
Computational Game Theory Spring Semester, 2009/10

Lecture 2: March 1 2010
Lecturer: Yishay Mansour Scribes: Allon Wagner and Elad Liebman1

2.1 Quality of Equilibria

In this lecture we discuss the quality of equilibria. Let us assume we have a global function
which describes the social gain of all the players (“the common welfare”), achieving an
optimum value of OPT . However, in a game in which every player attemps to maximize its
private gain, a system could reach an equilibrium in which the social gain is not OPT . We
would like to compare the “quality” of an achieved Nash equilibrium (NE) to the “quality”
of the global optimum (OPT) - how “far off” are we from maximizing the total gain for the
entire system?

2.1.1 Job Scheduling

We will discuss a game of jobs (players) and machines. Each job must be allocated to one
machine only. The cost for one job is the load on the machine to which it is assigned.

Figure 2.1: An example for the job scheduling game.

This is a special case of the routing problem. Assume there is a network of parallel lines
from an origin S to a destination T as shown in figure 2.2. Several players want to send a

1These notes are based in part on old notes by Adi Adiv, Michal Rosen and Ricky Rosen (2006), and by
Noa Bar-Yosef and Eitan Yaffe (2004).

1

2 Lecture 2: March 1 2010

particular amount of traffic from the source S to the destination T. The more traffic on a
specific line, the longer the traffic delay (i.e. the cost).

Figure 2.2: A reduction from the job scheduling problem to the routing problem

2.1.2 The Formal Model

• A group of N = [1, . . . , n] jobs (players)

• A groupt of M = [1, . . . ,m] machines (we shall usually work under the assumption
that n� m)

• Every machine Mj has speed Sj ≥ 0

• Every job i has a weight value wi ≥ 0

• A game: Each player (job) i ∈ N picks a machine j ∈M

A = A1 × A2 × . . .× An where Ai = M

• The load on a machine Mj under the actions of the players a ∈ A is defined as the sum
of the weights of all the jobs that were allocated to it:

Lj(a) =

∑
i:ai=j

wi

Sj

• The cost will simply be the load on the chosen machine:

COSTi(a) = Ci(a) = Lai(a) =

∑
k:ai=ak

wk

Sai

2.1. QUALITY OF EQUILIBRIA 3

The social goal is to balance the load on the machines. We may consider two ways of
measuring this:

• The makespan MS(a) := maxj Lj(a) is the value of the machine carrying the greatest
load.

• The social cost SC(a) :=
∑

iwiCi(a) is the weighted sum of costs of all the players.
It then follows that SC(a) =

∑
j∈M L2

j(a).

We will focus on the makespan.

Theorem 2.1. Every job scheduling game has at least one pure equilibrium which is optimal.

Proof. Intuition: We will define a total order relation for all the solution vectors, and show
that every best response can only transfer us to a solution vector with a lower order, and
the proof will follow.

For a ∈ A we define:
L(a) = [(L1(a), L2(a), . . . , Lm(a)]

We now sort by size: L̃(a) = sort(L(a))
(it should be noted that once we sort, different vectors do not necessarily have the same order
of machines)

We define the order a � b iff L̃(a) ≤L̃ L̃(b), where ≤L̃ is the lexicographic order on the
sorted vector (lexicographic order: w ≤L v if wi = vi for i = 0, ..., k, and wk+1 ≤ vk+1) . Let
a∗ ∈ A be such that for all b ∈ A, a∗ � b.

• a∗ exists (since � is a total order).

• a∗ is an optimal solution for MS (makespan), since the first coordinate in the sorted
order is the most loaded machine, and for any other b, the first coordinate is at least
as large.

Now we will also show that a∗ is an equilibrium. Assume for contradiction that player
j gains by moving from Mk to Ml resulting in a joint action b. The load on Ml after the
move is smaller than Mk before the move. In addition, the load on Mk after the move is
smaller than the load on Mk before the move. Lastly, note that Lk(a) > Ll(a) (otherwise
the job wouldn’t have moved in the first place). Therefore, since a and b are identical in all
machines except for Mk and Ml, it follows L̃(a∗)L̃(b) and we have reached a contradiction
to the minimality of a∗.

