Computational Game Theory Spring Semester, 2009/10

Lecture 13:Revenue Maximization

Lecturer: Yishay Mansour Scribe: Tovi Almozlino, Alon Baraam

13.1 Introduction

In previous lectures, we have studied the design of truthful mechanisms that implement social
choice functions, such as social welfare maximization. Another fundamental objective, and
the focus of this chapter, is the design of mechanisms in which the goal of the mechanism
designer is profit maximization. In economics this topic is referred to as optimal mechanism
design.

Our focus will be on the design of profit-maximizing auctions in settings in which an
auctioneer is selling (respectively, buying) a set of goods/services. Formally, there are n
agents, each of whom desires some particular service. We assume that agents are single-
parameter; i.e., agent 1’s wvaluation for receiving service is v; and their valuation for no
service is normalized to zero. A mechanism takes as input sealed bids from the agents,
where agent i’s bid b; represents his valuation v;, and computes an outcome consisting of
an allocation x = (z1,...,x,) and prices p = (p1,...,p,). Setting x; = 1 represents agent
i being allocated service whereas z; = 0 is for no service, and p; is the amount agent ¢ is
required to pay the auctioneer. We assume that agents have quasi-linear wtility expressed
by u; = v;x; — p;. Thus, an agent’s goal in choosing his bid is to maximize the difference
between his valuation and his payment.

Our goal is to design the mechanism, i.e., the mapping from bid vectors to price/allocation
vectors so that the auctioneer’s profit, defined as

Profit = Z Dis
i
is maximized, and the mechanism is truthful.

13.1.1 Preliminaries

In this section we review basic properties of truthful mechanisms.

We will place two standard assumptions on our mechanisms. The first, that they are
indiwidually rational, means that no agent has negative expected utility for taking part in
the mechanism. The second condition we require is that of no positive transfers which
restricts the mechanism to not pay the agents when they do not win, i.e., z; =0 — p; = 0.
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In general, we will allow our mechanisms to be randomized. In a randomized mechanism,
x; is the probability that agent ¢ is allocated the good, and p; is agent i’s expected payment.
Since x; and p; are outputs of the mechanism, it will be useful to view them as functions of the
input bids as follows. We let x; (b), p; (b), and u; (b) represent agent i’s probability of alloca-
tion, expected price, and expected utility, respectively. Let b_; = (b1 coybis, b ,bn)
represent the vector of bids excluding bid i. Then with b_; fixed, we let z; (b;), p; (b;),
and w; (b;) represent agent i’s probability of allocation, expected price, and expected util-
ity, respectively, as a function of their own bid. We further define the convenient notation

Definition 13.1. A mechanism is strategyproof in expectation if and only if for all 7, v;, b;,
and b_;, agent i’s expected utility for bidding their valuation, v;, is at least their expected
utility for bidding any other value. In other words,

u; (vi, b)) > u; (b, b_;) .

Theorem 13.2. A mechanism is strategyproof in expectation if and only if, for any agent i
and any fived choice bids by the other agents b_;,

(i) x; (b;) is monotone nondecreasing.

(i) pi (bs) = bi; (b) — [ @ (2) dz.

Proof. In the proof we will simplify notation by removing the index i everywhere. In this
notation, to show strategyproofness we need to establish that

va (v) = p(v) 2 vz (V) —p (V)
for every v’. Plugging in the formula for p we get

v v v

W—%{v’f—l—/x(z)dz2vx(v’)—v'm(v')+/x(z)dz:(v—v’)x(v’)—i—/x(z)dz.

0 0 0

For v/ > v this is equivalent to
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which is again true due to the monotonicity of x.
In the other direction, combining the strategyproofness constraint at v,

vz (v) —p(v) = vz (V) —p ('),
with the strategyproofness constraint at v’,
vz (v) —p(v) < vz (V) —p(v),
and subtracting the inequalities, we get
(' —v)z(v) < (' —v)z (V)

which implies monotonicity of z, since v > v — x (v) > z (V') and v/ > v — z (V') > z (v).
To derive the formula for p, we can rearrange the two strategyproofness constraints as

v(z () —z () <p)—pv) < (z () -z ().

