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11.1 Sponsored Search

11.1.1 Introduction

Search engines like Google and Yahoo! monetize their services by auctioning off advertising
space next to their search results. For example, Apple may bid to appear among the ad-
vertisements whenever users search for ”ipod”. These sponsored results look similar to the
search results. Each position in the sponsored results is called Slot. Generally, advertise-
ments that appear in a higher ranked slot (higher on the page) garner more attention and
more clicks from users. Thus, all else being equal, merchents generally prefer higher ranked
slots to lower ranked slots.

Advertisers bid for placement on the page in an auction-style format where the higher
their-bid the more likely their adverstiment will appear above other advertisements on the
page. By convension, sponsored search advertisers generally pay per click, namely, the mer-
chant pays only when the user clicks on the adverstiment.

11.1.2 Formal Model

• n - Number of advertisers (bidders)

• k ≤ n - Number of slots

• vi - Value of click for the ith advertiser

Goal
Find a maxmimum matching between advertisers and slots and set prices so that the mech-
anism is strategy-proof (incentive-compatible)

11.1.3 Solution: VCG

• i - Bidder (advertiser)

• j - Item (slot)
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• αij - Probability that a user will click on jth slot when it is occupied by advertiser i,
also known as the Click Through Rate (CTR). We assume that ∀j : ∀i, i′ : i 6= i′ ⇒
αij = αi′j. Meaning CTR is independent on which advertiser occupies it. We’ll denote
the jth slot’s CTR as αj.

• βi - The click through rate for advertiser i (independant from slot)

• We denote vij = viβiαj

Matching
In order to maximize the social welfare we need to match advertisers with spots:

• We denote v′i = viβi

• α1 ≥ α2 ≥ ... ≥ αk

• We sort v′i and match them with the corresponding αi

VCG Prices
In general, the price of the ith slot to the ith bidder is the total price if the ith bidder
didn’t exist (hence didn’t win any slot), minus the total price subtracting the ith bidder part
(v′iαi).

Formally:

(
i−1∑
j=1

v′jαj +
k∑

j=i+1

v′jαj−1)− (
i−1∑
j=1

v′jαj +
k∑

j=i+1

v′jαj) =
k∑

j=i+1

v′j(αj−1 − αj)

Example

We’ll calculate the prices for advertisers x, y, z in figure 11.1. We’ll first notice that
αa > αb > αc and v′x > v′y > v′z hence we match x, y, z with a, b, c respectively.

Prices Calculation:
We’ll denote Pi the price of advertiser i

Px = (0 + v′yαa + v′zαb)− (0 + v′yαb + v′zαc) = (20 + 5)− (10 + 2) = 25− 12 = 13

Py = (v′xαa + v′zαb)− (v′xαa + v′zαc) = (30 + 5)− (30 + 2) = 35− 32 = 3

Pz = (v′xαa + v′yαb)− (v′xαa + v′yαb) = (30 + 10)− (30 + 10) = 40− 40 = 0
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Figure 11.1: 3 advertisers x, y, z and 3 slots a, b, c

11.1.4 Generated Second Price Auction (GSP)

• The search engine assigns a weight βj to each advertiser. The weight can be thought
of as a relevance or quality metric. Through the lecture we’ve assume for simplicity
∀j : βj = 1. Historically, the sponsored mechanism was introduced by Overture called
”rank by bid”.

• Each bidder i bids bi

• Score for the ith bidder is b′i = biβi

• We sort the bidders by their scores: b′1 ≥ b′2 ≥ ... ≥ b′n

• Now the bidders are sorted so that bidder i obtains slot i

• Payment for a click in slot i is

Pi =
bi+1βi+1

βi
≤ bi

GSP Strategy-Proofness

Claim 11.1 GSP is not Strategy-Proof
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Figure 11.2: 3 advertisers x, y, z and 3 slots a, b, c where advertiser’s x value is higher when
he bids a number other than his real click-value

Definition Let gi to denote the total gain of advertiser i, i.e.,

gi = clicks · (v′i − b′i)

Proof:
Consider figure 11.2. We’ll calculate the advertisers’ gain in the case where ∀i : bi = vi,

that is, advertisers bid their actual click value:

b′x = by = 6⇒ gx = 10 · (7− 6) = 10

b′y = bz = 1⇒ gx = 4 · (6− 1) = 20

b′z = 0⇒ gz = 0

Now we’ll change x’s bid to be $5:

b′x = bz = 1⇒ gx = 4 · (7− 1) = 24

We’ve seen that if x lies about it’s click-value (that is, bids differently than its value) his gain
increases. Thus, x gains from lying, and therefore GSP mechanism is not strategy-proof. �

Example - Existance of multiple equilibria under GSP
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Figure 11.3: 3 advertisers x, y, z and 3 slots a, b, c, the orange bids and the green bids form
2 different equilbria under GSP

We’ll now see that there are sets of bids {bi}’s forming an equilbrium under GSP.
Consider the green and orange bid sets in figure 11.3. We’ll see that both are an equil-

brium under GSP.

