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6.1 Outline

This lecture deals with the existence of Nash Equilibria in general games (i.e, non-
zero-sum games). We start with a proof of the existence theorem. This proof uses a
�xed-point theorem known as Brouwer's Lemma, which we shall prove in the following
section. We then discuss the complexity of �nding Nash Equilibrium, and the class
PPAD to which it is complete.

6.2 Brouwer's Lemma

Lemma 6.1 (Brouwer) Let f : B → B be a continuous function from a non-empty,
compact, convex set B ⊂ <n to itself. Then there is x∗ ∈ S such that x∗ = f(x∗) (i.e.
x∗ is a �xed point of f).

We will sketch the proof later. First, let us explore some examples:

B f(x) Fixed Points
[0, 1] x2 0, 1
[0, 1] 1− x 1

2

[0, 1]2 (x2, y2) {0, 1} × {0, 1}
unit ball (in polar coord.) ( r

2
, 2θ) (0, θ) for all θ

We shall �rst show that the conditions are necessary, and then outline a proof in
1D and in 2D. The proof of the general N -D case is similar to the 2D case (and is
omitted).

6.2.1 Necessity of Conditions

To demonstrate that the conditions are necessary, we show a few examples:

When B is not bounded: Consider f(x) = x+1 for x ∈ <. Then, there is obviously
no �xed point.
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When B is not closed: Consider f(x) = x/2 for x ∈ (0, 1]. Then, although x = 0 is
a �xed point, it is not in the domain.

When B is not convex: Consider a circle in 2D with a hole in its center (i.e. a ring).
Let f rotate the ring by some angle. Then, there is obviously no �xed point.

6.2.2 Proof of Brouwer's Lemma for 1D

Let B = [0, 1] and f : B −→ B be a continuous function. We shall show that there
exists a �xed point, i.e. there is a x0 in [0, 1] such that f(x0) = x0. There are 2
possibilities:

1. If f(0) = 0 or f(1) = 1 then we are done.

2. If f(0) 6= 0 and f(1) 6= 1. Then de�ne:

F (x) = f(x)− x

In this case:
F (0) = f(0)− 0 = f(0) > 0

F (1) = f(1)− 1 < 0

Thus, we have F : [0, 1] −→ <, where F (0) ·F (1) < 0. Since f(·) is continuous,
F (·) is continuous as well. By the Intermediate Value Theorem, there exists
x0 ∈ [0, 1] such that F (x0) = 0. By de�nition of F (·):

0 = F (x0) = f(x0)− x0

And thus:
f(x0) = x0

Figure 6.1: A one dimensional �xed point (left) and the function F (·) (right)

The proof for 2 (and higher) dimensions will follow from Spencer's lemma.
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6.3 Existence Theorem

Theorem 6.2 Every �nite game has a (mixed-strategy) Nash Equilibrium.

This section shall outline a proof of this theorem. We begin with a de�nition
of the model, proceed with a statement of Brouwer's Lemma and conclude with the
proof.

6.3.1 Model and Notations

Recall that a �nite strategic game consists of the following:

• A �nite set of players, namely N = {1, . . . , n}.

• For every player i, a set of actions Ai = {ai1, . . . , aim}.

• The set A = ⊗n
i=1Ai of joint actions.

• For every player i, a utility function ui : A→ <.

A mixed strategy for player i is a random variable over his actions. The set of
such strategies is denoted 4(Ai). Letting every player have his own mixed strategy
(independent of the others) leads to the set of joint mixed strategies, denoted4(A) =
⊗n

i=14(Ai).

Every joint mixed strategy p ∈ 4(A) consists of n vectors ~p1, . . . , ~pn, where ~pi

de�nes the distribution played by player i. Taking the expectation over the given
distribution, we de�ne the utility for player i by

ui(p) = Ea∼p [ui(a)] =
∑
a∈A

p(a)ui(a) =
∑
a∈A

(
n∏

i=1

~pi(ai)

)
ui(a)

We can now de�ne a Nash Equilibrium (NE) as a joint strategy where no player
pro�ts from unilaterally changing his strategy:

De�nition A joint mixed strategy p∗ ∈ 4(A) is NE, if for every player 1 ≤ i ≤ n it
holds that

∀qi ∈ 4(Ai) ui(p
∗) ≥ ui(p

∗
−i, qi)

or equivalently

∀ai ∈ Ai ui(p
∗) ≥ ui(p

∗
−i, ai)
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6.3.2 Proof of Existence of Nash Equilibrium

We now turn to the proof of the existence theorem. For 1 ≤ i ≤ n, j ∈ Ai, p ∈ 4(A)
we de�ne

gij(p) = max{ui(p−i, aij)− ui(p), 0}
to be the gain for player i from switching to the deterministic action aij, when p is
the joint strategy (if this switch is indeed pro�table). We can now de�ne a continuous
map between mixed strategies y : 4(A)→4(A) by

yij(p) =
pij + gij(p)

1 +
∑m

j=1 gij(p)
.

