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Abstract. We show several PAC-style concentration bounds for learn-
ing unigrams language model. One interesting quantity is the probability
of all words appearing exactly k times in a sample of size m. A standard
estimator for this quantity is the Good-Turing estimator. The existing

analysis on its error shows a PAC bound of approximately O
(

k√
m

)
.

We improve its dependency on k to O
(

4√
k√
m

+ k
m

)
. We also analyze the

empirical frequencies estimator, showing that its PAC error bound is ap-

proximately O
(

1
k

+
√

k
m

)
. We derive a combined estimator, which has

an error of approximately O
(
m− 2

5

)
, for any k.

A standard measure for the quality of a learning algorithm is its expected
per-word log-loss. We show that the leave-one-out method can be used
for estimating the log-loss of the unigrams model with a PAC error of

approximately O
(

1√
m

)
, for any distribution.

We also bound the log-loss a priori, as a function of various parameters
of the distribution.

1 Introduction and Overview

Natural language processing (NLP) has developed rapidly over the last decades.
It has a wide range of applications, including speech recognition, optical charac-
ter recognition, text categorization and many more. The theoretical analysis has
also advanced significantly, though many fundamental questions remain unan-
swered. One clear challenge, both practical and theoretical, concerns deriving
stochastic models for natural languages.

Consider a simple language model, where the distribution of each word in the
text is assumed to be independent. Even for such a simplistic model, fundamental
questions relating sample size to the learning accuracy are already challenging.
This is mainly due to the fact that the sample size is almost always insufficient,
regardless of how large it is.

To demonstrate this phenomena, consider the following example. We would
like to estimate the distribution of first names in the university. For that, we
are given the names list of a graduate seminar: Alice, Bob, Charlie, Dan, Eve,
Frank, two Georges, and two Henries. How can we use this sample to estimate the
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distribution of students’ first names? An empirical frequency estimator would
assign Alice the probability of 0.1, since there is one Alice in the list of 10 names,
while George, appearing twice, would get estimation of 0.2. Unfortunately, un-
seen names, such as Michael, will get an estimation of 0. Clearly, in this simple
example the empirical frequencies are unlikely to estimate well the desired dis-
tribution.

In general, the empirical frequencies estimate well the probabilities of pop-
ular names, but are rather inaccurate for rare names. Is there a sample size,
which assures us that all the names (or most of them) will appear enough times
to allow accurate probabilities estimation? The distribution of first names can
be conjectured to follow the Zipf’s law. In such distributions, there will be a sig-
nificant fraction of rare items, as well as a considerable number of non-appearing
items, in any sample of reasonable size. The same holds for the language uni-
grams model, which tries to estimate the distribution of single words. As it has
been observed empirically on many occasions ([2], [5]), there are always many
rare words and a considerable number of unseen words, regardless of the sample
size. Given this observation, a fundamental issue is to estimate the distribution
the best way possible.

1.1 Good-Turing Estimators

An important quantity, given a sample, is the probability mass of unseen words
(also called ”the missing mass”). Several methods exist for smoothing the prob-
ability and assigning probability mass to unseen items. The almost standard
method for estimating the missing probability mass is the Good-Turing estima-
tor. It estimates the missing mass as the total number of unique items, divided
by the sample size. In the names example above, the Good-Turing missing mass
estimator is equal 0.6, meaning that the list of the class names does not re-
flect the true distribution, to put it mildly. The Good-Turing estimator can be
extended for higher orders, that is, estimating the probability of all names ap-
pearing exactly k times. Such estimators can also be used for estimating the
probability of individual words.

The Good-Turing estimators date to World War II, and were published at
1953 ([10], [11]). They have been extensively used in language modeling appli-
cations since then ([2], [3], [4], [15]). However, their theoretical convergence rate
in various models has been studied only in the recent years ([17], [18], [19], [20],
[22]). For estimation of the probability of all words appearing exactly k times in
a sample of size m, [19] shows a PAC bound on Good-Turing estimation error
of approximately O

(
k√
m

)
.