Claim 11.2 The orange bid set is an equilbrium under GSP

Proof: We’ll calculate the gains:

gx = 10 · (7− 4) = 30

gy = 4 · (6− 2) = 16

gz = 0

Changing x’s bid to $3 isn’t worthy:

gx = 4 · (7− 2) = 20 < 30

Changing y’s bid to so that by > $5 isn’t worthy:

gy = 10 · (6− 5) = 10 < 16

Thus, the orange bid set is an equilbrium under GSP. �

Claim 11.3 The green bid set is an equilbrium under GSP
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Proof: We’ll calculate the gains:

gx = 4 · (7− 1) = 24

gy = 10 · (6− 3) = 30

gz = 0

Changing x’s bid so that bx > $5 isn’t worthy:

gx = 10 · (7− 5) = 20 < 24

Changing y’s bid to $2 isn’t worthy

gy = 4 · (6− 1) = 20 < 30

Thus, the green bid set is an equilbrium under GSP. �

Payment
Payment is the sum of prices for each advertiser:

∑
i Pi

GSP payment in the orange equilbrium:

10 · 4 + 4 · 2 + 0 = 48

GSP payment in the green equilbrium:

4 · 1 + 10 · 3 + 0 = 34

VCG Prices:

Px = v′y(αa − αb) + v′z(αb − αc) = 6 · (10− 4) + 1 · (4− 0) = 36 + 4 = 40

Py = v′z(αb − αc) = 1 · (4− 0) = 4

Pz = 0

Total VCG Payment is 40 + 4 = 44.

Summary

GSP Payment in

green equilbrium
< VCG Payment <

GSP Payment in

orange equilbrium

We found multi equilbria under GSP
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11.1.5 Matching Market

Model

• n - buyers

• m - products

• Each buyer wants to buy exactly 1 product

• Social Optimum ≡ Maximum Matching

• Each buyer i has a value vij to item j

• Product j has price pj

• Buyer i will choose a product out of arg maxj{vij − pj}

Goal
Set prices that clear the market, i.e. sell all the products to the buyers.

Example

Figure 11.4: 3 buyers x, y, z and 3 products a, b, c, and values of each product for each buyer.
Best response for prices 1 marked with solid lines, and for prices 2 with dashed lines. There’s
a perfect matching in BR graph for prices 1, i.e. those prices clear the market, while prices
2 don’t clear the market.



8 Lecture 11: Sponsored search

For a set of prices for the products, we define preferred-product graph, or best response
graph on buyers and products by constructing an edge between each buyer and his preferred
product. There can be different edges from a buyer to the products, if he’s indifferent for their
prices. Now it’s simple to see that the prices are market-clearing iff the resulting preferred-
product graph has a perfect matching. We shall show an algorithm which constructs a set
of market-clearing prices.

Algorithm for constructing a set of market-clearing prices

1. Set pj=0

2. Start of the round: at this point we have a set of prices, with smallest price being 0

3. Build BR graph, given the prices

4. Find perfect matching in the graph

5. If there is, we’re done: the current prices are market clearing

6. Else we find a set of buyers S with BR set N(S) which satisfies |S| > |N(S)|
7. Increase prices in N(S) by 1

8. If the minimal price p is non-zero, decrease each price pj by p

9. Goto 2

Example run of the algorithm

Figure 11.5: Round 1: 3 buyers x, y, z and 3 products a, b, c, and values of each product for
each buyer. Starting prices are 0. Best response is graphed. There’s no perfect matching,
so S is chosen to be {x, y, z} with N(S) = {a}
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Figure 11.6: Round 2: There’s no perfect matching, so S is chosen to be {x, z} with N(S) =
{a}

Figure 11.7: Round 3: There’s no perfect matching, so S is chosen to be {x, y, z} with
N(S) = {a, b}
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Figure 11.8: Round 4: There is perfect matching, marked by bold lines, so we have found
market-cleaning prices.

Hall’s theorem claims that if we do not have a perfect matching, then there is a set S,
such that |S| > N(S). This implies we will not fail in step 6.

Theorem 11.4 Hall’s theorem: Given a finite bipartite graph G := (S ∪ T,E) with two
equally sized partitions S and T , a perfect matching exists if and only if for every subset X
of S |X| ≤ |N(X)|, where for a set X of vertices of G, N(X) is the neighborhood of X in
G.

Claim 11.5 Step 6 in the algorithm is viable

Proof: Follows directly from Theorem 11.4, since there’s such set S with |S| > |N(S)|
if and only if there’s a perfect matching in G �

Claim 11.6 The algorithm eventually stops, therefore achieving market-clearing prices.

Proof: We prove the claim for integer prices and values for simplicity, the proof can be
easily extended to the general case. Define potential function φ such that φ(Producti) = pi,
the product price, and φ(Buyeri) = maxk{vjk − pk}, the buyer’s gain. The cummulative
potential function Φ is the sum of φ’s values over all buyers and all products. The starting
prices are 0, so φ over all products is 0. Initially, φ(Buyeri) = maxk{vjk} since pj = 0 in
the beginning, therefore when the algorithm starts Φ =

∑
i maxk{vjk}, which is some finite

non-negative integer value.

