
Online Learning for Global Cost Functions

Eyal Even-Dar
Google Research.

evendar@google.com

Robert Kleinberg
Cornell University

rdk@cs.cornell.edu

Shie Mannor
Technion

shie@ee.technion.ac.il

Yishay Mansour
Tel Aviv University.
mansour@tau.ac.il

Abstract
We consider an online learning setting where at each time step the decision maker chooses a distribu-

tion over k alternatives, and then observes the loss of each alternative. Motivated by load balancing and
job scheduling, we consider a global cost function (a multivariate function of the losses incurred by each
alternative), rather than a summation of the instantaneous losses as done traditionally in online learning.
Such global cost functions include the makespan (the maximum over the alternatives) and the Ld norm
(over the alternatives). Based on approachability theory, we design an algorithm that guarantees van-
ishing regret for this setting, where the regret is measured with respect to the best static decision that
selects the same distribution over alternatives at every time step. For the special case of makespan cost
we devise a simple and efficient algorithm. In contrast, we show that for concave global cost functions,
such as Ld norms for d < 1, the worst-case average regret does not vanish, and that in general for Ld

norms with d > 1 our bound can not be improved.

1 Introduction

We introduce a formulation of online learning with a global cost function. In this class of problems, a
decision maker faces an environment with a fixed set of alternatives and tries to minimize a cost function
that depends on the cumulative losses incurred by each alternative, and not merely on the sum of all losses.
We therefore use the term global cost function.

To motivate the discussion, consider a job scheduling problem with jobs that can be distributed to
multiple machines and suppose each job incurs a different load per machine. In this instance of the problem,
the set of machines corresponds to the set of alternatives in the general formulation of the problem, and the
loads correspond to losses. At each stage the decision maker first selects a distribution over machines and
only then observes the loads of the machines. The load on each machine accumulates over time, weighted
in each stage by the distribution the decision-maker selected. The objective of the decision maker is to
minimize the makespan, i.e., the load of the most heavily loaded machine, or equivalently the infinity-norm
of the vector of loads. The comparison class the decision maker considers is that of all static allocations (i.e.,
distributions over machines) and the decision maker wants to minimize the difference between the cost of
the load vector and the cost of the best static allocation.

The online learning (or regret minimization) framework has had many successful applications in machine
learning, game theory, and beyond; see [9]. In spite of the advantages of this approach it suffers from some
inherent limitations. First, the size of the comparison class affects the magnitude of the regret (although
only in a logarithmic way). Second, the approach usually assumes that there is essentially no state of the
system and that the decision problem is the same at every stage (see however [4, 5, 6, 19, 10] for deviations
from this standard approach). Finally, there is a tacit assumption that the objective function is additive in
the losses over the time steps. This last assumption does not hold in many natural problems such as job
scheduling and load balancing settings, for example.

1

While there are similarities in motivation between online competitive algorithms [8] and the regret min-
imization setup, the models have some significant differences. First, the comparison class is substantially
different. While competitive analysis allows the optimal scheduler to be “arbitrary,” regret minimization
limits the size of the comparison class. On the other hand, the competitive analysis approach bounds only
the ratio of the performances, while the regret minimization bounds the difference between them. Finally,
there is also a very important difference in the information model. In regret minimization the decision maker
first selects an alternative (or a distribution over alternatives) and only then observes the losses, while in
the standard online scheduling setup the algorithm first observes the loads (losses) and only then selects a
machine (alternative).

Our model assumes a finite number of alternatives. We use the standard information model for regret
minimization problems: the decision maker first selects a distribution over alternatives and only then observes
the losses. We have a static comparison class: the set of all algorithms that use the same distribution over
the alternatives in every time step. The class of objective functions we consider is much in the spirit of the
job scheduling, and includes objective functions such as makespan or L2-norm. We bound the difference
between the performance of our online algorithm and the performance of the best static distribution with
respect to a global cost function, e.g., the L∞ norm of the loss vector, which corresponds to makespan. Note
that in contrast to many regret minimization works, we consider not only the best alternative, but rather
the best distribution over alternatives, so the comparison class in our setup is infinite.1

Our contributions include the following:

• We present the online learning model for a global cost function. This model is natural in the online
learning setup and it has not been studied to the best of our knowledge.

• We present an algorithm for convex global cost functions (such as makespan, or any Ld-norm, for
d > 1) that ensures the difference between the cost of our online algorithm and that of the best static
distribution is bounded by O(

√
k/T), where T is the number of time steps and k is the number of

alternatives. Our algorithm only requires that the objective is a convex and Lipschitz function. Our
algorithm guaranteeing a vanishing average regret is based on approachability theory, and for both the
Ld norm and makespan runs in polynomial time.

• For the important special case of the makespan cost function we provide a specialized simple determin-
istic online algorithm, which is both computationally efficient and has a regret bound of O(log(k)/

√
T),

where k is the number of different alternatives. Our algorithm is based on a recursive construction
where we first solve the case of two alternatives and then provide a recursive construction for any
number of alternatives. Our recursive construction maintains the computational efficiency of the two
alternative algorithm, and its regret depends only logarithmically on the number of alternatives.

• We complement our algorithms with an impossibility result. We show that one cannot hope to have a
similar result for any global cost function. Specifically, we show for a wide class of concave functions
(including any Ld-norm, for 0 < d < 1) that any online algorithm has Ω(1) regret. More specifically,
we show that the ratio of the online cost to the best distribution cost is bounded away from one. In
addition, we show that for any time horizon T , there is an Ld norm such that the regret is at least
Ω(1/

√
T).