Observe that:

• For every player i and action aij, the mapping yij(p) is continuous (w.r.t. p).
This is due to the fact that ui(p) is obviously continuous, making gij(p) and
consequently yij(p) continuous.

• For every player i, the vector (yij(p))
m
j=1 is a distribution, i.e. it is in 4(Ai).

This is due to the fact that the denominator of yij(p) is a normalizing constant
for any given i.

Therefore y ful�lls the conditions of Brouwer's Lemma. Using the lemma, we
conclude that there is a �xed point p for y. This point satis�es

pij =
pij + gij(p)

1 +
∑m

j=1 gij(p)
.

This is possible only in one of the following cases. Either gij(p) = 0 for every i and
j, in which case we have an equilibrium (since no one can pro�t from changing his
strategy). Otherwise, assume there is a player i s.t.

∑m
j=1 gij(p) > 0. Then,

pij

(
1 +

m∑
j=1

gij(p)

)
= pij + gij(p)

or

pij

(
m∑

j=1

gij(p)

)
= gij(p).

This means that gij(p) = 0 i� pij = 0, and therefore pij > 0 ⇒ gij(p) > 0. However,
this is impossible by the de�nition of gij(p): gij(p) 6= 0 =⇒ ui(pi, aij) > ui(p) for
every j in pi's support. Taking the mean of these inequalities we get

∑
j pijui(pi, aij) >∑

j pijui(p). But both sides are equal since
∑

j pijui(p) = ui(p)
∑

j pij = ui(p) and
by de�nition

∑
j pijui(pi, aij) = ui(p) so we get the contradiction ui(p) < ui(p).

Therefore, it cannot be that player i can pro�t from every pure action in ~pi's support
(with respect to the mean).

We are therefore left with the former possibility, i.e. gij(p) = 0 for all i and j,
implying a NE. Q.E.D.
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6.4 The Complexity of Finding Nash Equilibrium

6.4.1 De�ning the problem

Given a 2-players game if we will ask only if an equilibrium exists then the answer
will always be true. We can of course create various decision problems by adding
demands to the equilibrium:

• At least 2 equilibrium.

• An equilibrium in which player 1 has utility at least α.

• An equilibrium in which the size of the support is at least k.

• An equilibrium which includes action aij.

* All the above can be shown to be NP − Complete hard problem.

The complexity class for problems for which the existence of the solution is guar-
anteed and the challenge is �nding this solution is called PPP . Before giving a
formal de�nition to PPP we will see another problem which belongs to this class.
Example: we are given as input 10 2-digits numbers: S = {42, 5, 90, 98, 99, 7, 64, 70, 78, 51}.
Do we have 2 subgroups s.t their sums are equal: S1, S2 ⊆ S

∑
i∈S1

i =
∑

j∈S2
j ?

Solution: there are 210 = 1024 subgroups. The sum of 10 2-digit numbers is at most
1000, so by pigeon hole principle two subgroups with an equal sum must exists!

6.4.2 The Equal Subsets Problem

De�nition ES (Equal Subsets) Problem:

input: A = {a1, . . . , an} ai∈

[
1, (2n−1)

n

]
output: S1, S2 ⊆ A1 s.t

∑
ai∈S1

ai =
∑

aj∈S2
aj .

Notice that A always has a solution because
∑

ai∈A ai ≤ n · (2
n−1)
n

= 2n−1 and there
are 2n subsets of A so - by Pigeonhole principle -there are at least 2 subsets of A with
an equal sum.

Let's try to analyze the complexity of the ES:

• The problem is clearly in NP : a non deterministic polynomial algorithm - guess
S1,S2 ⊆ A and test if

∑
ai∈S1

ai =
∑

aj∈S2
aj.

• The question if ES is in P is an open question.

• Is ES an NP − Complete problem?
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It is unlikely that ES is an NP −Complete problem because this will give the result
NP = Co−NP which is commonly considered not to be the case.

Proof: Suppose it is NP-complete, that SAT≤pEQUAL SUBSETS. Then there
is an algorithm for SAT that runs in polynomial time, provided that it has access
to a poly-time algorithm for ES. Now suppose that this algorithm is given a non-
satis�able formula γ. Presumably it calls the ES algorithm some number of times,
and receives a sequence of solutions to various instances of ES, and eventually the al-
gorithm returns the answer "no, γ is not satis�able". Now suppose that we replace this
hypothetical poly-time algorithm for ES with the natural non-deterministic �guess
and test� algorithm, which gives us a non-deterministic polynomial-time algorithm
for SAT . Notice that when γ is given to this new algorithm, the "guess and test" sub-
routine for ES will always succeed to produce the same sequence of solutions as the
hypothetical poly-time algorithm becuase the solution always exists. As a result, the
entire algorithm can recognise this non-satis�able formula γ as before. Thus we have
a NP algorithm that recognizes unsatis�able formulae, which gives the consequence
NP=co-NP. Q.E.D.