Corollary 2.2. If at any moment we allow one player to improve its cost by doing best
response, we will eventually reach an equilibrium. It should be noted however that it will not
necessarily be of an optimal cost.

4 Lecture 2: March 1 2010

2.1.3 Measures for the Quality of an Equilibrium

• Pure Nash Equilibrium PNE := {a : a is a pure Nash equilibrium}

• Price of Anarchy PoA := maxa∈PNE
MS(a)
OPT

- the worst ratio of an equilibrium to the
optimal solution

• Price of Stability PoS := mina∈PNE
MS(a)
OPT

- the best ratio of an equilibrium to the
optimal solution

We’ve already established that for job scheduling OPT ∈ PNE and therefore PoS = 1.

2.1.4 Two Identical Machines - an Example

As can be seen in Figure 2.3, at the right pure NE, the maximal load is 4. However, the
maximal load of the optimal solution, which is also a NE is only 3. Therefore PoA = 4

3
. We

will immediately show that this is the worst case.

Figure 2.3: Two possible equilibria. It follows PoA = 4
3

Theorem 2.3. The price of anarchy for a job scheduling game with identical machines is
PoA ≤ (2− 2

m+1
)

Proof. let a ∈ PNE be a pure equilibrium. Let j∗ be the machine with the heaviest load
(Lj∗(a) = MS(a)). Let i∗ be the lowest-weighing job on j∗.
Machine j∗ must be assigned with at least one more job - otherwise it would be an optimal
assignment. It follows then that i∗ is at most 1

2
Lj∗(a) = 1

2
MS(a). There is no machine j 6= j∗

2.1. QUALITY OF EQUILIBRIA 5

for which Lj(a) < Lj∗(a)− wi∗ , otherwise, job i∗ would move to machine j, thus contradict-
ing the fact that we’re in a state of equilibrium. Hence:

∀j. Lj(a) ≥ Lj∗(a)− wi∗ ≥
1

2
Lj∗(a)

OPT has to be at least the average load on each machine, therefore

OPT ≥
∑
wi
m

=

∑
Lj
m
⇒

Therefore,

OPT ≥
MS(a) + (m− 1)1

2
MS(a)

m
=
m+ 1

2m
MS(a)⇒ MS(a)

OPT
≤ 2− 2

m+ 1

2.1.5 Tightness of the Upper Bound

We will now show this upper bound is tight (for every m) by giving an example in which
PoA is (2− 2

m+1
). Consider the following game: m machines, 2 jobs of size 1, and m(m− 1)

Figure 2.4: A game in which PoA = (2− 2
m+1

)

6 Lecture 2: March 1 2010

jobs of size 1
m

, as shown in Figure 2.4. One can easily verify that this is a NE with a cost of
2. The optimal configuration is obtained by scheduling the two ”heavy” users (with w = 1)
on two separate machines and dividing the other users among the rest of the machines. In
this configuration we get a cost of: C = OPT = 1 + 1

m
. Thus, the PoA is (2− 2

m+1
).

2.2 Related Machines

In this section, we will provide a tight upper bound on the PoA for JS games of related
machines. First note the following observation:

Note 2.4. OPT ≥
∑

i wi∑
j sj

This is trivial, since dividing the jobs so that each machine carries an equal load is the
best result we can hope for. Next we give a simple upper bound on the PoA.

Note 2.5. There is a trivial upper bound: PoA ≤ m

Proof. Assume s1 ≥ s2 ≥ . . . ≥ sm.
If all the jobs will pick the fastest machine L1 then: Lall1 =

∑
wi

s1
≤ m ·OPT . The inequality

follows from Note (2.4) and s1 being the highest speed. If a ∈ PNE, every job i chooses
not to move to machine M1. Should it move, its new cost would necessarily be at most
Lall1 . Since it chooses not to, we decude that its current cost is ci(a) ≤ Lall1 . We conclude
∀a. MS(a) ≤ Lall1 which means PoA ≤ m.

We will show a more involved tight upper bound of O(lnm
ln lnm

) for the price of anarchy.
We will begin by demonstrating that for every m, the PoA might obtain that value. I.e, the
bound is tight.

