedule up to time t, and apply it
in time t + 1.

Theorem 15. The competitive ratio of algorithm Follow

the optimal is 2 − 2/(n + 1), and no deterministic on-line
algorithm has a better competitive ratio.

Proof. We first prove the upper bound. The cost asso-
ciated with cell i is the cost of finding the mobile when it is
located in cell i. Denote this cost by ci. First consider cell
1, the cell in which the mobile is located the most times. In
the last m1−m2 times that the mobile was in cell 1, this cell
was the most frequently visited, and therefore FTO paged it
first. This contributes a cost of m1 − m2 to c1. Similarly,
there are m2 − m3 times where cell 1 was paged in at most
the second round. In general, there are mk − mk+1 times
FTO finds the mobile in cell 1 after at most k rounds. This
implies that c1 is bounded by

c1 ≤
n−1
∑

i=1

i · (mi − mi+1) + nmn = m1 +
n
∑

i=2

mi

In general for ck, we claim that at least mi−mi+1 times cell
k was paged after at most i rounds, for i ≥ k. This implies
that ck is bounded by

ck ≤
n−1
∑

i=k

i · (mi − mi+1) + nmn = kmk +
n
∑

i=k+1

mi

Note that the first term of ci contributes i to the coefficient
of mi and that the second terms of all ck, for k < i, con-
tribute i − 1 to this coefficient. Thus, summing the cost
associated with all cells yields a bound of

n
∑

i=1

ci ≤
n
∑

i=1

(2i−1)mi = 2

(

m
∑

i=1

i · mi

)

−T = 2·OPT (n)−T .

It follows that OPT (n) is maximized when mi = T/n for
each cell i. This implies that OPT (n) ≤ (n + 1)T/2, which
establishes an upper bound of 2− 2/(n + 1) on the compet-
itive ratio.

For the lower bound, consider the following scenario. At
each time t, the adversary forces the on-line to conduct n
rounds. This is always possible since the adversary knows
the on-line paging order. Therefore, the cost of any on-line
algorithm could be nT . However, the cost of the optimal
schedule is bounded by OPT (n) ≤ (n + 1)T/2 even when
all the frequencies are the same. This establishes the lower
bound claim.

4.3 Arbitrary number of paging rounds
We first introduce an on-line algorithm Follow L2 (FL2)

that operates as the L2 schedule using the sequence m1(t) ≥
m2(t) ≥ · · · ≥ mn(t) instead of the final sequence m1 ≥
m2 ≥ · · · ≥ mn. Again, for clarity of presentation we assume
that n = 2D −1 and that D = log2 n although D = log2(n+
1) = ⌈log2 n⌉. Recall, that the main idea of L2 and therefore
of FL2 is to double the size of the set of cells it pages in a
round if it fails to find the mobile in the previous round.

Algorithm Follow-L2: In round 1 ≤ i ≤ D of time t , this
algorithm pages the cells [2i−1, 2i − 1] following the non-
decreasing order of mi(t). In particular, FL2 pages cell 1 in
the first round, cells 2 and 3 in the second rounds, and the
last 2D−1 cells in the last round.

We show that FL2 is 3-competitive for D = log2 n. We
first compare the cost of FL2 to L2 and show that it is
3/2-competitive. Then we obtain the desired result since

L2 is a 2-approximation to the optimal off-line schedule by
Lemma 8.

Theorem 16. The competitive ratio of Follow-L2 for
D = log2 n paging rounds is at most 3.

The next theorem follows since we compare the schedule
FL2 with OPT (n) and since, by adding “dummy” paging
rounds, any on-line algorithm for x rounds can be trans-
formed to an on-line algorithm for y > x rounds with at
least the same performance.

Theorem 17. For log2 n ≤ D ≤ n paging rounds, there
exists a 3-competitive on-line algorithm.

We now generalize FL2 to an on-line algorithm FLh for
an integer 2 ≤ h ≤ log2 n. Again, we omit all ceilings and

assume that n = hD−1
h−1

. The main idea is that instead of
doubling the size of the new set of cells to be paged, FLh

multiplies this size by h.