6.4.3 A Module for ES

The proof we gave for the existence of solution for ES is based on the pigeonhole
principle. We will now de�ne a complexity class which tries to �catch� that principle.

Basic problem -PC (Pigeonhole Circuit):

• A circuit C

• Find

� An x∈ [1, 2n] s.t C (x) = 0.

Or

� x1, x2 ∈ [1, 2n] s.t C (x1) = C (x2) .
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Observation: There is always a solution (pigeonhole principle). The challenge is to
�nd the solution in polynomial time.

De�nition PPP (Polynomial Pigeonhole Principle) complexity class: contains all
the problems which have polynomial time reduction to PC

Claim 6.3 ES is in PPP

Proof: We will see ES ≤p PC. Given an instance of ES: A = {a1, . . . , an}, our
circuit will be C(x) = 1 +

∑
aixi. C (x) ≥ 1 so it is guranteed that a solution will

be only x1, x2 ∈ [1, 2n] s.t C (x1) =
∑
aix1i

= C (x2) =
∑
aix2i

. Given such x1, x2 we
can construct a solution for the ES: S1 = {ai|x1i

= 1} , S1 = {ai|x2i
= 1}. Q.E.D.

Corollary 6.4 ES is hard to PPP .

Sadly we don't know of an opposite reduction so it is an open question whether
ES is complete for PPP .

6.4.4 PPAD

De�nition End-Of-Line problem:
Input - 2 circuits:

• The 2 circuits de�ne a directed graph over {0, 1}n.

• There is a directed edge from x to y if P (y) = x and S (x) = y.
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output: �nd a vertex di�erent from
−→
0 with degree 1.

Observations:

• The input (0, . . . , 0) has no predecessor ⇒ its in-degree is zero -
−→
0 is a source

vertex in the graph.

• For each vertex v indeg (v) ≤ 1, outdeg(v) ≤ 1. In such a graph there must
be at least one sink.

Corollary 6.5 The resulting input graph has at least one sink which can be reached
from

−→
0 .

De�nition PPAD complexity class: contains all the problems which have polyno-
mial time reduction to End-Of-Line

Notice that The solution can be a di�erent source or a sink which is not accessible
from

−→
0 . If the demanded was to �nd a sink which is accessible from

−→
0 then the

complexity class would have beenPSPACE - same as �nding a �nal con�guration of
Turing machine with space m).

Claim 6.6 PPAD ⊆ PPP

Proof: We will show a reduction from PC toES (PC ≤p ES):

• If P (S (x)) = x then x is not a sink (x→ y).

• If S (P (x)) = x then x is not a source (y → x).

• 2 inputs will be mapped to the same value i� they are sink or source.
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Q.E.D.

Claim 6.7 Finding Nash Equilibrium is a PPAD-Complete problem

Proof: To prove it we need to show 2 reductions:

1. From Nash to End-Of-Line - to prove that Nash is in PPAD.

2. From End-Of-Line to Nash - to prove that Nash is complete to PPAD.

To show 1 (Nash ≤p End-Of-Line) we will use a coloring problem for the reduction:

• Input - a �triangle� in the taringR space with d+ 1 vertexes.

• Each vertex is colored.

• A vertex on one of the �triangle� edges can only be colored with one of the edge
colors.

Lemma 6.8 Spencer Lemma: There will always exist a triangle with d+1 colors.
Examples:

• 1-dimensional (example 1) - must be a segment where we switch from R to B.

• 2-dimensional (example 2) - we �nd a segment colored (R,B) on the (R,B) edge
of the outer triangle and start searching for an inner triangle with 3 colors. The
advancing rule in the search is always to pass through a segment colored with
(R,B) and not the one we entered from. The search must end with a 3-colored
triangle.
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• d-dimensional - we �nd on one of the outer edges a �triangle� colored with d
(out of d+1) colors and construct a path where at each step we go through the
edge which is d-colored (which guarantee we reach to a �triangle� which has at
least d colors). This path must end with a �triangle� which has d+1 colors.

This is actually a reduction to End-Of-Line (with a none directed graph).

To show 2 (End-Of-Line≤pNash) we will prove Brouwer's lemma (for more then
1 dimension):

We can �nd a triangle in any convex, compact 2-dimensional shape. Label the
tree vertexes of the original triangle as A, B and C. We will now divide the triangle
to smaller triangles, and label each new vertex by looking at f(p). The label of vertex
p will be the vertex of the original triangle from which the vector f(p) is moving away.
This labeling is well de�ned since if we 'continue' the line of f(p) until it reach one
of the original triangle sides, we could label p to be the label of the vertex opposing
that side:

Sperner's lemma guarantees the existence of a triangle with A-B-C vertexes. We
will now divide this triangle to smaller triangles and start the process again

Eventually, we'll �nd a point p for which p = f(p), and that's our �xed point.
Q.E.D.


