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4.1 Lecture overview

In this lecture we will concern ourselves with the existence of a Nash equilibrium and the
price of anarchy and stability in several game classes. We will:

• Define a class of games called congestion games and we’ll show the existence of a pure
Nash Equilibirum in any congestion game.

• Define a class called potential games and we’ll study the existence of pure equilibrium
in those games. (Actually the two classed are equivalent)

• Study two variants of a Network Creation game (unfair and fair), and analyze the price
of anarchy (when a Nash equilibrium exists)

4.2 Congestion Games

4.2.1 Example
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Figure 4.1: Example of a congestion game

Let us start with an illustrative example of a congestion game. Players A,B and C have
to go from point S to T using road segments SX,XY,...etc. (See Figure 4.1) Numbers on

1Partially based on 2006 scribe notes by Hila Pochter, Yaakov Hoch, Omry Tuval, and 2004 scribe notes
by Nir Yosef and Ami Koren
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edges denote the cost that each player pays for using that egde, the actual cost for each
player is a function of the number of players using that road segment (i.e. a discrete delay
function). For example: if segment SX is used by a two player, those two players will pay
3 “money points” each for using that egde, if three players will use it than each one of them
will pay 5. The total cost for a player is the sum of the costs on all segments he/she uses.

4.2.2 Congestion game - Definition

A congestion model (N ,M ,(Ai)i∈N ,(cj)j∈M) is defined as follows:

• N = {1, 2, ..., n} denote the set of n players.

• M = {1, 2, ...,m} denote the set of m resources.

• For i ∈ N , let Ai denote the set of strategies of player i, where each strategy a ∈ Ai is
a non empty subset of the resources.

• For j ∈ M , cj ∈ Rn denote the vector of costs, where cj(k) is the cost related to
resource j, if there are exactly k players using that resource.

Let A = ×i∈NAi be the set of all possible joint actions. For any a⃗ ∈ A and for any j ∈ M ,
let nj (⃗a) be the number of players using resource j, assuming a⃗ is the current joint action,
i.e. nj (⃗a) =| {i | j ∈ ai} |. The cost function for player i is ui(⃗a) =

∑
j∈ai cj(nj (⃗a)).

Remark 4.1 In our example we used Routing with unspllitable flow. This game can be easy
viewed as a congestion game. The resources are the edges M = E, the possible strategies
are the possible routes for player i: Ai = Pi and the cost of the edge is it’s latency, i.e.
ce(k) = le(k)

4.2.3 Pure Nash equilibrium

We establish that every congestion game has a pure Nash equilibrium.

Theorem 4.2 Every finite congestion game has a pure Nash equilibrium.

Proof: Let a⃗ ∈ A be a joint action.

Let Φ: A → R be a potential function defined as follows: Φ(⃗a) =
∑m

j=1

∑nj(a⃗)
k=1 cj(k)

Consider the case where a single player changes its strategy from ai to bi (where ai, bi ∈ Ai).
Let ∆ui be the change in its cost caused by the the change in strategy:
∆ui = ui(bi, a⃗−i)− ui(ai, a⃗−i) =

∑
j∈bi−ai

cj(nj (⃗a) + 1)−
∑

j∈ai−bi
cj(nj (⃗a)).

(explanation: change in cost = cost related to the use of new resources minus cost related
to use of those resources which are not in use anymore due to strategy change)
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Let ∆Φ be the change in the potential caused by the change in strategy:
∆Φ = Φ(bi, a⃗−i)− Φ(ai, a⃗−i) =

∑
j∈bi−ai

cj(nj (⃗a) + 1)−
∑

j∈ai−bi
cj(nj (⃗a))

(explanation: immediate from potential function’s definition).
Thus we can conclude that for a single player’s strategy change we get: ∆Φ = ∆ui.

That’s an interesting result: We can start from an arbitrary joint action a⃗, and at each
step let one player apply his best response (thus reducing his own cost). That means, that
at each step, Φ is reduced (identically). Since Φ can accept a finite amount of values, it
will eventually reach a local minima. At this point, no player can achieve any improvement,
therefore we reach a Nash equilibrium. �
Remark 4.3 Φ is actually an exact potential function as we will define shortly.

4.3 Potential games

4.3.1 Potential functions

Let G =< N, (Ai), (ui) > be a game where A = ×i∈NAi is the collection of all pure strategy
actions in G.