One of our main results improves the dependency on k of this bound to ap-
proximately O

(
4√

k√
m

+ k
m

)
. We also show that the empirical frequencies have

an error of approximately O
(

1
k +

√
k

m

)
, for large values of k. Based on the

two estimators, we derive a combined estimator with an error of approximately
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O
(
m− 2

5

)
, for any k. We also derive a lower bound of Ω

(
4√

k√
m

)
for an error of

any estimator based on an independent sample.
Our results give theoretical justification for using the Good-Turing estimator

for small values of k, and the empirical frequencies estimator for large values
of k. Though in most applications the Good-Turing estimator is used for very
small values of k (e.g. k ≤ 5, as in [15] or [2]), we show that it is fairly accurate
in a much wider range.

1.2 Logarithmic Loss

The Good-Turing estimators are used to approximate the probability mass of
all the words with a certain frequency. For many applications, estimating this
probability mass is not the main optimization criteria. Instead, a certain distance
measure between the true and the estimated distributions needs to be minimized.

The most popular distance measure widely used in NLP applications is the
Kullback-Leibler (KL) divergence. For P = {px} and Q = {qx}, two distribu-
tions over some set X, this measure is defined as

∑
x px ln px

qx
. An equivalent

measure, up to the entropy of P , is the logarithmic loss (log-loss), which equals∑
x px ln 1

qx
.

Many NLP applications use the value of log-loss to evaluate the quality of
the estimated distribution. However, the log-loss cannot be directly calculated,
since it depends on the underline distribution P , which is unknown. Therefore,
estimating log-loss using the sample is important, although the sample cannot
be independently used for both estimating the distribution and testing it. The
hold-out estimation splits the sample into two parts: training and testing. The
training part is used for learning the distribution, whereas the testing sample
is used for evaluating the average per-word log-loss. The main disadvantage of
this method is the fact that it uses only part of the available information for
learning, whereas in practice one would like to use all the sample.

A widely used general estimation method is called leave-one-out. Basically,
it means averaging all the possible estimations, where a single item is chosen for
testing, and the rest is used for training. This procedure has an advantage of
using the entire sample, in addition it is rather simple and usually can be easily
implemented. The existing theoretical analysis of the leave-one-out method ([14],
[16]) shows general PAC-style concentration bounds for the generalization error.
However, these techniques are not applicable in our setting.

We show that the leave-one-out estimation error for the log-loss is approxi-
mately O

(
1√
m

)
, for any distribution P . In addition, we show a PAC bound for

the log-loss, as a function of various parameters of the distribution.

1.3 Model and Semantics

We denote the set of all words as V , and N = |V |. Let P be a distribution
over V , where pw is the probability of a word w ∈ V . Given a sample S of size
m, drawn i.i.d. using P , we denote the number of appearances of a word w in
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S as cS
w, or simply cw, when a sample S is clear from the context1. We define

Sk = {w ∈ V : cS
w = k}, and nk = |Sk|.

For a claim Φ regarding a sample S, we write ∀δS Φ[S] for P (Φ[S]) ≥ 1− δ.
For some PAC bound function f(·), we write Õ(f(·)) for O

(
f(·)

(
ln m

δ

)c), where
c > 0 is some constant, and δ is the PAC error probability.

Due to lack of space, some of the proofs are omitted. A detailed version can
be found at [7].

2 Concentration Inequalities

In this section we state several standard Chernoff-style concentration inequali-
ties. We also show some of their corollaries regarding the maximum-likelihood
approximation of pw by p̂w = cw

m .

Lemma 1. (Hoeffding’s inequality: [13], [18]) Let Y = Y1, . . . , Yn be a set of n
independent random variables, such that Yi ∈ [bi, bi + di]. Then, for any ε > 0,

P

(∣∣∣∣∣∑
i

Yi − E

[∑
i

Yi

]∣∣∣∣∣ > ε

)
≤ 2 exp

(
− 2ε2∑

i d2
i

)
This inequality has an extension for various functions of {Y1, . . . , Yn}, which

are not necessarily the sum.