Related Work: Unfortunately, we can not give a comprehensive review of the large body of research on
regret minimization algorithm, and we refer the interested reader to an excellent exposition in [9]. Most of
the work in regret minimization considers additive (as opposed to global) cost, namely the losses in different
time steps are added to define the cumulative loss. We now review some relevant related research. Regret
minimization when there is a notion of a state was studied in [11, 20] in the context of Markov decision

1It is instructive to discuss the difference between minimizing an additive loss (as in the “best expert” problem) and
minimizing the makespan (the L∞ norm of the loss vector). Consider two alternatives and a sequence of T identical losses of
(2, 1). Minimizing the additive loss would always select alternative 2, and have cost T . Minimizing the makespan would select
a distribution (1/3, 2/3) and would have cost (2/3)T .

2

process. Our problem can also be modeled as a Markov decision process where the state is the loss vector
and the costs are additive. The state space in such a model is, however, continuous2 and is neither unichain
nor irreducible. There has been an ongoing interest in extending the basic comparison class for the regret
minimization algorithms, for example by introducing shifting experts [12] time selection functions [7] and
wide range regret [18]. Still, all those works assume that the loss is additive between time steps.

A different research direction has been to improve the computational complexity of regret minimization
algorithms, especially in the case that the comparison class is exponential in size. General computationally
efficient transformations were given by [15], where the cost function is linear and the optimization oracle can
be computed in polynomial time, and extended by [14], to the case where we are given only an approximate-
optimization oracle.

There has been a sequence of works establishing the connection between online competitive algorithms [8]
and online learning algorithm [9]. One issue is that online learning algorithms are stateless, while many of the
problems addressed in the competitive analysis literature have a state (see [4]). For many problems one can
use the online learning algorithms and guarantee a near-optimal static solution, however a straightforward
application requires both exponential time and space. Computationally efficient solutions have been given
to specific problems, including paging [5], data structures [6], and routing [1, 2].

In contrast to our work, all the above works concentrate on the case where the global cost function is
additive between time steps.

2 Model and Preliminaries

We consider an online learning setup where a decision maker has a finite set K = {1, . . . , k} of k alternatives
to choose from. At each time step t, the algorithm A selects a distribution αAt ∈ ∆(K) over the set of
alternatives K, where ∆(K) is the set of distributions over K. Following that the adversary selects a vector

of losses `t ∈ [0, 1]k. The average loss of alternative i is denoted by LT (i) = 1
T

∑T
t=1 `t(i). The average

loss of the online algorithm A on alternative i is LAT (i) = 1
T

∑T
t=1 α

A
t (i)`t(i) and its average loss vector is

LAT = (LAT (1), . . . , LAT (k)). Let the loss vector of a static allocation α ∈ ∆(K) be LαT = α � LT where
x� y = (x(1)y(1), . . . , x(k)y(k)).

The objective of the online algorithm A is to minimize a global cost function C(LAT). In traditional online

learning the global cost C is assumed to be an additive function, i.e., C(LAT) =
∑k
i=1 L

A
T (i). The main

focus of this work is to consider alternative cost functions that arise in many natural problems such as job
scheduling. More specifically we consider the following norms: the makespan, C∞(LAT) = maxki=1 L

A
T (i), and

the d-norm cost, Cd(L
A
T) = (

∑k
i=1(LAT (i))d)1/d for d > 0. Note that for d > 1 the d-norm cost is convex

while for d < 1 it is concave.
Our comparison class is the class of static allocations for α ∈ ∆(K). We define the optimal cost function

C∗(LT) as the minimum over α ∈ ∆(K) of C(LαT). We denote by α∗C(LT) a minimizing α ∈ ∆(K) called
the optimal static allocation,3 i.e.,

C∗(LT) = min
α∈∆(K)

C(LαT) = min
α∈∆(K)

C(α� LT) = C(α∗C(LT)� LT).

We denote by C∗d and C∗∞ the global optimal cost function C∗ of the d-norm cost and the makespan,
respectively.

The regret of algorithm A at time T given the vectors L1, L2, . . . , LT , is defined as:

RT (A) = C(LAT)− C∗(LT).

Given a subset of the time steps B we denote by LB = 1
T

∑
t∈B `t the contribution of the time steps in B

to the final average loss, and for an algorithm A we denote by LAB (i) = 1
T

∑
t∈B α

A
t (i)`t(i) the contribution

2Even if one discretizes the Markov decision process, the size will grow with time.
3When the minimum is not unique we assume it can be selected according to some predefined order.

3

of the time steps in B to its final average loss on alternative i. The vector (LAB (1), . . . , LAB (k)) is denoted by
LAB .

We will assume that the cost function, C, is a convex function while C∗ is a concave function, and that
both of them are Lipschitz continuous (the only exception is Section5.2). The following lemma is immediate
from the definition of the norms.

Lemma 2.1. The d-norm global cost function Cd, for d > 1, and the makespan global cost function C∞ are
both convex and Lipschitz functions.

The challenging part is to show that the optimal cost function C∗ is a concave function. In Appendix A
we prove this for d-norm (Lemma A.2) and the makespan (Lemma A.4).

Lemma 2.2. The d-norm global optimal cost function C∗d , for d > 1, and the makespan global optimal cost
function C∗∞ are both concave and Lipschitz functions.