Definition A function Φ: A → R is an exact potential for game G if
∀a⃗∈A∀i ∈ N ∀bi ∈ Ai ∆Φ = ∆u
i.e: Φ(bi, a⃗−i)− Φ(ai, a⃗−i) = ui(bi, a⃗−i)− ui(ai, a⃗−i)

Definition A function Φ: A → R is a weighted potential for game G if
∀a⃗∈A∀ai,bi∈Ai

∆Φ = ωi∆u
i.e: Φ(bi, a⃗−i)− Φ(ai, a⃗−i) = ωi(ui(bi, a⃗−i)− ui(ai, a⃗−i)) = ωi∆ui

Where (ωi)i∈N is a vector of positive numbers (weight vector).

Definition A function Φ: A → R is an ordinal potential for a minimum game G if
∀a⃗∈A∀ai,bi∈Ai

∆ui < 0 ⇒ ∆Φ < 0
i.e: (ui(bi, a⃗−i)− ui(ai, a⃗−i) < 0) ⇒ (Φ(bi, a⃗−i)− Φ(ai, a⃗−i) < 0)
(Intuition: when a player decreases his cost, the potential function also decreases).

Remark 4.4 Considering the above definitions, it can be seen that the first two definitions
are special cases of the third.

4.3.2 Potential games

Definition A game G is called an ordinal potential game if it has an an ordinal potential
function.
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Theorem 4.5 Every finite ordinal potential game has a pure equilibrium.

Proof: Analogous to the proof of Theorem 4.2: Given an initial strategy vector, each
time a player changes strategy and reduces his cost, the potential function also decreases.
since this is a finite game, the potential function can have a finite set of values and therefore
the process of successive improvements by players must reach a local minima of the potential
function. No improvements (by any player) are possible at this point, and therefore this is a
pure equilibrium. �

Remark 4.6 Any congestion game (as defined earlier) is an exact potential game. The proof
of Theorem 4.2 is based on this property of congestion games.

4.3.3 Examples

4.3.3.1 Exact potential game (party affiliation game)

Consider an undirected graph G = (V,E) with a weight function ω⃗ on its edges. In this game
the players are the vertices and the goal is to partition the vertices set V into two distinct
subsets D1, D2 (where D1 ∪D2 = V ):
For every player i, choose si ∈ {−1, 1} where choosing si = 1 means that i ∈ D1 and
si = −1 means that i ∈ D2. The weight on each edge denotes how much the corresponding
vertices ’want’ to be on the same set. Thus, define the value function of player i as ui(s⃗) =∑

j ̸=i ωi,jsisj. (A player ’gains’ ωi,j for players that are in the same set with him, and ’loses’
for player in the other set. Note that ωi,j can be negative.) Each player tries to maximize
its utility function.

On the example given in Figure 4.3, U1 = +3 + 5 − 6 = 2 and U2 = −6 + 0 − 2 = −8.
it can be seen that players 1,2 and 4 have no interest in changing their strategies, However,
player 3 is not satisfied, it can increase his profit by changing his set to D1(meaning changing
his decision to +1).
Using Φ(s⃗) =

∑
j<i ωi,jsisj as our potential function, let us consider the case where a single

player i changes its strategy (shifts from one set to another):
∆ui =

∑
j ̸=i ωi,jsisj −

∑
j ̸=i ωi,j(−si)sj = 2

∑
j ̸=i ωi,jsisj = ∆(Φ)

which means that Φ is an exact potential function, therefore we conclude that the above
game is an exact potential game.

4.3.3.2 Weighted potential game

Consider the following load balancing congestion model (N,M, (ωi)i∈N) with M identical
machines, N jobs and (ωi)i∈N weight vector (ωi ∈ R+). The load on a machine is defined as
the sum of weights of the jobs which use it: Lj (⃗a) =

∑
i: ai=j ωi where a⃗ ∈ [1, 2, ...,M ]N is a

joint action.
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Figure 4.2: Example for an exact potential game

Let ui(⃗a) = Lai (⃗a) denote the cost function of player i. We would like to define a potential
function whose change in response to a single player’s strategy change will be correlated with
the change in the player’s cost function.
The potential function is defined as follows: Φ(⃗a) = 1