Lemma 2. (Variant of McDiarmid’s inequality: [21], [6]) Let Y = Y1, . . . , Yn

be a set of n independent random variables, and f(Y ) such that any change of
Yi value changes f(Y ) by at most di. Let d = maxi di. Then,

∀δY : |f(Y )− E[f(Y )]| ≤ d

√
n ln 2

δ

2

Lemma 3. (Angluin-Valiant bound: [1], [18]) Let Y = Y1, . . . , Yn be a set of n
independent random variables, where Yi ∈ [0, B]. Let µ = E [

∑
i Yi]. Then, for

any ε > 0,

P

(∣∣∣∣∣∑
i

Yi − µ

∣∣∣∣∣ > ε

)
≤ 2 exp

(
− ε2

(2µ + ε)B

)
The next lemma shows an explicit upper bound on the binomial distribution

probability2.
1 Unless mentioned otherwise, all further sample-dependent definitions depend on the

sample S.
2 Its proof is based on Stirling approximation directly, though local limit theorems

could be used. This form of bound is needed for the proof of Theorem 4.
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Lemma 4. Let X ∼ Bin(n, p) be a binomial random variable, i.e. a sum of
n i.i.d. Bernoulli random variables with p ∈ (0, 1). Let µ = E[X] = np. For
x ∈ (0, n], there exist some Tx = exp

(
1

12x + O
(

1
x2

))
, such that ∀k ∈ {0, . . . , n},

we have P (X = k) ≤ 1√
2πµ(1−p)

Tn

TµTn−µ
. For integral values of µ, the equality is

achieved at k = µ. (Note that for x ≥ 1, we have Tx = Θ(1).)

The next lemma (by Hoeffding, [12]) deals with the number of successes in
independent trials.

Lemma 5. ([12], Theorem 5) Let Y1, . . . , Yn ∈ {0, 1} be a set of independent
random variables, with pi = E[Yi]. Let X =

∑
i Yi, and p = 1

n

∑
i pi be the

average trial success probability. For any integers b and c such that 0 ≤ b ≤
np ≤ c ≤ n, we have:

c∑
k=b

(
n

k

)
pk(1− p)n−k ≤ P (b ≤ X ≤ c) ≤ 1

Using the above lemma, the next lemma shows a general concentration bound
for a sum of arbitrary real-valued functions of a multinomial distribution compo-
nents. We show that with a small penalty, any Chernoff-style bound pretending
the components being independent is valid3. We recall that cS

w, or equivalently
cw, is the number of appearances of the word w in a sample S of size m.

Lemma 6. Let {c′w ∼ Bin(m, pw) : w ∈ V } be independent binomial ran-
dom variables. Let {fw(x) : w ∈ V } be a set of real valued functions. Let
F =

∑
w fw(cw) and F ′ =

∑
w fw(c′w). For any ε > 0,

P (|F − E [F ]| > ε) ≤ 3
√

m P (|F ′ − E [F ′]| > ε)

The following lemmas provide concentration bounds for maximum-likelihood
estimation of pw by cw

m .

Lemma 7. Let δ > 0, and λ ≥ 3. We have ∀δS:

∀w ∈ V, s.t. mpw ≥ 3 ln 2m
δ , |mpw − cw| ≤

√
3mpw ln

2m

δ

∀w ∈ V, s.t. mpw > λ ln 2m
δ , cw >

(
1−

√
3
λ

)
mpw

Lemma 8. Let δ ∈ (0, 1), and m > 1. Then, ∀δS: ∀w ∈ V , such that mpw ≤
3 ln m

δ , we have cw ≤ 6 ln m
δ .

3 The negative association analysis ([8]) shows that a sum of negatively associated
variables must obey Chernoff-style bounds pretending that the variables are inde-
pendent. The components of a multinomial distribution are negatively associated.
Therefore, any Chernoff-style bound is valid for their sum, as well as for the sum
of monotone functions of the components. In some sense, our result extends this
notion, since it does not require the functions to be monotone.
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3 Hitting Mass Estimation

In this section our goal is to estimate the probability of the set of words appearing
exactly k times in the sample, which we call ”the hitting mass”. We analyze the
Good-Turing estimator, the empirical frequencies estimator, and the combined
estimator.