Algorithm Follow-Lh: In round 1 ≤ i ≤ D of time t , this

algorithm pages the cells [hi−1−1
h−1

+ 1, hi−1
h−1

] following the

non-decreasing order of mi(t).
We show that FLh is h+1-competitive for D ≈ logh n. We

first compare the cost of FLh to Lh and show that it is (h+
1)/h-competitive. Then we obtain the desired result since
FLh is a h-approximation to the optimal off-line schedule
by Lemma 10.

Theorem 18. The competitive ratio of Follow-Lh for
D ≈ logh n paging rounds is at most h + 1.

With proper definitions of sets to be paged in each round,
we can define an on-line algorithm FLx for any real number
2 ≤ x ≤ log2 n. Moreover, we can prove that the competitive
ratio of FLx compared to Fx is at most (x+1)/x. Theorem
11 implies that the competitive ratio compared to OPT (n)
is x + 1. Fixing D and setting x accordingly imply the
following theorem.

Theorem 19. For any 3 ≤ D ≤ log2 n paging rounds,
there exists an on-line algorithm whose competitive ratio is
at most 1 + n1/D.

5. ALMOST OPTIMAL RANDOMIZED
ON-LINE ALGORITHMS

In this section we apply the methodology of the best ex-
perts [20, 11, 4, 17] to derive an almost optimal on-line
algorithm. The objective is that for “long” periods of time,
we will have an almost optimal cost. The basic idea is to
use the on-line best expert algorithms, and to associate an
expert with each possible off-line schedule. The best expert
algorithm is able to track the lowest cost expert, i.e., the
best off-line schedule. When we come to implement this
idea there is a clear computational difficulty, since the num-
ber of experts, even for D = 2, is exponential in n. (The
works [10, 17] deal with a similar phenomena.)

We propose two ways to overcome this computational dif-
ficulty. The first is using a recent result of [17] and showing
how it applies to our case for any value of D. The second
on-line algorithm uses an interesting simulation technique of
the best experts algorithms that we developed for the spe-
cial case of D = 2. This technique can be generalized, for

D > 2, to an on-line algorithm whose running time is expo-
nential in D. Thus the algorithm runs in polynomial time
only for constant D. The benefit of the second algorithm is
that it attains the near-optimality for a much smaller value
of T (the number of paging events).

5.1 Arbitrary number of paging rounds
Our result in this section is a direct application of [17] for

general experts. They assume that each expert is associated
with a vector π ∈ Rn and that the cost at time t is associated
with a vector ct ∈ [0, 1]n. In [17] it is shown how to track
the best expert in polynomial time when the following two
conditions are satisfied:

1. The loss of expert π on cost vector ct is < π, ct >.

2. There exists a polynomial time algorithm, that given
any cumulative cost vector CT =

∑T
t=1 ct, finds the

expert π that minimizes the cost, i.e., minimizes <
π, CT >.

Let us discuss an encoding of the cost and the experts.
If at time t, the mobile was located in cell i, we represent
this cost by a length n vector ct that has 1 in entry i and
0 elsewhere. Note that CT =

∑T
t=1 ct is simply the vector

mi(T). For each possible schedule S =< S1, . . . , SD >, let
ni = |Si| be the number of cells paged in round i and let rj

be the round in which cell j is paged. We associate with the
schedule S a vector π where π(j) is the number of cells paged
when the mobile is in cell j, i.e., π(j) =

∑rj

i=1 ni. We denote
the schedule by π. Note that π is a unique representation of
the schedule and that its length is n. The cost of schedule π
on the input sequence is simply < CT , π >=

∑

i mi(T)π(i).
This answers the requirement 1 of [17].

For the second requirement, we need to provide a poly-
nomial time algorithm that given CT finds the best off-line
schedule π for CT . This can be done using the dynamic pro-
gramming algorithm [16, 21, 24]. This answers requirement
2 of [17].

Based on the above two properties, we can derive the proof
of Theorem 20 directly from the general result in [17].