See Lemmas A.1 and A.3 in the appendix for a derivation of the optimal cost function and optimal static
allocation for both the d-norm and the makespan.

Remark: Our model is essentially fractional, where the decision maker selects a distribution, and each
alternative receives exactly its fraction according to the distribution. In settings where fractional decisions
are disallowed or are not meaningful, one can modify the algorithm so that it randomly samples a single
action from its distribution in each period. The following lemma attests to the fact that the extra loss
incurred by this random sampling is small.

Lemma 2.3. Consider an algorithm A whose regret in the fractional model is RT . If we modify A by
randomly sampling a single action from its distribution in each period, the expected regret of the modified
algorithm is bounded by RT + 19Λ/

√
T , where Λ denotes the Lipschitz constant of the cost function C.

Proof. Denote the modified algorithm by MA. Let αt denote the distribution selected by algorithm A at
time t, and let α̂t denote the distribution that assigns all of its probability mass to the action sampled by
MA at time t. The random vector α̂t − αt has expectation zero, conditional on the algorithm’s state at the
start of round t. Consequently the random vector (α̂t − αt)� `t also has conditional expectation zero, and
the sequence,

Xt =

t∑
s=1

(α̂t − αt)� `t ,

is a vector-valued martingale. This martingale has bounded differences, since the 2-norm of the vector
Xt−Xt−1 = (α̂t−αt)�`t is bounded above by 1. Using the Kallenberg-Sztencel concentration inequality [16],
as strengthened by Hayes [13], we may conclude that for all a > 0,

Pr (‖XT ‖2 ≥ a) < 2e2e−a
2/2T ,

and consequently,

E [‖XT ‖2] < 2e2

∫ ∞
0

e−a
2/2T da = e2

√
2πT < 19

√
T . (1)

Note that LMA
T = LAT+ 1

TXT . Thus, the amount by which the regret ofMA exceeds that ofA can be expressed

as C(LMA
T)− C(LAT) and is bounded above by Λ

T ‖XT ‖2. The lemma now follows by applying (1).

3 Low regret based on approachability theory

In this section we use Blackwell’s approachability theory to construct a strategy that has zero asymptotic
regret. Approachability theory concerns two-player games with vector-valued rather than scalar-valued
payoffs. It provides conditions under which a player of such a game can force the average payoff vector to
converge to a specified set, in repeated play. In this section we review the basics of approachability, deferring
proofs to Appendix B, and then we apply the theory to the problem of regret minimization with global cost
functions.

4

3.1 Review of approachability theory

Our treatment of approachability theory parallels Blackwell’s original paper [3] and the treatment given
in textbooks, e.g., [9]. The version of Blackwell’s Theorem that we present here is designed to emphasize
explicit convergence rates, and our definition of a game with vector payoffs is slightly more general than the
standard one because we allow the players’ mixed strategy sets to be arbitrary compact, convex sets rather
than requiring them to be simplices. This generalization, which does not materially change the proof of
Blackwell’s Theorem, is required because the adversary’s strategy set in our setting is a hypercube rather
than a simplex.

To state the theorem, suppose that A ⊆ Ra, B ⊆ Rb are compact, convex sets and that m : Ra×Rb → Rc
is a vector-valued bilinear function; one may interpret m as the payoff function of a game with strategy sets
A and B. Let V be any closed, convex subset of Rc; V is interpreted as a “target set,” and one player’s
goal is to guide the average payoff vector into the target set when repeatedly playing the game against an
adversary. We will use ‖x‖ to denote the 2-norm of a vector x, and we will use dist(x, V) to denote the
Euclidean distance, from x to V , i.e., dist(x, V) = infy∈V ‖x− y‖.

Definition 3.1. We say that V is approachable with convergence rate r(t) if there exists an algorithm for
choosing a sequence of vectors a1, a2, . . . ∈ A such that for every sequence b1, b2, . . . ∈ B and all integers
t ≥ 1:

1. the value of at depends only on the values of m(as, bs) for s < t;

2. the average payoff m̂t = 1
t

∑t
s=1m(as, bs) satisfies dist(m̂t, V) ≤ r(t).

Definition 3.2. We say that V satisfies the Blackwell criterion if V is closed and convex and for every
b ∈ B there exists a ∈ A such that m(a, b) ∈ V .

Theorem 3.3 (Blackwell,1956). Given compact, convex sets A ⊆ Ra, B ⊆ Rb and a bilinear function
m : Ra × Rb → Rc, if V satisfies the Blackwell criterion then V is approachable with convergence rate
r(t) = 2D/

√
t, where D = supx,y∈m(A×B) ‖x− y‖ is the diameter of the set m(A×B).

We provide a proof of Theorem 3.3 in Appendix B.

3.2 Application to regret minimization with global costs

To apply Blackwell’s Approachability Theorem to online learning with global cost functions, we begin by
specifying a game with vector payoffs and a target set. We then prove that the target set satisfies the
Blackwell criterion, and we invoke Theorem 3.3 to deduce that it is approachable and to obtain a bound on
the convergence rate. We conclude the section by explicitly describing a regret minimizing strategy based
on approachability theory.