Definition 1. We define the hitting mass and its estimators as: 4

Mk =
∑

w∈Sk

pw M̂k =
(

k

m

)
nk Gk =

(
k + 1
m− k

)
nk+1

Definition 3 slightly redefines the hitting mass and its estimators. Lemma
9 shows that this redefinition has a negligible influence. Then, we analyze the
estimation errors using the concentration inequalities from Section 2.

The expected error of the Good-Turing estimator is bounded, as in [19].
Lemma 14 bounds the deviation of the error, using the negative association
analysis. A tighter bound, based on Lemma 6, is achieved at Theorem 1. Theorem
2 analyzes the error of the empirical frequencies estimator. Theorem 3 refers to
the combined estimator. Finally, Theorem 4 shows a weak lower bound for the
hitting mass estimation.

Definition 2. For any w ∈ V and i ∈ {0, · · · ,m}, we define Xw,i as a random
variable equal 1 if cw = i, and 0 otherwise.

Definition 3. Let α > 0 and k > 3α2. We define Ik,α =
[

k−α
√

k
m , k+1+α

√
k+1

m

]
,

and Vk,α = {w ∈ V : pw ∈ Ik,α}. We define:

Mk,α =
∑

w∈Sk∩Vk,α

pw =
∑

w∈Vk,α

pwXw,k

Gk,α =
k + 1
m− k

|Sk+1 ∩ Vk,α| =
k + 1
m− k

∑
w∈Vk,α

Xw,k+1

M̂k,α =
k

m
|Sk ∩ Vk,α| =

k

m

∑
w∈Vk,α

Xw,k

By Lemma 7 and Lemma 8, for large values of k the redefinition coincides
with the original definition with high probability:

Lemma 9. For δ > 0, let α =
√

6 ln 4m
δ . For k > 18 ln 4m

δ , we have ∀δS:

Mk = Mk,α, Gk = Gk,α, and M̂k = M̂k,α.

4 The Good-Turing estimator is usually defined as ( k+1
m

)nk+1. The two definitions are
almost identical for small values of k. Following [19], we use our definition, which
makes the calculations slightly simpler.
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Since the minimal probability of a word in Vk,α is Ω
(

k
m

)
, we derive:

Lemma 10. Let α > 0 and k > 3α2. Then, |Vk,α| = O
(

m
k

)
.

Using Lemma 4, we derive:

Lemma 11. Let α > 0 and 3α2 < k ≤ m
2 . Let w ∈ Vk,α. Then, E[Xw,k] =

P (cw = k) = O
(

1√
k

)
.

3.1 Good-Turing Estimator

The following lemma, based on the definition of the binomial distribution, was
shown in Theorem 1 of [19].

Lemma 12. For any k < m, and w ∈ V , we have:

pwP (cw = k) =
k + 1
m− k

P (cw = k + 1)(1− pw)

The following lemma bounds the expectations of the redefined hitting mass,
its Good-Turing estimator, and their difference.

Lemma 13. Let α > 0 and 3α2 < k < m
2 . We have E[Mk,α] = O

(
1√
k

)
,

E[Gk,α] = O
(

1√
k

)
, and |E[Gk,α]− E[Mk,α]| = O

(√
k

m

)
.

Using the negative association notion, we can show a preliminary bound for
Good-Turing estimation error:

Lemma 14. For δ > 0 and 18 ln 8m
δ < k < m

2 , we have ∀δS:

|Gk −Mk| = O

√k ln 1
δ

m


Lemma 15. Let δ > 0, k > 0. Let U ⊆ V . Let {bw : w ∈ U} be a set of weights,
such that bw ∈ [0, B]. Let Xk =

∑
w∈U bwXw,k, and µ = E[Xk]. We have:

∀δS, |Xk − µ| ≤ max

{√
4Bµ ln

(
6
√

m

δ

)
, 2B ln

(
6
√

m

δ

)}
Proof. By Lemma 6, combined with Lemma 3, we have:

P (|Xk − µ| > ε) ≤ 6
√

m exp
(
− ε2

B(2µ + ε)

)
≤ max

{
6
√

m exp
(
− ε2

4Bµ

)
, 6
√

m exp
(
− ε

2B

)}
, (1)

where (1) follows by considering ε ≤ 2µ and ε > 2µ separately. The lemma

follows substituting ε = max
{√

4Bµ ln
(

6
√

m
δ

)
, 2B ln

(
6
√

m
δ

)}
. ut
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We now derive the concentration bound on the error of the Good-Turing
estimator.