2

∑M
j=1 L

2
j (⃗a). Consider the case where

a job i shifts from its selected machine, M1, to another machine M2 (where M1 and M2 are
two arbitrary machines):
Let ∆ui be the change in its cost caused by the strategy change:
∆ui = ui(M2, a⃗−i)− ui(M1, a⃗−i) = L2(⃗a) + ωi − L1(⃗a).
(Explanation: change in job’s load = load on new machine minus load on the old machine)
Let ∆Φ be the change in the potential caused by the strategy change:

∆Φ = Φ(M2, a⃗−i)− Φ(M1, a⃗−i)

=
1

2
[(L1(⃗a)− ωi)

2 + (L2(⃗a) + ωi)
2 − L2

1(⃗a)− L2
2(⃗a)]

= ωi(L2(⃗a)− L1(⃗a)) + ω2
i = ωi(L2(⃗a) + ωi − L1(⃗a))

= ωi∆ui

Therefore, we can conclude that load balancing on identical machines is a weighted potential
game.

Lemma 4.7 For every game G such that for every joint action a⃗ ∈ A any path of best-
response actions is finite (i.e a path of best-responses gets to equilibrium), there exists an
ordinal potential function Φ.
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Proof: Let Φ(⃗a) be the length of the longest possible improvement path (path of best-
response actions) in the game G starting from a⃗. The function Φ is well defined because of
the property of G assumed in the lemma.
Consider an improvement step from a⃗1 ∈ A to a⃗2 ∈ A. In contradiction, assume that
Φ(a⃗2) ≥ Φ(a⃗1). Therefore from a⃗2 there exists an improvement path of length 1 + Φ(a⃗2)
which is a contradiction to Φ(a⃗1) being the longest improvement path starting from a⃗1. This
shows that Φ(a⃗2) < Φ(a⃗1), and that means Φ is an ordinal potential function. �

4.4 Connection Game (General Cost Sharing)

We have a graphG = (V,E). Each edge e has a price C(e). Each player i has two nodes si and
ti that he wants to connect. Each player’s action is a vector pi ∈ Rm, (pi(e1), pi(e2), ..., pi(em)) ≥
0 meaning player i offers pi(e) for the edge e. Let’s denote by p the joint action of the play-
ers, and G(p) = (V,Ep) is the graph resulting from the players’ strategies, where e ∈ Ep iff∑

i pi(e) ≥ C(e). Player i’s cost function Ci(p) is equal to ∞ if si and ti are not connected
and otherwise it is

∑
e∈Ep

pi(e). The player’s aim is to minimize this cost (yet to have si
connected to ti) We define the social cost to be C(p) =

∑
i ci(p) =

∑
e∈Ep

c(e).

Remark 4.8 Notice that in a Nash equilibrium the players will pay exactly the cost of each
edge bought in G(p) and every one of them will have a path from si to ti in G(p).

Theorem 4.9 A pure Nash equilibrium does not always exist for in a network creation game.

Proof:Let’s look at the following game in Figure 4.4.

1

1

1

1

s1 s2

t2 t1

Figure 4.3: Network Creation Game with no Nash equilibrium (taken from [2])

• In every NE the players will buy exactly 3 edges.

• Without loss of generality assume that the edges bought are (s1, s2), (s1, t2), (t1, s2).
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• Only player 1 pays for (s2, t1) (he’s the only player who needs it).

• Only player 2 pays for (s1, t2) (he’s the only player who needs it).

• Without loss of generality, suppose player 1 pays (at least ϵ) for (s1, s2).
Player 1 can change his strategy and

– not pay for (s1, t1) and (s1, s2) gaining (1 + ϵ).

– buy (t1, t2) paying 1.

• Thus there is no pure Nash equilibrium

�

Remark 4.10 In the above proof, the problem is that player 1 ignores the fact that in the
resulting network player 2 has no motivation to continue paying for (s1, t2). This is a serious
weakness of the Nash equilibrium concept: it ignores the fact that other players can and might
react to a certain player changing his strategy.

We now define a social cost function C(p) =
∑

ci(p) and assume we are given a game in
which there exists a Nash equilibrium.

1. PoA ≤ N : Every player i, given the other players actions, the cost of connecting si
to ti is at most the cost of connecting them regardless of the other players. Which in
turn is at most the total cost of the optimal solution. So every player pays at most
OPT and the total cost in a NE is at most N ·OPT .