Consider a repeated game against Nature where the decision maker chooses at every stage an action
α ∈ ∆(K) and Nature chooses an action ` ∈ [0, 1]k. The vector-valued reward obtained by the decision
maker is a 2k-dimensional vector m(α, `) whose first k coordinates are α� ` and the last k coordinates are
`. Let us denote this immediate vector-valued reward by mt = m(αt, `t) = (αt� `t, `t). It easily follows that

the average reward m̂T = (
∑T
t=1mt)/T is equal to (LAT , LT). We are now ready to define the target set in

this game,
S = {(x, y) ∈ Rk × Rk : x, y ≥ 0;C(x) ≤ C∗(y)}. (2)

Note that S is a set in R2k. We will show that S satisfies the Blackwell criterion. We first claim that S is
convex.

Lemma 3.4. Suppose that C is convex and C∗ is concave. Then S is convex.

Proof. Suppose that (xi, yi) ∈ S for i = 1, 2 and fix β ∈ [0, 1] (we let xi and yi denote vectors in Rk). Since
C is convex we have that,

C(βx1 + (1− β)x2) ≤ βC(x1) + (1− β)C(x2).

5

Since (xi, yi) ∈ S for i = 1, 2 we have that C(xi) ≤ C∗(yi) for i = 1, 2, and hence

βC(x1) + (1− β)C(x2) ≤ βC∗(y1) + (1− β)C∗(y2).

Using the fact that C∗ is concave we obtain that,

βC∗(y1) + (1− β)C∗(y2) ≤ C∗(βy1 + (1− β)y2).

Combining the above inequalities we conclude that,

C(βx1 + (1− β)x2) ≤ C∗(βy1 + (1− β)y2),

completing the proof.

Proposition 3.5. The set S is approachable, with convergence rate
√

8k/t.

Proof. It is obvious from the definition of S that it is a closed set, and Lemma 3.4 established that it is
convex. To finish verifying that S satisfies Blackwell’s criterion, we must prove that for every ` ∈ [0, 1]k

there exists a α ∈ ∆(K) such that m(α, `) ∈ S. This is easy: let α = α∗C(`). Then m(α, `) = (α∗C(`)� `, `)
belongs to S, by the definition of the function α∗C .

The bound on the convergence rate follows from the convergence rate 2D/
√
t given in Theorem 3.3; we

merely need to calculate an upper bound on D, the diameter of the set m(∆(K)× [0, 1]k). An easy way to
do this is to observe that the set is contained in the hypercube [0, 1]2k, whose diameter is

√
2k.

Since S is approachable, let us now explain how to approach it in a constructive way, using the algorithm
specified in the proof of Theorem 3.3 in Appendix B. Given the current vector valued reward m̂t = (LAt , Lt)
we first compute the point st ∈ S that is closest to m̂t. For that, we need to solve the following convex
optimization problem:

min
x,y∈Rk

‖(LAt , Lt)− (x, y)‖2 (3)

s.t. C(x) ≤ C∗(y)

x ≥ 0.

According to Blackwell’s approaching strategy (see Appendix B), if the solution to (3) is 0, i.e., m̂t ∈ S, the
decision maker can act arbitrarily at time t. If not, then let u = m̂t − (x, y) where (x, y) are the minimizers
of (3), and let us write u = (uα, u`) to denote the two k-dimensional components of u. We are looking for
an action α ∈ ∆(K) that guarantees that the expected reward at time t + 1 is on the other side of the
supporting hyperplane at (x, y); in other words α must satisfy

sup
`∈[0,1]k

m(α, `) · u ≤ sup
s∈S

s · u. (4)

We know that such a mixed action exists since S satisfies the Blackwell criterion. (See the proof of Theo-
rem 3.3.) The optimization problem we try to solve is therefore:

min
α∈∆(K)

max
`∈[0,1]k

u>α (α� `) + u>` `.

The objective function is bilinear in (α, `), so the inner maximization over ` is always accomplished by
choosing one of the extreme points, i.e., a vector ` ∈ {0, 1}k. In fact, it is evident that the vector ` ∈ {0, 1}k
that maximizes the objective function is defined by `(i) = 1 if uα(i)α(i) + u`(i) > 0 and otherwise `(i) = 0.
Hence

max
`∈[0,1]k

u>α (α� `) + u>` ` =

k∑
i=1

max{0, uα(i)α(i) + u`(i)}.

6

The problem of choosing α has thus been reduced to the optimization problem

min
α∈∆(K)

k∑
i=1

max{0, uα(i)α(i) + u`(i)}

which is equivalent to

min

k∑
i=1

β(i) (5)

s.t. β(i) ≥ uα(i)α(i) + u`(i) ∀i
k∑
i=1

α(i) = 1

β(i), α(i) ≥ 0 ∀i,

a linear program of size O(k). We summarize the above discussion in the following Theorem.

Theorem 3.6. The following strategy guarantees that regret converges to 0.

1. At every stage t solve (3).

2. If the solution is 0, play an arbitrary action.

3. If the solution is more than 0, compute (uα, u`) = m̂t − (x, y) where (x, y) are the minimizers of (3)
and solve (5). Play a maximizing α.

If Λ is an upper bound on the Lipschitz constant of both C and C∗, then the algorithm’s regret is bounded
above by 4Λ

√
k/T . Moreover, the running time is polynomial, assuming that the convex program (3) can be

solved in polynomial time.