Theorem 20. For any D paging rounds, there exists a
randomized on-line algorithm whose expected cost is bounded
by OPT (n)+O(Dn

√
T) for any sequence of T paging events.

The next corollary follows since each paging round has a
cost of at least one (even in the optimal schedule).

Corollary 21. For any D paging rounds, there exists a
randomized on-line whose expected cost is bounded by (1 +
ǫ)OPT (n) for T = Ω(D2n2/ǫ2).

5.2 Two paging rounds
In this section, we derive an alternative almost optimal on-

line algorithm, R-Hedge, for the special case of D = 2. The
main benefit of the algorithm is a smaller additive bound
(which implies faster convergence time). This alternative
algorithm is done by directly simulating the known best ex-
pert algorithms [20, 11, 4]. The following is the performance
bound of the algorithm.

Theorem 22. For D = 2, there exists a randomized on-
line algorithm R-Hedge, such that for any input sequence ct,
the expected cost of A is bounded by OPT + O(

√
nT + n).

Comparing the bounds of Theorems 20 and 22, there is
a difference of a O(

√
n) factor in the additive term. This

implies that Theorem 22 has a guarantee of (1 + ǫ)OPT for
smaller values of T , i.e., T = Ω(n/ǫ2). A slight weakness of
the second approach, aside from its running time for large
values of D, is that it requires T , the number of paging
events, to be fixed in advanced.

The rest of this section describes R-Hedge that would run
the Hedge algorithm ([4]). The R-Hedge algorithm would do
a perfect simulation of Hedge and therefore its performance
would be identical to that of Hedge. The main contribu-
tion would be in the running time of the algorithm (since a
naive implementation would require exponential time). Re-
call that mi(t) is the number of times that the mobile was
in cell i during [1, t]. Let mS(t) be

∑

i∈S mi(t).
In the case of D = 2 an expert π is define by a set

Qπ which is paged in the first time step. The cost of ex-
pert π up to time t is Lt(π) = Lt(|Qπ|, mQπ (t)), where
Lt(s, k) = sk+(t−k)n. The weight of an expert π at time t

is wt(π) = bLt(π)w0(π), where b ∈ (0, 1) is a constant which
is predetermined by the algorithm (and may depend on the
final number of steps taken, i.e., T , but not on the input
sequence). The Hedge algorithm needs to choose randomly
a set Qπ based on the distribution wt.

We start with the following observation on the structure
of the weights. (The observation follows directly from the
definition of the weights.)

Observation 23. Let π1 and π2 be two different experts.
If |Qπ1

| = |Qπ2
| and mQπ1

(t) = mQπ2
(t) then wt(π1) =

wt(π2).

The above observation suggests that we can divide the
possible sets to equivalence groups, based on their size and
their cost. Now we will have two tasks. The first is to select
an equivalence class (with the right probabilities) and the
second is to select a set from a given equivalence class.

A helpful tool for R-Hedge would be the ability to count
the size of an equivalence class. Let f(n, s, k) be the number
of sets S ⊂ {1, . . . , n} of size s whose cost (up to time t) is
k. Note that,

f(n, s, k) = f(n − 1, s, k) + f(n − 1, s − 1, k − mn(t))

where the boundary conditions are: f(n, s, k) = 0 for n < s,
f(n, s, k) = 0 for k < 0, and f(n, s, k) = 1 for s = 0 and
k = 0. One can easily see that in time O(n2T) we can
compute all values of f(n, s, k), since s has at most n + 1
values and k has at most T values.

Given f(n, s, k), define W t(s, k) = f(n, s, k)bLt(s,k)/2n.
The value of W t(s, k) is the total weight assigned to an
equivalence class. That is, the sum of all the weights of sets
of size s that had cost k up to time t. Algorithm R-Hedge,
at the start of time step t, computes W t(s, k) for every s
and k.