Theorem 1. For δ > 0 and 18 ln 8m
δ < k < m

2 , we have ∀δS:

|Gk −Mk| = O

√√
k ln m

δ

m
+

k ln m
δ

m


Proof. Let α =

√
6 ln 8m

δ . Using Lemma 9, we have ∀ δ
2 S: Gk = Gk,α, and Mk =

Mk,α. Recall that Mk,α =
∑

w∈Vk,α
pwXw,k and Gk,α =

∑
w∈Vk,α

k+1
m−kXw,k+1.

Both Mk,α and Gk,α are linear combinations of Xw,k and Xw,k+1, respectively,
where the coefficients’ magnitude is O

(
k
m

)
, and the expectation, by Lemma 13,

is O
(

1√
k

)
. By Lemma 15, we have:

∀ δ
4 S, |Mk,α − E[Mk,α]| = O

(√√
k ln m

δ

m + k ln m
δ

m

)
(2)

∀ δ
4 S, |Gk,α − E[Gk,α]| = O

(√√
k ln m

δ

m + k ln m
δ

m

)
(3)

Combining (2), (3), and Lemma 13, we have ∀δS:

|Gk −Mk| = |Gk,α −Mk,α|
≤ |Gk,α − E[Gk,α]|+ |Mk,α − E[Mk,α]|+ |E[Gk,α]− E[Mk,α]|

= O

√√
k ln m

δ

m
+

k ln m
δ

m
+

√
k

m

 = O

√√
k ln m

δ

m
+

k ln m
δ

m

 ,

which completes the proof. ut

3.2 Empirical Frequencies Estimator

In this section we bound the error of the empirical frequencies estimator M̂k.

Theorem 2. For δ > 0 and 18 ln 8m
δ < k < m

2 , we have:

∀δS, |Mk − M̂k| = O

√k
(
ln m

δ

) 3
2

m
+

√
ln m

δ

k


Proof. Let α =

√
6 ln 8m

δ . By Lemma 9, we have ∀ δ
2 S: M̂k = M̂k,α, and Mk =

Mk,α. Let V −
k,α = {w ∈ Vk,α : pw < k

m}, and V +
k,α = {w ∈ Vk,α : pw > k

m}. Let
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X− =
∑

w∈V −
k,α

(
k

m
− pw

)
Xw,k, X+ =

∑
w∈V +

k,α

(
pw − k

m

)
Xw,k,

and let X? specify either X− or X+. By the definition, for w ∈ Vk,α we

have
∣∣ k
m − pw

∣∣ = O
(

α
√

k
m

)
. By Lemma 10, |Vk,α| = O

(
m
k

)
. By Lemma 11, for

w ∈ Vk,α we have E[Xw,k] = O
(

1√
k

)
. Therefore,

|E[X?]| ≤
∑

w∈Vk,α

∣∣∣∣ k

m
− pw

∣∣∣∣E[Xw,k] = O

(
m

k

α
√

k

m

1√
k

)
= O

(α

k

)
(4)

Both X− and X+ are linear combinations of Xw,k, where the coefficients are

O
(

α
√

k
m

)
and the expectation is O

(
α
k

)
. Therefore, by Lemma 15, we have:

∀ δ
4 S : |X? − E[X?]| = O

(√
α4

m
√

k
+

α3
√

k

m

)
(5)

By the definition of X− and X+, Mk,α − M̂k,α = X+ −X−. Combining (4)
and (5), we have ∀δS:

|Mk − M̂k| = |Mk,α − M̂k,α| = |X+ −X−|
≤ |X+ − E[X+]|+ E[X+] + |X− − E[X−]|+ E[X−]

= O

(√
α4

m
√

k
+

α3
√

k

m
+

α

k

)
= O

√k
(
ln m

δ

) 3
2

m
+

√
ln m

δ

k

 ,

since
√

ab = O(a + b), and we use a = α3√k
m and b = α

k . ut

3.3 Combined Estimator

In this section we combine the Good-Turing estimator with the empirical fre-
quencies to derive a combined estimator, which is accurate for all values of k.