Proof. The foregoing discussion establishes that the algorithm is an approaching strategy to S, and that in
fact its average payoff vector m̂T = (LAT , LT) satisfies dist(m̂T , S) ≤

√
8k/T . The only missing part is to

argue that approaching S implies minimizing the regret.
Let (x, y) ∈ S be such that ‖m̂T − (x, y)‖ ≤

√
8k/T . The algorithm’s regret is C(LAT) − C∗(LT), and

using the fact that C(x)− C∗(y) ≤ 0 (the definition of S) we obtain the following regret bound:

C(LAT)− C∗(LT) = [C(x)− C∗(y)] + [C(LAT)− C(x)] + [C∗(y)− C∗(LT)]

≤ Λ(‖LAT − x‖+ ‖LT − y‖)

≤ Λ
√

2‖LAT − x‖2 + 2‖LT − y‖2

= Λ
√

2‖m̂T − (x, y)‖2 ≤ 4Λ
√
k/T .

The bound on the algorithm’s running time is a direct consequence of the fact that (5) is a linear program
of polynomial size.

We note that while in principle there may be a dependence between k and the Lipschitz constant of C
and C∗, for the case of d-norms where d > 1 (including d = ∞) it is not hard to show that the Lipschitz
constant of both C and C∗ is bounded by 1. This implies that the convergence rate is O(

√
k/T) for d-norms.

7

4 Algorithms for Makespan

In this section we present algorithms for the makespan cost function. We propose algorithms that are simple
to implement, computationally efficient, and have an improved regret bound. For k alternatives the average
regret vanishes at the rate of O((log k)T−1/2). Throughout the section, we will use the terms “loss” and
“load” interchangeably.

The construction of the algorithms is done in two parts. The first part is to show an algorithm for the basic
case of two alternatives (Section 4.1). The second part is a recursive construction, that builds an algorithm
for 2r alternatives from two algorithms for 2r−1 alternatives, and one algorithm for two alternatives. The
recursive construction essentially builds a complete binary tree, and the main issue in the construction is to
define the losses that each algorithm observes (Section 4.2).

For the analysis of both parts of the construction, we will make use of a simple but powerful lemma
asserting that given any partition of the losses to subsets, if we bound the regret in each subset, then the
sum of the subsets’ regrets will bound the regret of the online algorithm.

Lemma 4.1. Suppose that C is convex scale-invariant4 and C∗ is concave scale-invariant. Let Ti be a
partition of the T time steps to m sets, and let ON be an online algorithm such that for each Ti we have
C(LONTi)− C∗(LTi) ≤ Ri. Then,

C(LONT)− C∗(LT) ≤
m∑
i=1

Ri.

Proof. Our assumption that C is scale-invariant implies that for every scalar λ ≥ 0, C(λx) = λC(x) and
similarly, since C∗ is scale-invariant, we have C∗(λx) = λC∗(x). The inequality C∗(x+ y) ≥ C∗(x) +C∗(y)
now follows by an easy calculation:

C∗(x+ y) = 2C∗
(
x+ y

2

)
≥ 2

[
1

2
C∗(x) +

1

2
C∗(y)

]
= C∗(x) + C∗(y). (6)

Similarly, the inequality C(x+ y) ≤ C(x) + C(y) follows from,

C(x+ y) = 2C

(
x+ y

2

)
≤ 2

[
1

2
C(x) +

1

2
C(y)

]
= C(x) + C(y). (7)

From the assumption in the theorem we have that
∑m
i=1 C(LONTi) −

∑m
i=1 C

∗(LTi) ≤
∑m
i=1Ri. Since Ti

is a partition, LT =
∑m
i=1 LTi and LONT =

∑m
i=1 L

ON
Ti . From (6) we have, C∗(LT) ≥

∑m
i=1 C

∗(LTi), and

from (7) we have, C(LONT) ≤
∑m
i=1 C(LONTi). Combining the three inequalities proves the theorem.

The importance of Lemma 4.1 is the following. If we are able to partition the time steps, in retrospect,
and bound the regret in each part of the partition, then the above theorem states that the overall regret is
bounded by the sum of the local regrets on each piece of the partition.

4.1 Two Alternatives

We derive a simple algorithm for the case of two alternatives (machines) and the makespan metric. Before
introducing the algorithm formally we would like to motivate its design. The static optimum balances the
loads on both machine (see Lemma A.3), so it makes sense that the online algorithm would try to balance
the loads on the machines as well. The online algorithm can achieve this by shifting weight to the less loaded
machine. More concretely, at time t let Λt be the difference between the increase of the load on machine
2 and machine 1. (Note we are considering the load derived by the online algorithm, so this measure is
an algorithm dependent one.) Then, at time t + 1 the weights of the machines are updated proportional
to Λt, with a constant learning rate. This will imply that the weight of a machine is proportional to the
difference in the loads (given the current online algorithm assignment). This will be the essence of our online
algorithm. We can now formally introduce the algorithm, which we call DIFF.

4A function f is scale invariant, if for any λ ≥ 0 we have f(λx) = λf(x).

8

The DIFF Algorithm:
At time t = 1 we have p1(1) = p1(2) = 1/2.
At time t ≥ 2 we have:
pt+1(1) = pt(1) + pt(2)`t(2)−pt(1)`t(1)√

T
, and pt(2) = 1− pt(1).

Figure 1: Algorithm DIFF for two alternatives.

The DIFF Algorithm: We denote the distribution of DIFF at time t by (pt(1), pt(2)). Algorithm DIFF
starts with p1(1) = p1(2) = 1/2, and the update of the distribution of DIFF is done as follows,

pt+1(1) = pt(1) +
pt(2)`t(2)− pt(1)`t(1)√

T
,

and by definition pt(2) = 1− pt(1).