Example 2.6 (Lower Bound). Assume a fixed m. Let us have k + 1 sets of machines with
indices l = 0, . . . , k. Let there be Nl machines in set l. The speed of each machine in group
j will be sj := 2j. We will define:

• Nk :=
√
m

• ∀j < k. Nj := (j + 1)Nj+1

• And it follows that N0 := k!NK

Let us choose k in the following manner: we want m =
∑k

l=0Nl. Note that each set is

at least twice as large as the following set, and therefore N0 ∼
∑k

l=0 Nl. From Stirling’s
approximation, it follows that k ∼ lnN

ln lnN
will satisfy this condition. We will describe a “high

priced” equilibrium: Each machine in Nj has j jobs of size 2j each. Thus the load on each

2.2. RELATED MACHINES 7

machine j is exactly j, and it follows MS = k.
We denote this assignment by a.

Claim 2.7. The assignment a is a pure NE

Proof. Let us consider a job i on machine in set Nj. The load that i observes in a is j.
First, let us consider moving i to a machine in a set of a smaller index Nj−t (t ≥ 1). The
current load on the new machine is j − t. With job i the load will be:

(j − t) +
2j

2j−t
= j − t+ 2t > j

i does not want to move.
Now, let us consider moving i to a machine in a set of a bigger index Nj+t. The new load
on that machine will be

(j + t) +
2j

2j+t
> j

Again, i does not want to move.

Note, however, that there are exactly j · Nj jobs on set Nj, each of size 2j. We can
place each of them on a seperate machine in group Nj−1 (observe that we have exactly j ·Nj

machines in that group), causing load 2 on those machines. There is no problem with the
group N0 since there were no jobs on it in a - the original PNE.2 We have shown OPT ≤ 2.
Therefore:

Corollary 2.8. PoA ∼ lnm
ln lnm

Now we will bound the price of anarchy from above.

Theorem 2.9. For every JS game of related machines, PoA = O(lnm
ln lnm

)

Proof. Let a be the worst PNE. We will define c := bMS(a)
OPT
c. We will show (c − 1)! ≤ m,

and since c ≤ PoA ≤ c+ 1 it follows by Stirling’s approximation that PoA ∼ lnm
ln lnm

.
Let us sort the machines according to their speed s1 ≥ s2 ≥ . . . ≥ sm.
Let Jk be the maximal prefix-set Jk = {1, . . . , l} s.t. ∀j ∈ Jk. Lj(a) ≥ k · OPT . (see Figure
2.5)
Observe that J0 contains all machines. From Lemma 2.10 and Lemma 2.12 we deduce
m = |J0| ≥ (c− 1)!, and the theorem follows.

Our current goal is to provide a lower bound for the size of the sets Jk. We start with
the first set Jc−1.

Lemma 2.10. |Jc−1| ≥ 1

2Observe that our proposed assignment is not optimal, however, since we do not place any jobs on the
fastest machines Nk.

8 Lecture 2: March 1 2010

Figure 2.5: our definition of Jk. Note the machines are sorted by speed.

Proof. Assume by contradiction |Jc−1| = 0. This implies that L1(a) < (c − 1)OPT . But
then there exists a machine j > 1 that achieves the MS: Lj(a) ≥ c ·OPT . Pick an arbitrary
job i running on Lj and transfer it to machine L1. OPT has to put job i on some machine,
and machine 1 is the fastest, so wi

s1
≤ OPT . We conclude that L1’s new load is:

Lnew1 = L1(a) +
wi
s1

< (c− 1)OPT +OPT ≤ c ·OPT

Job i lowered its cost, so a cannot be NE.

Let Sk+1 be the set of jobs running on machines in Jk+1, i.e.,

Sk+1 := {i : ai ∈ Jk+1}

Lemma 2.11. In every optimal assignment, every i ∈ Sk+1 will run on a machine in Jk.