Now by letting v' = v + ¢, dividing throughout by €, and taking the limit e — 0, we get

d d d
— < — < y—
vdvx(v) < dvp(v) < vdvx(v)
Both sides approach the same value, vz (v), and we get p (v) = vLx (v). Thus, taking

into account the normalization condition p (0) = 0, we have that
p) = [ 2 (),
0
and integrating by parts completes the proof that
v

p(v) :vx(v)—/x(z)dz.

0

(This seems to require the differentiability of x, but as x is monotone this holds almost
everywhere, which suffices since we immediately integrate). O]

Given this theorem, we see that once an allocation rule x (-) is fixed, the payment rule p (+)
is also fixed. Thus, in specifying a mechanism we need specify only a monotone allocation
rule and from it the truth-inducing payment rule can be derived.

It is useful to specialize thm:A-mechanism-is to the case where the mechanism is deter-
ministic. In this case, the monotonicity of x; (b;) implies that, for b_; fixed, there is some
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threshold bid ¢; such that x; (b;) = 1 for all b; > ¢; and 0 for all ¢; < b;. Moreover the second
part of the theorem then implies that for any b; > t;,

b;

t;
We conclude the following.

Corollary 13.3. Any deterministic truthful auction is specified by a set of functions t; (b_;)
which determine, for each bidder i and each set of bids b_;, an offer price to bidder v such
that bidder i wins and pays price t; if b; > t;, or loses and pays nothing if b; < t;. (Ties can
be broken arbitrarily.)

13.2 Bayesian Optimal Mechanism Design

In this section we describe the conventional economics approach of Bayesian optimal mech-
anism design where is assumed that the valuations of the agents are drawn from a known
distribution. The mechanism we describe is known as the MVS mechanism: it is the truthful
mechanism that maximizes the auctioneer’s expected profit, where the expectation is taken
over the randomness in the agents’ valuations.

Consider, for example, a single-item auction with two bidders whose valuations are known
to be drawn independently at random from the uniform distribution on [0, 1]. In Lecture 10,
it was shown that the expected revenue of both the Vickrey (second-price) auction and of
the first price auction is % In fact, it was observed that any auction that always allocates
the item to the bidder with the higher valuations achieves the same expected revenue.

It was also shown that the expected profit of VA 1 the Vickrey auction with reservation

price r = %, is % Thus, it is possible to get higher expected profit than the Vickrey auction
by sometimes not allocating the item! This raises the problem of identifying, among the
class of all truthful auctions, the auction that gives the optimal profit in expectation. The
derivation in the next section answers this question and shows that in fact for this scenario
VA% is the optimal auction.

13.2.1 Virtual Valuations, Virtual Surplus, and Expected Profit

We assume that the valuations of the agents, v, v,, are drawn independently at random
from known (but not necessarily identical) continuous probability distributions Dy, ..., D,.
For simplicity, we assume that v; € [0, k] for all . We denote by F; the distribution function
from which bidder ¢’s valuation, v;, is drawn (i.e., F; (z) = Pr[v; < z]) and by f; its density
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function (i.e., f;(2) = d%Fi (2)). Since the agents’ valuations are independent, the joint

distribution from which v is drawn is just the product distribution F = F} x --- x F},.
We now define two key notions: wvirtual valuations and wvirtual surplus.

Definition 13.4. The virtual valuation of agent ¢ with valuation v; is

1 — F (vg)
Gi (vi) =vi — ——F——.
) i)
In particular, for D; = U [0, 1],
1 —w;
¢i(Ui):Ui— 1U:2Uz‘—1.

Definition 13.5. Given valuations, v;, and corresponding virtual valuations, ¢; (v;), the
virtual surplus of allocation x is >, ¢; (v;) x; (V).

As the surplus of an allocation is ) . wv;z;, the virtual surplus of an allocation is the
surplus of the allocation with respect to agents whose valuations are replaced by their virtual
valuations, ¢; (v;).