Definition 4. We define M̃k, a combined estimator for Mk, by:

M̃k =
{

Gk k ≤ m
2
5

M̂k k > m
2
5

Lemma 16. (Theorem 3 at [19]) Let k ∈ {0, . . . ,m}. For any δ > 0, we have:

∀δS : |Gk −Mk| = O

√ ln 1
δ

m

(
k + ln

m

δ

)
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The next theorem shows that M̃k has an error bounded by Õ
(
m− 2

5

)
, for

any k. For small k, we use Lemma 16. Theorem 1 is used for 18 ln 8m
δ < k ≤ m

2
5 .

Theorem 2 is used for m
2
5 < k < m

2 . The complete proof also handles k ≥ m
2 .

Theorem 3. Let δ > 0. For any k ∈ {0, . . . ,m}, we have:

∀δS, |M̃k −Mk| = Õ
(
m− 2

5

)
The next theorem shows a weak lower bound for approximating Mk. It applies

to estimating Mk based on an independent sample. This induces the ”weak”
notation, since Gk, as well as M̂k, base on the same sample as Mk.

Theorem 4. Suppose that the vocabulary consists of m
k words distributed uni-

formly (i.e. pw = k
m), where 1 � k � m. The variance of Mk is Θ

(√
k

m

)
.

4 Leave-One-Out Estimation of Log-Loss

Many NLP applications use log-loss as the learning performance criteria. Since
the log-loss depends on the underlying probability P , its value cannot be ex-
plicitly calculated, and must be approximated. The main result of this section,
Theorem 5, shows an upper bound on the leave-one-out estimation of the log-
loss, assuming a general family of learning algorithms.

Given a sample S = {s1, . . . , sm}, the goal of a learning algorithm is to
approximate the true probability P by some probability Q. We denote the prob-
ability assigned by the learning algorithm to a word w by qw.

Definition 5. We assume that any two words with equal sample frequency are
assigned equal probabilities in Q, and therefore denote qw by q(cw). Let the log-
loss of a distribution Q be:

L =
∑
w∈V

pw ln
1
qw

=
∑

k

Mk ln
1

q(k)

Let the leave-one-out estimation, q′w, be the probability assigned to w, when
one of its instances is removed. We assume that any two words with equal sample
frequency are assigned equal leave-one-out probability estimation, and therefore
denote q′w by q′(cw). We define the leave-one-out estimation of the log-loss as:

Lleave−one =
∑
w∈V

cw

m
ln

1
q′w

=
∑
k>0

knk

m
ln

1
q′(k)

Let Lw = L(cw) = ln 1
q(cw) , and L′w = L′(cw) = ln 1

q′(cw) . Let Lmax =
maxk max(L(k), L′(k + 1)).
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In this section we discuss a family of learning algorithms, that receive the sam-
ple as an input. Assuming an accuracy parameter δ, we require the following
properties to hold:

1. Starting from a certain number of appearances, the estimation is close to
the sample frequency. Specifically, for some α, β ∈ [0, 1],

∀k ≥ ln
(

4m

δ

)
, q(k) =

k − α

m− β
(6)

2. The algorithm is stable when a word is extracted from the sample:

∀m, 2 ≤ k ≤ 10 ln 4m
δ , |L′(k + 1)− L(k)| = O

(
1
m

)
(7)

∀m, ∀S s.t. nS
1 > 0, k ∈ {0, 1}, |L′(k + 1)− L(k)| = O

(
1

nS
1

)
(8)

An example of such an algorithm is the following leave-one-out algorithm
(we assume that the vocabulary is large enough so that n0 + n1 > 0):

qw =

{
N−n0−1

(n0+n1)(m−1) cw ≤ 1
cw−1
m−1 cw ≥ 2

The next lemma shows that the expectation of the leave-one-out method is
a good approximation for the per-word expectation of the logarithmic loss.