Let LDT be the loads generated by DIFF on the alternatives, i.e., LDT (i) =
∑T
t=1 `t(i)pt(i), and let

Λt = LDt (2)−LDt (1) be the difference in the loads of the machine at time t due to algorithm DIFF. The first
step of the proof is to show that the algorithm DIFF derives legitimate weights, i.e., pt(i) ∈ [0, 1].

Lemma 4.2. For any loss sequence ` we have pt(i) ∈ (0, 1) for i ∈ {1, 2}, and |Λt| ≤
√
T/2

Proof. Consider the update in the weight of alternative 1 at time t, i.e., pt(1) = pt−1(1)− λt−1/
√
T , where

λt−1 = pt−1(2)`t−1t(2) − pt−1(1)`t−1(1). Clearly, λt−1 ≥ −pt−1(1) and hence pt(1) ≥ pt−1(1)(1 − 1√
T

).

Therefore, p1(1) > 0. Similarly, pt(2) > 0. Since pt(1) + pt(2) = 1 then pt(1), pt(2) ∈ (0, 1).
To bound Λt note that

pt(1) = (1/2) +

∑t
s=1 λs√
T

= (1/2) +
Λt√
T
.

Since pt(1) ∈ (0, 1) then |Λt| ≤
√
T/2.

The proof of the algorithm is rather technical, but the main idea of the proof is rather simple. Think
of the weight of alternative 1 as a walk on the interval [0, 1]. The walk starts at 1/2 and lets assume that
it also ends there (this will imply that we end up with perfectly balanced loads). Now segment the interval
[0, 1] to O(

√
T) equal size sub-intervals. For simplicity, assume that when we make an update, from pt(1) to

pt+1(1) both are in some sub-interval (maybe reaching the border point of that sub-interval). Now we can
present the main idea of the proof. Consider all the updates that are done in a given sub-interval. First,
all the updates have fairly similar weight, since they are in the same sub-interval. Second, The sum of the
loads incurred on both machines in those time steps is identical. Now consider the static optimum only for
those updates. We will show that it is also in that sub-interval. To complete the proof we partition the time
steps using the sub-intervals. For each such subset of time steps, we have the the average regret bounded by
O(1/

√
T), and hence by Lemma 4.1 the regret is bounded by O(

√
T).

The main idea of the proof would be to consider a run of the DIFF algorithm, and transform it to a run,
we call “well-behaved.” We will show that the cost of DIFF is identical in both runs and the cost of the
static optimum cost increases only slightly. On well-behaved runs we prove the regret bound.

Let us first introduce the notion of a run and a well behaved run.

Definition 4.3. A run R of length T is a sequence of pairs (`t, pt), where `t ∈ [0, 1]k and pt ∈ ∆(k) for

1 ≤ t ≤ T . Given a run R we define LRT (i) =
∑T
t=1 `t(i)pt(i), and the online cost of a run R is C(LRT). We

also define the loads of a run R as LR,sT (i) =
∑T
t=1 `t(i), and the optimum static cost of a run R is C∗(LR,sT).

Given a lost sequence ` the algorithm DIFF generates a run RD in a natural way, i.e., (`t, pt). We would

like to transform the run RD to a well behaved run R̂D. We define a well behaved run as follows.

9

Definition 4.4. A run R of length T is well behaved if:

1. At the end of the run R, the loads on both alternatives are identical, i.e., LRT (1) = LRT (2).

2. Let Zi = 10i for −0.1
√
T ≤ i ≤ 0.1

√
T and let ΛRt = LRt (2)− LRt (1). Then we require that for each t

there exists an i such that both Λt and Λt+1 are in [Zi, Zi+1]. (Note that we can have Λt ∈ (Zi, Zi+1],
Λt+1 = Zi, and then have, Λt+2 in [Zi−1, Zi).)

3. For each t we have | 12 + Λt√
T
− pt(1)| ≤ 1√

T
.

The following lemma shows how to map a run to a well behaved run.

Lemma 4.5. Every run RD of length T can be mapped to a well behaved run R̂D of length T̂ such that,

1. The length of the run does not change significantly, i.e., T ≤ T̂ ≤ 2T + 2
√
T .

2. The online cost of both runs is identical, i.e., C∞(LRT) = C∞(LR̂
T̂

).

3. The static optimum increases by at most
√
T , i.e., C∗∞(LR̂,s

T̂
) ≤ C∗∞(LR,sT) +

√
T .

Proof. Given the run R we will modify it incrementally to R̂. First we modify R to R̂0 by adding losses at
the end so that the machines end with identical loads. W.L.O.G., assume that pT (1) > 1/2. We add losses
`τ = (1, 0) and update the probabilities pτ using DIFF. Since we are using DIFF to compute pτ we have
that pτ (1) = 1

2 + Λτ√
T

. Note that when the alternatives are balanced we have pτ (1) = 1/2. Since initially the

difference is at most
√
T/2 (Lemma 4.2), and pτ (1) > 1/2 until we complete, we need to add at most

√
T

time steps. (In the last time step we might have `τ = (α, 0) for some α ∈ [0, 1].) Note that for R̂0 we have

C∞(LRT) = C∞(LR̂0

T̂
) since the additional losses did not increase the online makespan. Also, since we added

at most
√
T time steps then C∗∞(LR̂0,s

T̂
) ≤ C∗∞(LR,sT) + T 1/2.