Recall that the Hedge algorithm chooses a set randomly
based on the distribution wt. The R-Hedge will perform the
random selection in two steps. In the first step R-Hedge
selects randomly a pair (s, k) based on the distribution in-
duced by W t(s, k). In the second step, given the pair (s, k),
it randomly selects the set S of size s and cost k. This is
done by selecting the elements of S one at a time. More
precisely,

Pr[n ∈ S] =
f(n − 1, s − 1, k − mn(t))

f(n, s, k)

In general, assume we selected randomly Sj for elements
from {j, . . . , n}, then

Pr[j − 1 ∈ Sj−1|Sj ⊂ {j, . . . , n}] =

f(j − 1, s − 1 − |Sj |, k − mSj (t) − mj(t))

f(j, s − |Sj |, k − mSj (t))

The following properties of R-Hedge follows from is defi-
nition, and complete the proof of Theorem 22.

Claim 24. The algorithm R-Hedge runs in time O(n2T)
and for any input sequence the probability that R-Hedge se-
lects π is wt(π).

Proof. For the running time, note that f(i, s, k) has at
most n+1 values for i and s, and at most T values for k. The
claim on the probability follows from the fact that wt(π) =
W (s, k)/f(n, s, k), where s = |Qπ| and k = Lt(π).

6. OPEN PROBLEMS

• We do not have deterministic algorithms for D = 3 and
a constant D with a good competitive ratio. However,
we know that follow the optimal is competitive for
the D = 2 case and we conjecture that it is competi-
tive for all values of D. For most of our on-line algo-
rithms, we compared them with OPT (n). This is the
main reason why the performance deteriorated when
D approaches 2. We do not know how to compare
our algorithm with OPT (D). For randomized algo-
rithms, it will be interesting to find faster algorithms
that achieve an almost optimal performance for a small
value of T .

• An interesting research topic is to design solutions for
paging several mobiles together. The off-line case was
presented and studied in [6, 7].

• We ignored the reporting operation. In the next re-
search stage, one could look for competitive algorithms
for a system with some reporting schemes. See the sur-
vey [2] for the many papers that addressed the off-line
case.

• The case of n paging rounds resembles the list update
problem ([26]). The cost function is different since in
this problem the algorithm “pays” for changing the
order of the list where in our model the cost of chang-
ing the schedule in each round is free. Nevertheless, it
seems that the Move-to-Front algorithm ([26]) which is
a 2-competitive algorithm for the list update problem
will have the same competitive ratio in our model. In
a way, our follow the optimal algorithm is simpler and
more natural. Also, it seems like the 1 + ǫ ratio ran-
domized algorithm of [10] will work in our model with
some modifications. We will explore further the rela-
tionship between the two problems in the full version
of the paper.

Acknowledgement
We thank the PODC reviewers for their helpful comments.

7. REFERENCES

[1] A. Abutaleb and V. O. K. Li. Paging Strategy
Optimization in Personal Communication Systems.
ACM/Baltzer Wireless Networks Journal (WINET),
3: 205–216 (1997).

[2] I. F. Akyildiz, J. Mcnair, J. S. M. Ho, H. Uzunalioğlu,
and W. Wang. Mobility Management in
Next-Generation Wireless Systems. IEEE Proceedings
Journal, 87: 1347–1385 (1999).

[3] N. Alon, K. Kalai, M. Ricklin, and L. .J. Stockmeyer.
Lower Bounds on the Competitive Ratio for Mobile
User Tracking and Distributed Job Scheduling.
Theoretical Computer Science (TCS), 130: 175–201
(1994)

[4] P. Auer, N. Cesa-Bianchi, Y. Freund, and
R. E. Schapire. Gambling in a rigged casino: The
adversarial multi-armed bandit problem. the 36th
Symposium on Foundations of Computer Science
(FOCS), 322–331 (1995).

[5] B. Awerbuch and D. Peleg. Online Tracking of Mobile
Users. Journal of the ACM (JACM), 42: 1021–1058
(1995).

[6] A. Bar-Noy and G. Malewicz, Establishing Wireless
Conference Calls Under Delay Constraints. Journal of
Algorithm, 51: 145–169 (2004).

[7] A. Bar-Noy and Z. Naor. Establishing a Mobile
Conference Call Under Delay and Bandwidth
Constraints. The 23rd Annual Joint Conference of the
IEEE Computer and Communications Societies
(INFOCOM), 2004.