2. PoA ≥ N : Consider Figure 4.4.

s

t

1 + ε n

Figure 4.4: POA = N
1+ϵ

(taken from [2])

This is a network of a single source single sink network creation game with N players.
Assume that all the players want to connect the the top vertex s to bottom vertex t.
In the social optimum solution all the players buy together the left edge from s to t.
Each player pays only 1+ϵ

N
. The social cost in this case is 1 + ϵ. Now look at the worst

case Nash equilibrium. In this case each player pays his part in buying the right edge
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thus each player pays 1. (notice that this is indeed equilibrium since each player will
pay more if he decides to buy the left edge alone). The social cost in this case is N .
Therefore for ϵ → 0 we get PoA ≥ N .

Definition [Price of Stability]

PoS = min
p∈PNE

C(p)

OPT (p)

In the previous example the PoS is 1 since the optimum is a Nash equilibrium. Now we

will show a case in which the PoS is high. Consider Figure 4.5.

N
2
− 1− ε

N
2
− 1− ε

ε ε

εε

s2

s1 t1

t2

1

s3, s4, ..., sn

t3, t4, ..., tn

Figure 4.5: PoS ≈ N − 2 (taken from [2])

The social optimal cost is 1 + 3ϵ, when the players buy the leftmost path and 3 of the
ϵ edges in the square on the right. However the lowest cost achieved in an equilibrium is
N − 2 + ϵ, when the players buy the two edges with cost N

2
− 1− ϵ and three ϵ edges in the

right square. Note that there is no other Nash equilibrium due to the square on the right
which we have shown that does not admit a Nash equilibrium.

4.5 Network Creation Game with fair cost sharing

We will consider a modification of the previous game. Instead of allowing the players to
directly set the cost, players will choose the edges and the cost will be divided equally
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between all players participating in an edge. The strategies for player i are ai ∈ Ai where
ai ⊆ E. Define

ne(a) = |{i : e ∈ ai}|

The cost of edge e to the player choosing it is ce(a) =
c(e)
ne(a)

The total cost for player i is: ci(a) =
∑

e∈ai
c(e)
ne(a)

The social cost is C(a) =
∑

i ci(a)

We can define the game as a congestion game with ce(k) =
c(e)
k
.

ui(a) =
∑
e∈a

ce(ne(a))

since this is a congestion game it is an exact potential game and thus always have a pure
Nash equilibrium !

Remark 4.11 The previous example about PoA still holds, thus PoA ≤ N .

Next, we show that the price of stability is only logarithmic.

Theorem 4.12

PoS ≤ H(N) =
N∑
l=1

1

l

Proof:

Φ(a) =
∑
e∈E

ne(a)∑
l=1

c(e)

l
=

∑
e

c(e) ·H(ne(a))

Consider a∗ = argminaΦ(a) which is obviously a Nash equilibrium. Let aopt be the optimal
solution.

H(N) · C(aopt) ≥
∑

e∈Eopt

c(e) ·H(ne(aopt)) ≥ Φ(aopt) ≥ Φ(a∗) ≥ C(a∗)

�

Theorem 4.13

PoS ≥ H(N) =
N∑
l=1

1

l
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s1 s2 si sn−1 sn

t

1 + ε

0 0 0 0 0

... ...

1

1

1

2

1

i

1

n−1

1

n

Figure 4.6: PoS ≥ H(N) (taken from [3])

Proof:

Consider at the following game (Figure 4.7): This is a single target game with N players.
In the social optimal solution each player would buy the 0 cost edge from him to the bottom
node and the 1 + ϵ edge (whose cost will be shared equally between all players).
The social cost in this case is 1 + ϵ. The only Nash equilibrium that exists in this case is
the one in which each player i buys the 1

i
edge from him to t, which gives us a social cost of

H(N). We will show that this is the only Nash equilibrium: Each player i has only 2 ways
to connect si to t. Let’s assume that a group Γ is connecting using the 1 + ϵ edge. Let’s i
be the player with the highest index in the group Γ. Player i would pay in this case 1+ϵ

|Γ| and

if he chooses to use the 1
i
edge from him to t he would pay 1

i
. Since |Γ| ≤ i, player i would

rather use the 1
i
edge. Therefore this is not an equilibrium. In this case PoS ≥ H(N)

1+ϵ
�

4.6 Strong Equilibrium

4.6.1 Symmetric Games

As we shall see in the next section, a strong equilibrium doesn’t always exist. However,
for a class of games called symmetric games a strong equilibrium is guaranteed to exist.

Definition A symmetric connection game is a connection game where all players have the
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same source s and the same sink t.

Theorem 4.14 In every symmetric connection game there exists a strong Nash equilibrium.