Next we will concentrate on the requirements on Λt. Consider t to be the first time in R̂j in which the

requirement is violated. We replace t by two time steps in R̂j+1. In the first time step we have (γ`t, pt) and

in the following time step we have ((1 − γ)`t, pt), for some γ ∈ (0, 1). Clearly, the new run R̂j+1 will have

L
R̂j+1

T = L
R̂j

T̂
, L

R̂j+1,s
T = L

R̂j ,s

T̂
and | 12 + Λt√

T
| ≤ 1√

T
. Now we need to show that there is such a γ. Assume

that Λt−1 < Zi < Λt. The Zi = γΛt + (1− γ)Λt−1, for some γ ∈ [0, 1]. Since the only difference between Λt
and Λt−1 is in time step t, scaling the losses of `t to γ`t will achieve the desired effect.

Denote by R̂ the final run and T̂ its length. We have that T ≤ T̂ ≤ 2T +2
√
T since in the transformation

to R̂0 we added at most
√
T time steps, and in the second part we at most double the number of time steps.

In the second part we do not modify either LR̂0

T̂0
or LR̂0,s

T̂0
, so the online cost and the static optimum cost are

not modified.

Next we need to show that for “well behaved” runs we have low regret. We first partition the time steps
to subsets, depending on Λt. If Λt−1,Λt ∈ [Zi, Zi+1] then we assign time step t to the set Ti. This is clearly
a partition of the time steps. Given the losses at time steps Ti, we denote static optimal allocation for Ti by
(q∗i , 1− q∗i).

Lemma 4.6. Let zi = 1
2 + Zi√

T
. Assuming that Ti 6= ∅, then, |q∗i − zi| ≤ 12√

T
.

Proof. For the updates in Ti we have that
∑
t∈Ti λt = 0, where λt = pt(2)`t(2) − pt(1)`t(1). Consider the

function,

f(x) =
∑
t∈Ti

x pt(1)−
∑
t∈Ti

(1− x)pt(2)

= x(LTi(1) + LTi(2))− LTi(2),

10

The MULTI Algorithm AK2r :
Alternative set: K of size 2r partitioned

to I and J , |I| = |J | = 2r−1.
Procedures: A2, A

I
2r−1 , AJ2r−1 .

Action selection:
Algorithm AI2r−1 gives xt ∈ ∆(I).
Algorithm AJ2r−1 gives xt ∈ ∆(J).
Algorithm A2 gives (zt, 1− zt).

Output αt ∈ ∆(I ∪ J) where,
for i ∈ I set αt(i) = xt(i)zt, and
for j ∈ J set αt(j) = yt(j)(1− zt).

Loss distribution:
Given the loss `t.
Algorithm AI2r−1 receives `t(I).
Algorithm AJ2r−1 receives `t(J).
Algorithm A2 receives (ωt(I), ωt(J)),

where ωt(I) = 2−r+1
∑
i∈I `t(i)xt(i),

and ωt(J) = 2−r+1
∑
j∈J `t(j)yt(j).

Figure 2: Algorithm for multiple alternatives.

where LT =
∑
t∈T `t.

First, for q∗i we have that f(q∗i) = 0. Second, since for any t ∈ Ti we have that Λt ∈ [Zi, Zi+1]. This implies
that pt(1) ≥ zi − 1/

√
T and pt(1) ≤ zi+1 + 1/

√
T . Therefore f(zi − 1/

√
T) < 0 and f(zi+1 + 1/

√
T) > 0.

Hence q∗i ∈ [zi − 1/
√
T , zi+1 + 1/

√
T]. The lemma follows since zi+1 − zi = 10/

√
T .

Theorem 4.7. For any loss sequence `, we have that

Regret = C∞(LD)− C∗∞(L) ≤ 48√
T
.

Proof. Given R the run of DIFF on `, using Lemma 4.5 we map it to a well behaved run R̂, and this increases
the regret by at most

√
T . Given R̂ we partition the time steps to Ti. For each Ti the regret is at most |Ti| 12√

T
.

By Lemma 4.1 we can sum of the Ti and get that the regret is bounded by
∑
i |Ti|

12√
T
≤ (2T + 2

√
T) 12√

T
≤

48
√
T .

4.2 Multiple alternatives

In this section we show how to transform a low regret algorithm for two alternatives to one that can handle
multiple alternatives. For the base case we assume that we are given an online algorithm A2, such that for
any loss sequence `1, . . . , `T over two alternatives, guarantees that its average regret is at most α/

√
T . Using

A2 we will build a sequence of algorithms A2r , such that for any loss sequence `1, . . . , `T over 2r alternatives,
A2r guarantees that its average regret is at most O(α r/

√
T).

Our basic step in the construction is to build an algorithm A2r using two instances of A2r−1 and one
instance of A2. Algorithm A2r would work as follows. We partition the set of actions K to two subsets of
size 2r−1, denoted by I and J ; for each subset we create a copy of A2r−1 which we denote by AI2r−1 and
AJ2r−1 . The third instance AM2 would receive as an input the average loss of AI2r−1 and AJ2r−1 . Let us be
more precise about the construction of A2r .

At each time step t, A2r receives a distribution xt ∈ ∆(I) from AI2r−1 , a distribution yt ∈ ∆(J) from
AJ2r−1 and probability zt ∈ [0, 1] from AM2 . The distribution of A2r at time t, αt ∈ ∆(I ∪ J), is defined as

11

follows. For actions i ∈ I we set αt(i) = xt(i)zt, and for actions j ∈ J we set αt(j) = yt(j)(1 − zt). Given
the action αt, A2r observes a loss vector `t. It then provides AI2r−1 with the loss vector (`t(i))i∈I , A

J
2r−1 with

the loss vector (`t(j))j∈J , and AM2 with the loss vector (ωt(I), ωt(J)), where ωt(I) = 2−r+1
∑
i∈I `t(i)xt(i)

and ωt(J) = 2−r+1
∑
j∈J `t(j)yt(j).