Proof. If i ∈ Sk+1 then ci(a) ≥ (k + 1)OPT . Let q be the fastest machine which is not in
Jk: Lq(a) < k ·OPT . Note that wi > sq ·OPT . Otherwise, we can transfer job i to machine
q: Lnewq = Lq(a) + wi

sq
≤ Lq(a) +OPT < (k + 1)OPT . Job i improved its gain, but we know

that a is a NE! Therefore, wi > Sq ·OPT .
Now, assume by contradiction that there is an optimal assignment of jobs to machines in

which i runs on a machine p /∈ Jk. Then wi

sp
> sq

sp
·OPT ≥ OPT . The last inequality follows

2.3. UNRELATED MACHINES 9

from q being the fastest machine not in Jk. But this means that Lp(a) > OPT , which is a
contradiction to the optimality of a.

Next, we bound the size of Jk as a function of Jk+1.

Lemma 2.12. |Jk| ≥ (k + 1)|Jk+1|

Proof. Let Wk+1 :=
∑

i∈Sk+1
wi. Since Sk+1 are exactly the jobs running on machines in Jk+1

it follows that
Wk+1 =

∑
j∈Jk+1

sj · Lj(a) ≥ (k + 1)OPT
∑
j∈Jk+1

sj

By Lemma 2.11, in an optimal assignment all the jobs in Sk+1 are placed on Jk and thus

OPT
∑
j∈Jk

sj ≥ Wk+1

It follows that OPT
∑

j∈Jk sj ≥ Wk+1 ≥ (k + 1)OPT
∑

j∈Jk+1
sj.

Let us define s := minj∈Jk+1
sj. Obviously, since the Jk are prefixes, ∀j ∈ Jk \ Jk+1 we

have that s ≥ sj. And from the previous inequality:

OPT (
∑

j∈Jk\Jk+1

sj) +OPT (
∑
j∈Jk+1

sj) ≥ (k + 1)OPT (
∑
j∈Jk+1

sj)

OPT · s|Jk \ Jk+1|+OPT (
∑
j∈Jk+1

sj) ≥ (k + 1)OPT (
∑
j∈Jk+1

sj)

OPT · s(|Jk| − |Jk+1|) ≥ k ·OPT (
∑
j∈Jk+1

sj) ≥ k ·OPT · s|Jk+1|

|Jk| ≥ (k + 1)|Jk+1|

As previously stated, the combination of Lemmata 2.10 and 2.12 proves Theorem 2.9.

2.3 Unrelated Machines

In an unrelated machine model, job i’s weight is dependant on the machine j on which it’s
placed. (Think, for instance, that we have several servers, each optimized for a specific kind
of tasks. If we place a task on a matching server, it will be processed quickly. If we place it
on a non-matching server it will take more time).

Formally, when job i is placed on machine j, it adds wi,j to the machine’s load.

Remark. Related machines are a special case of unrelated machines with wi,j := wi

sj
.

10 Lecture 2: March 1 2010

Let us first demonstrate that now the PoA is not bounded.

Example 2.13. Assume we have 2 machines and 2 jobs with the following weight vectors:
Job 1: (1, ε) Job 2: (ε, 1) (see Figure 2.6).
In case (1), no job would like to move, becuase on the new machine the load it will see is
1 + ε ! PoA = 1

ε
and thus becomes arbitrarily big.

Figure 2.6: The PoA is unbound for unrelated machines

We will now present a new notion: a coalition. In Example (2.13) the high-priced equi-
librium relied on the fact that only one player could try and change his action in every point
in time. Since his condition would only have worsened if he changed his action, he chose not
to. Now, we allow a group of players to join and change their actions simultaneously.

Definition Strong Equilibrium [Aumman 1956]

• A coalition is a group of players: Γ ⊆ N .

• A deviation is a joint action of all the members of the coalition: α ∈ ×i∈ΓAi.

• An action a is not robust against coalition Γ if

∃α ∈ ×i∈ΓAi. ∀i ∈ Γ. ui(α, a−Γ) < ui(a)

namely, there is a deviation from which all the coalition members benefit.

Strong EQ: a ∈ A is robust against any coalition Γ.

2.3. UNRELATED MACHINES 11

Remark. Specifically, a is robust against a coalition |Γ| = 1, which makes it a PNE.

Note that Example 2.13 above is not robust against a coalition of size 2.