Lemma 17. Let 0 ≤ α ≤ 1, and y ≥ 1. Let Bn ∼ Bin(n, p) be a binomial
random variable. Let fy(x) = ln(max(x, y)). Then,

0 ≤ E

[
pfy(Bn − α)− Bn

n
fy(Bn − α− 1)

]
≤ 3p

n

Sketch of Proof. For a real valued function F (here F (x) = fy(x−α)), we have:

E

[
Bn

n
F (Bn − 1)

]
=

n∑
x=0

(
n

x

)
px(1− p)n−x x

n
F (x− 1)

= p
n∑

x=1

(
n− 1
x− 1

)
px−1(1− p)(n−1)−(x−1)F (x− 1)

= pE[F (Bn−1)] ,

where we used
(
n
x

)
x
n =

(
n−1
x−1

)
. The rest of the proof follows by algebraic manip-

ulations, and the definition of the binomial distribution (see [7] for details). ut

Lemma 18. Let δ > 0. We have ∀δS: n2 = O
((√

m ln 1
δ + n1

)
ln m

δ

)
.
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Theorem 5. For δ > 0, we have:

∀δS, |L− Lleave−one| = O

(
Lmax

√
(ln m

δ )4 ln
ln m

δ
δ

m

)

Proof. Let yw =
(
1−

√
3
5

)
pwm− 2. By Lemma 7, with λ = 5, we have ∀ δ

2 S:

∀w ∈ V : pw >
3 ln 4m

δ

m
,

∣∣pw − cw

m

∣∣ ≤√ 3pw ln 4m
δ

m (9)

∀w ∈ V : pw >
5 ln 4m

δ

m
, cw > yw + 2 ≥ (5−

√
15) ln 4m

δ > ln 4m
δ (10)

Let VH =
{

w ∈ V : pw >
5 ln 4m

δ

m

}
and VL = V \ VH . We have:

|L− Lleave−one| ≤

∣∣∣∣∣ ∑
w∈VH

(
pwLw − cw

m
L′w

)∣∣∣∣∣+
∣∣∣∣∣ ∑
w∈VL

(
pwLw − cw

m
L′w

)∣∣∣∣∣ (11)

We start by bounding the first term of (11). By (10), we have ∀w ∈ VH , cw >
yw + 2 > ln 4m

δ . Assumption (6) implies that qw = cw−α
m−β , therefore Lw =

ln m−β
cw−α = ln m−β

max(cw−α,yw) , and L′w = ln m−1−β
cw−1−α = ln m−1−β

max(cw−1−α,yw) . Let

ErrH
w =

cw

m
ln

m− β

max(cw − 1− α, yw)
− pw ln

m− β

max(cw − α, yw)

We have:

∣∣∣∣∣ ∑
w∈VH

(cw

m
L′w − pwLw

)∣∣∣∣∣ =
∣∣∣∣∣ ∑
w∈VH

ErrH
w + ln

m− 1− β

m− β

∑
w∈VH

cw

m

∣∣∣∣∣
≤

∣∣∣∣∣ ∑
w∈VH

ErrH
w

∣∣∣∣∣+ O

(
1
m

)
(12)

We bound
∣∣∑

w∈VH
ErrH

w

∣∣ using McDiarmid’s inequality. As in Lemma 17,
let fw(x) = ln(max(x, yw)). We have:

E
[
ErrH

w

]
= ln(m− β)E

[cw

m
− pw

]
+ E

[
pwfw(cw − α)− cw

m
fw(cw − 1− α)

]
The first expectation equals 0, the second can be bounded using Lemma 17:

∣∣∣∣∣ ∑
w∈VH

E
[
ErrH

w

]∣∣∣∣∣ ≤ ∑
w∈VH

3pw

m
= O

(
1
m

)
(13)
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In order to use McDiarmid’s inequality, we bound the change of
∑

w∈VH
ErrH

w

as a function of a single change in the sample. Suppose that a word u is replaced
by a word v. This results in decrease for cu, and increase for cv. Recalling that
yw = Ω(mpw), the change of ErrH

u , as well as the change of ErrH
v , is bounded

by O
(

ln m
m

)
(see [7] for details).