[8] Y. Bartal, A. Fiat, and Y. Rabani. Competitive
Algorithms for Distributed Data Management. Journal
of Computer and System Science (JCSS), 51: 341–358
(1995).

[9] A. Bhattacharya and S. K. Das. LeZi-Update: An
Information-theoretic framework for personal mobility
tracking in PCS networks. ACM/Baltzer Wireless
Networks Journal (WINET), 8: 121–135 (2002).

[10] A. Blum, S. Chawla, and A. Kalai. Static Optimality
and Dynamic Search-Optimality in Lists and Trees.
Algorithmica, 36: 249 – 260 (2003).

[11] N. Cesa-Bianchi, Y. Freund, D. P. Helmbold,
D. Haussler, R. E. Schapire, and M. K. Warmuth.
How to use expert advice. The 25th ACM Symposium
on Theory of Computing (STOC), 382–391 (1993).

[12] EIA/TIA. Cellular Radio-Telecommunications
Intersystem Operations. EIA/TIA Technical Report
IS-41 Revision C (1995).

[13] ETSI/TC. Mobile Application Part (MAP)
Specification, version 4.8.0. Technical Report,
Recommendation GSM 09.02 (1994).

[14] R .H. Gau and Z. J. Haas. Concurrent Search for
Mobile Users in Cellular Networks. IEEE
Communications Letters, 7: 287–289 (2003).

[15] D. J. Goodman. Cellular Packet Communications.
IEEE Transactions on Communications, 38:

1272–1280 (1990).

[16] D. J. Goodman, P. Krishnan, and B. Sugla.
Minimizing Queuing Delays and Number of Messages
in Mobile Phone Location. Mobile Networks and
applications (MONET), 1: 39–48 (1996).

[17] A. Kalai and S. Vempala. Efficient Algorithms for
On-line Optimization. The 16th Annual Conference on
Learning Theory (COLT), 26–40 (2003).

[18] B. Krishnamachari, R. H. Gau, S. B. Wicker, and
Z. J. Haas. Optimal Sequential Paging in Cellular
Networks. ACM/Baltzer Wireless Networks Journal
(WINET), 10: 121–131 (2004).

[19] W. Lee. Mobile Cellular Telecommunications Systems.
New York: Mcgraw-Hill (1989).

[20] N. Littlestone and M. K. Warmuth. The weighted
majority algorithm. Information and Computation,
108: 212–261 (1994).

[21] S. Madhavapeddy, K. Basu, and A. Roberts. Adaptive
Paging Algorithms for Cellular Systems. Wireless
Information Networks: Architecture, Resource
Management and Mobile Data 83–101 (1996)

[22] S. J. Mullender and P. B. M. Vitányi. Distributed
Match-Making. Algorithmica, 3: 367–391 (1988).

[23] C. Rose and R. Yates. Location Uncertainty in Mobile
Networks: a Theoretical Framework. IEEE
Communications Magazine, 35: (1997).

[24] C. Rose and R. Yates. Minimizing the Average Cost
for Paging Under Delay Constraints. ACM/Baltzer
Wireless Networks Journal (WINET), 1: 211–219
(1995).

[25] C. Rose and R. Yates. Ensemble Polling Strategies for
Increased Paging Capacity in Mobile Communication
Networks. ACM/Baltzer Wireless Networks Journal
(WINET), 3: 159–167 (1997).

[26] D. Sleator and R. E. Tarjan. Amortized Efficiency of
List Update and Paging Rules. Communications of the
ACM, 28: 202–208 (1985).

[27] W. Wang and I. F. Akyildiz. An Optimal Paging
Scheme for Minimizing Signaling Costs Under Delay
Bounds. IEEE Communication Letters, 5: 43–45
(2001).

[28] W. Wang, I. F. Akyildiz, and G. L. Stüber. 6Effective
Paging Schemes with Delay Bounds as QoS
Constraints in Wireless Systems. ACM/Baltzer
Wireless Networks Journal (WINET), 7: 455–466
(2001).