• The prices are always non-negative, since we decrease them only by the smallest price

• The gain of any buyer is non-negative in step 2, since there’s a product with 0 price
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• The potential Φ changes only when the prices change

Let ∆p be the change in the potential of the prices, ∆B the change in the potential of the
products, and ∆Φ = ∆p + ∆B the change in the potential. We consider the two cases where
prices change:
Decrease all prices by p:
∆p =

∑n
i=1 φ(Producti) = −np, while ∆B =

∑n
i=1 φ(Buyeri) = np, so overall ∆Φ = 0.

Increase prices in N(S) by 1:
∆p =

∑n
i=1 φ(Producti) = |N(S)|, while ∆B =

∑n
i=1 φ(Buyeri) = −|S|, so overall ∆Φ =

|N(S)|−|S| < 0. Since the initial value of Φ is bounded, Φ ≥ 0, ∆Φ < 0 and all the values are
integers, the algorithm stops in finite time, reaching a perfect matching in preferred-product
graph, and thus finds market clearing prices. �

Theorem 11.7 Market clearing prices maximize the social gain.

Proof: Suppose there’s a perfect matching in the preferred-product graph, i.e. prices
pi that clear the market. A perfect matching matches buyer i to some product ji, thus
having buyer i recieves payoff viji − pji . Given a perfect matching M , summing over all
buyers payoff yields

∑n
i=1 Payoff(Mi) =

∑n
i=1 V aluation(Mi)−

∑n
i=1 pi so V aluation(M) =

Payoff(M) +
∑n

i=1 pi, so choosing M among the perfect matchings that maximizes buyer
payoff will maximize the social gain, since the prices are constant. �

11.1.6 Back to GSP

Now we show a way to convert a sponsored search instance into a matching market instance in
such way that finding market clearing prices will be equivalent to finding a GSP equilibrium.
The sponsored search slots are the matching market products, and the advertisers are the
buyers. An advertiser’s valuation for a slot is simply the product of it’s own revenue per
click and the clickthrough rate of the slot. Figure 11.9 shows a sponsored search instance
translated into a matching market instance: advertiser x has click value 7, thus his item
values are his click value multiplied by slot click rate: 7 · 10, 7 · 4, 7 · 0, and the item values
for y and z are computed similarly. We chose market clearing prices 40, 40 and 0, which
impose matching between advertisers and slots. The costs per click are the slot price divided
by click rate - 40

10
= 4 for x, 4

4
= 1 for y and 0 for z. Player y bids x’s cost per click by = 4,

player z bids y’s cost per click bz = 1, and x bids some bid larger than y’s, i.e., bx > by. This
is a GSP equilibrium.

General claim on GSP equilibrium construction:
Given advertiser’s click values and slot click rates, we find market clearing prices p1, ..., pn.
The matching maps j-th advertiser to slotj with price pj. The price is for all the clicks
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Figure 11.9: 3 advertisers x, y, z and 3 slots a, b, c, with click values for advertisers and click
rates for slots. Constructing a matching market instance with market clearing prices imposes
matching between advertisers and slots.

• Bids definition: for each slotj define cost per click cost p∗j =
pj
αj

Claim 11.8 p∗1 ≥ p∗2 ≥ ... ≥ p∗n

Proof: Prices pj clear the market. Consider buyer i and compare to place l < i. In i-th
place the gain is vi − p∗i per click, αi(vi − p∗i ) for all clicks. In l-th place - αl ≥ αj, since l-th
place has higher clickthrough rate. Since buyer i preferrs i-th place, his gain is larger than
in l-th place - vi − p∗l ≤ vi − p∗i ⇒ p∗i ≤ p∗l �
Now, given prices p∗1, ..., p

∗
n we define the GSP bids. i+ 1-th buyer has bidi+1 = p∗i , and 1-st

buyer has bid1 = p∗1.

Claim 11.9 The bids are a GSP equilibrium.

Proof: Consider any change of bids:
Lowering a bid
If player i lowers his bid he will be between some player j and j + 1 with i < j and will pay
j-th player price. It won’t increase i-th player gain, since the prices clear the market.
Raising a bid
Player i raises his bid and get between some player j and j−1 with i > j and pays pj−1 ≥ pj,
which is higher than i-th player original price. �

11.1.7 GSP and VCG prices

• VCG price: pi =
∑k

j=i+1 vj(αj−1 − αj)

• GSP bid: bidi+1 = p∗i , bid1 = p∗1
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The VCG prices can be rewritten as pi−1 = pi + vi(αi−1 − αi), so the prices are ascending
and vi(αi−1 − αi) is the marginal price of moving from price pi to pi−1. Every player can
choose the highest price as long as the marginal cost is smaller than his value, and a player
can lower his price until the gain is smaller than the marginal cost. This is exactly the VCG
prices, therefore these bids are a GSP equilibrium.