By (12), (13), and Lemma 2, we have ∀ δ
16 S:

∣∣∣∣∣ ∑
w∈VH

(cw

m
L′w − pwLw

)∣∣∣∣∣ = O

√ (lnm)2 ln 1
δ

m

 (14)

Next, we bound the second term of (11). By Lemma 8, we have ∀ δ
4 S:

∀w ∈ V s.t. pw ≤
3 ln 4m

δ

m
, cw ≤ 6 ln 4m

δ (15)

Let b = 5 ln 4m
δ . By (9) and (15), for any w such that pw ≤ b

m , we have:

cw

m
≤ max

pw +

√
3pw ln 4m

δ

m
,
6 ln 4m

δ

m

 ≤
(5 +

√
3 ∗ 5) ln 4m

δ

m
<

2b

m

Therefore ∀w ∈ VL, we have cw < 2b. Let nL
k = |VL∩Sk|, GL

k−1 = k
m−k+1nL

k ,
and ML

k =
∑

w∈VL∩Sk
pw. Using algebraic manipulations (see [7] for details), we

have:

∣∣∣∣∣ ∑
w∈VL

(cw

m
L′w − pwLw

)∣∣∣∣∣ =
∣∣∣∣∣

2b∑
k=1

knL
k

m
L′(k)−

2b−1∑
k=0

ML
k L(k)

∣∣∣∣∣
≤

2b−1∑
k=0

GL
k |L′(k + 1)− L(k)|+

2b−1∑
k=0

|GL
k −ML

k |L(k) + O

(
bLmax

m

)
(16)

The first sum of (16) is bounded using (7), (8), and Lemma 18 (with accuracy
δ
16 ). The second sum of (16) is bounded using Lemma 16 separately for every
k < 2b with accuracy δ

16b . Since the proof of Lemma 16 also holds for GL
k and

ML
k (instead of Gk and Mk), we have ∀ δ

8 S, for every k < 2b, |GL
k − ML

k | =

O

(
b

√
ln b

δ

m

)
. Therefore (the details can be found at [7]),

∣∣∣∣∣ ∑
w∈VL

(cw

m
L′w − pwLw

)∣∣∣∣∣ = O

Lmax

√
b4 ln b

δ

m

 (17)

The proof follows by combining (11), (14), and (17). ut
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5 Log-Loss A Priori

Section 4 bounds the error of the leave-one-out estimation of the log-loss. In this
section we analyze the log-loss itself. We denote the learning error (equivalent
to the log-loss) as the KL-divergence between the true and the estimated distri-
bution. We refer to a general family of learning algorithms, and show an upper
bound for the learning error.

Let α ∈ (0, 1) and τ ≥ 1. We define an (absolute discounting) algorithm Aα,τ ,
which ”removes” α

m probability mass from words appearing at most τ times, and
uniformly spreads it among the unseen words. We denote by n1...τ =

∑τ
i=1 ni

the number of words with count between 1 and τ . The learned probability Q is
defined by :

qw =


αn1...τ

mn0
cw = 0

cw−α
m 0 < cw ≤ τ
cw

m τ < cw

Theorem 6. For any δ > 0 and λ > 3, such that τ < (λ −
√

3λ) ln 8m
δ , let

x = λ ln 8m
δ

m and Let Nx = |{w ∈ V : pw > x}|. Then, the learning error of Aα,τ

is bounded ∀δS by:

0 ≤
∑
w∈V

pw ln
(

pw

qw

)
= Õ

(
M0 lnN + x

√
m +

Nx

m

)

Since Nx includes only words with pw > x, it is bounded by 1
x . Therefore,

x = m− 3
4 gives a bound of Õ

(
M0 lnN + m− 1

4

)
. Lower loss can be achieved

for specific distributions, such as those with small M0 and small Nx (for some
reasonable x).
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