Proof: Consider a state of the game where all players fairly share the cost of the shortest
path from s to t. We claim that this state is a strong equilibrium. For every coalition of
players that may consider moving to a different path, the cost of this path is obviously not
less than the price of the shortest path. The price of the new path will be shared by at most
n players, so clearly there will be a player of the coalition which will not benefit of the move.
�

4.6.2 Fair Cost Sharing

A strong equilibrium doesn’t always exist in a connection game with fair cost sharing. Take
for example the game described in figure 4.8: Each player has only 2 paths that lead from

s1

s2

t1

t2

1

3

2

3

1

2

Figure 4.7: No strong equilibrium in fair cost sharing

his source to his sink: a path of length (length is the number of edges) 2, or a path of length
3. We can therefore represent the game as a 2x2 table:

2 3

2 (5, 5) (3.5, 5.5)
3 (5.5, 3.5) (4, 4)
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We conclude that this game is equivalent to the prisoner’s dillema, and hence (as seen in
lecture 2) has no strong equilibrium.

So we’ve seen that strong equilibrium doesn’t always exist. However, when it does exist,
we can look at the SPoA and prove a non-trivial upper bound of H(n)≈log(n) (recall that
in the previous section we showed an upper bound of only n for PoA).

Theorem 4.15 For every fair cost sharing game, if a strong equilibrium exists then SPoA ≤
H(n).

Proof: Let S be a strong equilibrium, and S∗ an optimal solution. First, we define a
coalition of all players: Γn = {1, 2, ..., n}. Because S is a strong equilibrium, there exists a
player k that will not benefit from moving to the optimal solution: uk(S) ≤ uk(S−Γn , S

∗
Γn
).

WLOG, assume k = n. We define a new coalition by removing this player Γn−1 = {1, 2, ..., n−
1}. We apply the same argument again to get a player (WLOG) n− 1 such that un−1(S) ≤
un−1(S−Γn−1 , S

∗
Γn−1

). We continue this way to define coalitions Γk = {1, 2, ..., k} with uk(S) ≤
uk(S−Γk

, S∗
Γk
) for every 0 ≤ k ≤ n.

Next, we define S(Γk) as the game played only by the players of Γk which play according
to S, while the players not in Γk are not existant in the game. We define S∗(Γk) in a similiar
way. Clearly uk(S−Γk

, S∗
Γk
) ≤ uk(S

∗(Γk)), since the players in Γk play the same and the
number of players is reduced in S∗(Γk).

Now recall that a fair cost sharing game is a congestion game. Thus we can define
the potential function Φ(a) =

∑
e∈E c(e) · H(ne(a)) and it holds that a change ∆uk in the

utility of a player equals the change ∆Φ in the potential function. Therefore uk(S
∗(Γk)) =

Φ(S∗(Γk))− Φ(S∗(Γk−1)).

Using all the claims we made so far we get:

uk(S) ≤ uk(S−Γn , S
∗
Γn
) ≤ uk(S

∗(Γk)) = Φ(S∗(Γk))− Φ(S∗(Γk−1))

Summing up on k we get the desired bound:

U(S) =
n∑

k=1

uk(S) ≤
n∑

k=1

Φ(S∗(Γk))− Φ(S∗(Γk−1))

= Φ(S∗(Γn))− Φ(S∗(Γ0)) = Φ(S∗)− Φ(S∗(∅))

= Φ(S∗) =
∑
e∈E

c(e) ·H(ne(S
∗)) ≤ H(n) · U(S∗))

�
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4.6.3 General Cost Sharing

As in the previous section, we start with the question of strong equilibrium existance. We
show (using an example) that even for a game where all players have the same source s,
a strong equlibrium doesn’t always exist (recall that we proved that if all players have the
same source and sink, a strong equilibrium does exist).

Consider the single source game of 3 players described in figure 4.9 (edges with no price
tag are free, i.e. zero cost):

t1 t2

s

t3

2− ε 2− ε 2− ε 3

Figure 4.8: No strong equilibrium in single source general cost sharing

• If all 3 players choose the edge of price 3, then there are 2 players which pay together
at least 2. They can thus unite and migrate to an edge of price 2−ε and improve their
utility.

• If 2 players share an edge of price 2 − ε, the third player pays at least 2 − ε for his
edge. All 3 together pay 4 − 2ε and thus can improve their benefit if all would move
to the edge of price 3.
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So in any case, there is a coalition of players that can change their move and benefit. It
follows that a strong equilibrium doesn’t exist.