We now show that any truthful mechanism has expected profit equal to its expected vir-
tual surplus. Thus, to maximize expected profit, the mechanism should choose an allocation
which maximizes virtual surplus. In so far as this allocation rule is monotone, this gives the
optimal truthful mechanism!

Theorem 13.6. The expected profit of any truthful mechanism, M, is equal to its expected
virtual surplus, 1.e.,

E, [M(v)] = Ey

Z i (vi) @ (V)] -

Thus, if the mechanism on each bid vector b, chooses an allocation, x, which maxi-
mizes » . ¢; (v;) x; (v), the auctioneer’s profit will be maximized. Notice that if we employ a
deterministic tie-breaking rule then the resulting mechanism will be deterministic. thm:The-
expected-profit follows from lem:Consider-any-truthful below, and the independence of the
agents’ valuations.

Lemma 13.7. Consider any truthful mechanism and fix the bids b_; of all bidders except
for bidder i. The expected payment of a bidder i satisfies:

Ey, [pi (bi)] = Ey, [¢i (vi) 2 (b;)] -
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Proof. To simplify notation, we drop the subscript ¢ and refer simply to the bid b being
randomly chosen from distribution F' with density function f.
By thm:A-mechanism-is, we have

:/b:c(b)f(b)db—/a:(z)[l—F(z)]dz.

Now we rename z to b and factor out z (b) f (b) to get

13.2.2 Truthfulness of Virtual Surplus Maximization

Of course, it is not immediately clear that maximizing virtual surplus results in a truthful
mechanism. By thm:A-mechanism-is this depends on whether or not virtual surplus max-
imization results in a monotone allocation rule. Recall that the VCG mechanism, which
maximizes the actual surplus, i.e., > v;x; (v), is truthful precisely because surplus maxi-
mization results in a monotone allocation rule. Clearly then, virtual surplus maximization
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gives an allocation that is monotone in agent valuations precisely when virtual valuation
functions are monotone in agent valuations. Indeed, it is easy to find examples of the con-
verse which show that nonmonotone virtual valuations result in a nonmonotone allocation
rule. Thus, we conclude the following lemma.

Lemma 13.8. Virtual surplus mazimization is truthful if and only if, for all i, ¢; (v;) is
monotone nondecreasing in v;.

A sufficient condition for monotone virtual valuations is implied by the monotone hazard
rate assumption. The hazard rate of a distribution is defined as hr (z) = a S gf()z)). Clearly,
if the hazard rate is monotone nondecreasing, then the virtual valuations are monotone
nondecreasing as well, since ¢; (v;) = v; — ﬁ There is a technical construction that
extrends these results to the nonmonotone case, tut we do not cover it here.

Definition 13.9. Let F be the prior distribution of agents’ valuations satisfying the mono-
tone hazard rate assumption. We denote by MV Sg (b) the MVS mechanism: on input b,
output x to maximize the virtual surplus (defined with respect to the distribution F).

Thus, for single parameter problems, profit maximization in a Bayesian setting reduces to
virtual surplus maximization. This allows us to describe the MVS mechanism, MV Sg (b),
as follows:

(i) Given the bids b and F, compute “virtual bids”: b; = ¢; (b;) .
(ii) Run VCG on the virtual bids b’ to get x’ and p’

(iii) Output x = x’ and p with p; = ¢; * (p;) :

13.2.3 Applications of the MVS Mechanism

The formulation of virtual valuations and the statement that the optimal mechanism is the
one that maximizes virtual surplus is not the end of the story. In many relevant cases this
formulation allows one to derive very simple descriptions of the optimal mechanism. We
now consider a couple of examples to obtain a more precise understanding of MV Sg (b) and
illustrate this point.

Example 13.10. (single-item auction) In a single-item auction, the surplus maximizing
allocation gives the item to the bidder with the highest valuation, unless the highest valuation
is less than 0 in which case the auctioneer keeps the item. Usually, we assume that all
bidders’ valuations are at least zero, or they would not want to participate in the auction,
so the auctioneer never keeps the item.

However, when we maximize virtual surplus, it may be the case that a bidder has positive
valuation but negative virtual valuation. Thus, for allocating a single item, the optimal