Remark. Strong EQ doesn’t necessarily exist even if there is a pure NE. Consider, for instace,
the prisoner’s dilemma. There is exactly one pure NE (both confess) but it is not strong: if
the two prisoners unite, they can both improve their gain (by deciding that they will both
remain silent).

Definition Strong Price of Anarchy

SPoA := maxa∈SE
c(a)

OPT

where c is the cost function, and SE is the group of strong equilibria.

Note 2.14. SE ⊆ NE and therefore SPoA ≤ PoA

Example 2.15. It is possible that all the coalition members improve, but other players are
worse off. (see Figure 2.7)

Theorem 2.16. For every JS game, SPoA ≤ m

Proof. Let a ∈ A be a SE. Wlog, assume the machines are sorted by their load:

L1(a) ≥ L2(a) ≥ . . . ≥ Lm(a)

If Lm(a) > OPT then we will simply take a coalition Γ = N (a coalition of all the players).
All the players will switch their action to the OPT action (αi = opti), and will all see a
strictly smaller load than before. a is not SE.

Otherwise, Lm ≤ OPT . We will show that Lk(a) ≤ Lk+1(a) + OPT , and conclude by

induction that L1(a) ≤ m ·OPT . Since SPoA = L1(a)
OPT

in our case, we have proven the claim.
It remains to be shown that Lk(a) ≤ Lk+1(a) +OPT . Assume by contradiction Lk(a) >

Lk+1(a) + OPT . We will build a coalition of jobs Γ = {i : ai ∈ {1, . . . , k}} and choose
αi := opti (i.e., each job chooses the machine it chooses in the optimal solution). Let us
examine the new state of a player i ∈ Γ:

• if αi ∈ {1, . . . , k} then i’s condition improved: we move all the jobs on machines
{1, . . . , k} according to the opt solution, so the new load on every machine {1, . . . , k}
is at most OPT . (And might be strictly less since the coalition, which is the set of
jobs we might place on every machine {1, . . . , k}, is a subset of all the jobs).

• if αi ∈ {k + 1, . . . ,m}: note that we added to machine αi at most OPT . Therefore,
Lnewαi

≤ Lαi
(a) +OPT ≤ Lk+1(a) +OPT < Lk(a). Again, job i has improved its gain.

12 Lecture 2: March 1 2010

Figure 2.7: coalition example

We conclude that all the players in the coalition have improved their gain, hence a is not a
SE.

The next claim shows that the bound on the SPoA is tight.

Claim 2.17. For every m there exists a JS setting s.t. SPoA = m

Proof. For a fixed m, choose n = m to be the number of jobs. We will choose wi,j according
to the following matrix W = (wi,j) (Rows are jobs, columns are machines. Entries not
explicitly stated are ∞):

W =



1 1
1 2

1 3

1
. . .

1 m− 1
1 m


Namely, wi,i = i; wi+1,i = 1; w1,n = 1; and all other wi,j =∞.

Obviously, the red solution is an optimal assignment with load 1. We will show that the
blue assignment is a SE, which means that SPoA = m.

2.3. UNRELATED MACHINES 13

Assume that there exists a coalition Γ whose members can improve their cost. Let i be
the smallest index in Γ. We will show that i cannot improve its cost. Clearly, i > 1, because
job 1 is already placed on a machine with load 1, which is the minimal cost for job 1. It
follows that there exists a job i− 1 /∈ Γ . This job places a load i− 1 on machine i− 1. Let
us analyze the options of job i: The only possible way it can improve its gain is by moving
to machine i− 1. But then it will see load i on this machine (weight i− 1 put by job i− 1
in addition to its own weight), which means it did not improve its gain.

Remember that our definition for SE necessitates each member of the coalition to strictly
improve its gain. We might have conceived an alternative definition: we could have required
at least one member of the coalition to improve its gain (and the others to be unharmed).
However, such an alternative definition leads to non-intuitive results. For instance, according
to the “classic” definition, the state in Figure (2.8) is a SE. If we switch to the other definition
however, there is no SE since every two jobs placed on one machine will form a coalition.

Figure 2.8: After we change the definition of a coalition, any two jobs placed on the same
machine would form one, in this specific example.