As before, we’ll bound the SPoA when it does exist. In fact, we’ll show SPoA = 1,
meaning that a strong Nash equilibrium has an optimal cost. The bound will hold for single
source cost sharing only.

Theorem 4.16 In a single source general cost sharing game, every strong equilibrium is
optimal.

Proof: Let p = (p1, p2, ..., pn) and let T ∗ be the tree (with root s, the players’ source
point) of an optimal solution. T ∗ is simply the set of edges used by an optimal solution. It
must be a tree, otherwise we would have a vertex with 2 edges pointing it, one of them can
be discarded, in contradiction to the optimality of T ∗.

Denote by T ∗
e the subtree of T ∗ that disconnects from s when e is removed, and let Γ(T ∗

e )
be the set of players whose sink is in T ∗

e . We define P (T ∗
e ) as the total cost (by p) for players

in Γ(T ∗
e ), i.e. P (T ∗

e ) =
∑

i∈Γ(T ∗
e )
ci(p). Lastly, we define the cost for a set of edges E naturally

as C(E) =
∑

e∈E c(e).
Assume by contrudiction that p is not optimal, i.e., c(p) > c(T ∗). We’ll show a sub-tree

T ′ such that the set of players Γ(T ′) can change their payments, so each one of them will
benefit. This will contradict the fact that p is a strong equilibrium. First we’ll show how to
build T ′, then we’ll construct the new payments of the coalition players.

We start with building T ′. We define an edge e as bad if P (T ∗
e ) ≤ C(T ∗

e ∪ {e}), meaning
the players with sinks in T ∗

e pay no more than the cost of the sub-tree T ∗
e (including the edge

that connects it to the main tree T ∗). These players will not be part of the coalition. We
define T ′ as the tree derived from T ∗ after we remove all bad edges, including their sub-trees:
T ′ = T ∗ \ ∪e∈BAD(T

∗
e ∪ {e}). Note that it’s enough to remove only the top (closest to the

root) edge and its sub-tree from each path containing bad edges. Thus we can assume the
trees removed to be disjoint. From the definition of a bad edge it follows that every sub-tree
that we removed from T ∗ didn’t decrease the difference between the payments and the cost
of the remaining tree. Therefore, for every edge e we have that P (T ′

e) > C(T ′
e ∪ {e}).

Now that we defined T ′, we got a coalition Γ(T ′), and we can define new payments p̄ for
them, such that ci(p̄) < ci(p) for every i ∈ Γ(T ′). Note that the coalition is not empty since
c(p) > c(T ∗) and thus at least one of the edges the starts from s is not a bad edge.

We define ci(p̄, T
′
e) as the new payment of player i for the sub-tree T ′

e, i.e., ci(p̄, T
′
e) =∑

e∈T ′
e
ci(p̄i(e)). Note we have not yet defined p̄. We will show that for every sub-tree T ′

e,

ci(p̄, T
′
e ∪ {e}) < ci(p), and therefore ci(p̄) < ci(p).

We define the new payments p̄ by edge, going bottom-up on the tree T ′. When we’re
done assigning payments for a sub-tree T ′

e, we have that
∑

i∈Γ(T ′
e)
ci(p̄, T

′
e) = c(T ′

e), meaning
the sum of payments of the coalition members for edges in this sub-tree equals the price of
the sub-tree c(T ′

e). Recall that P (T ′
e) > C(T ′

e∪{e}) = c(T ′
e)+c(e). We can use this difference
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to split the cost of the edge as follows: for every i ∈ Γ(T ′
e) set p̄i(e) = c(e) ∆i∑

j∈Γ(T ′
e)

∆j
where

∆i = ci(p)− ci(p̄, T
′
e).

With the new payments p̄, we have for every i ∈ Γ(T ′
e):

ci(p̄, T
′
e ∪ {e}) = ci(p̄, T

′
e) + p̄i(e)

= ci(p̄, T
′
e) + c(e)

∆i∑
j∈Γ(T ′

e)
∆j

= ci(p) + ∆i(1−
c(e)∑

j∈Γ(T ′
e)
∆j

)

= ci(p) + ∆i(1−
c(e)

P (T ′
e)− c(T ′

e)
)

< ci(p)

This completes the proof. We have shown that if p creates a sub-optimal tree, then it is
not a strong equilibrium.

�
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