The tricky part in the analysis is to relate the sequences xt, yt and zt to the actual aggregate loss of
the individual alternatives. We will do this in two steps. First we will bound the difference between the
average loss on the alternatives, and the optimal solution. Then we will show that the losses on the various
alternatives are approximately balanced, bounding the difference between the maximum and the minimum
loss.

The input to algorithm AM2 on its first alternative (generated by AI2r−1) has an average loss

W (I) =
1

T

∑
t

ωt(I) =
1

T

[∑
t

2−r+1
∑
i∈I

xt(i)`t(i)

]
.

Similarly, on the second alternative it has an average loss

W (J) =
1

T

∑
t

ωt(J) =
1

T

∑
t

2−r+1
∑
j∈J

yt(j)`t(j)

 .
First, we derive the following technical lemma (its proof is in Appendix C).

Lemma 4.8. Assume that AM2 is at height r (part of AI∪J2r). Then

W (I ∪ J) ≤ 1
1

W (I) + 1
W (J)

+
α√
T
≤ 1∑

a∈I∪J
1

LT (a)

+
rα√
T
.

The following claim, based on Lemma 4.2, bounds the difference between the average of all alternatives
and the loss of a specific alternative.

Claim 4.9. For any alternative i ∈ K we have, |W (K)− LA2r

T (i)| ≤ r√
T

.

Proof. We can view the algorithm A2r as generating a complete binary tree. Consider a path from the root
to a node that represents alternative i ∈ K. Let the sets of alternatives on the path be I0, . . . , Ir, where
I0 = K and Ir = {i}. We are interested in bounding |W (I0)−W (Ir)|. Clearly,

|W (I0)−W (Ir)| ≤
r∑
i=1

|W (Ii−1)−W (Ii)|.

Since W (Ii−1) = 1
2 (W (Ii)+W (Ii−1−Ii)), we have that |W (Ii−1)−W (Ii)| = 1

2 |W (Ii)−W (Ii−1−Ii)|. Since
the alternative sets Ii and Ii−1 − Ii are the alternatives of an AM2 algorithm (at depth i), by Corollary ??
we have that |W (Ii) − W (Ii−1 − Ii)| ≤ 2√

T
. This implies that |W (Ii−1) − W (Ii)| ≤ 1√

T
. Therefore,

|W (I0)−W (Ir)| ≤ r√
T

.

Now we can combine the two claims to the following theorem.

Theorem 4.10. Suppose the global cost function is makespan. For any set K of 2r alternatives, and for any

loss sequence `1, . . . , `T , algorithm A2r will have regret at most O(log |K|√
T

), i.e., C∞(LA2r

T)−C∗∞(`) ≤ 49 r√
T

.

Proof. By Lemma 4.8 we have that W (K) − C∗∞(`) ≤ rα√
T

. By Claim 4.9 we have that for any alternative

i ∈ K, LA2r

T (i)−W (K) ≤ r√
T

. Therefore, C∞(LA2r

T)− C∗∞(`) ≤ 49 r√
T

, since α ≤ 48 by Theorem 4.7.

12

5 Lower Bounds

5.1 Lower Bound for d-norms

Our first lower bound shows that it is impossible to have a regret below
√
T for any d-norm, and thus make

our main result tight.

Theorem 5.1. For every T there exists a convex-concave cost function Cf(T) such that the regret of any

algorithm A is at least Ω(
√
T)

Proof. For every T we will consider the following global cost function, C1+εT , where εT is positive and will
be determined later. By definition C1+εT is a convex-concave function. Next we show that an algorithm
with regret R(T) to with respect to C1+εT then it has an R(T) +o(

√
T) regret in standard settings, i.e., sum

of losses. We first observe that for small enough ε the following holds

‖(αL1)1+ε + (βL2)1+ε − (αL1 + βL2)
1+ε ‖1+ε ≤ c(L1 + L2)ε,

where c is some constant. Since for every α and β the above holds, we immediately get that ‖C∗1+εT (L1, L2)−
max(αL1, βL2)‖ ≤ εmax(L1, L2). Using the fact that the losses are bounded and by setting εt to o(1/

√
T) we

obtain that C∗1+εT approximates the standard `1 norm by o(
√
T) and that for every algorithm |C1+εT (LTA)−

‖LTA‖1| is bounded by o(
√
T). Now, if an algorithm has a regret of o(

√
T) for (1 + εt)-norm, then it has a

regret of o(
√
T) in the 1-norm as well, which is impossible to attain (see [9]).

5.2 Lower Bound for Non-Convex functions

In this section we show a lower bound that holds for a large range of non-convex global cost functions,
defined as follows.

Definition 5.2. A function f is γf -strictly concave if for every x > 0: (1) f(x/3)+f(2x/3)
f(x) ≥ γf > 1, (2)

limx→0 xf
′(x) = 0. (3) f is non-negative concave and increasing (4) limx→0 f(x) = 0

Note that any function f(x) = xβ for β < 1, is γf -strictly concave with γf =
(

2
3

)β
+
(

1
3

)β
.

Theorem 5.3. Let C(LAT) =
∑k
i=1 f(LAT (i)), where f is (γf)-strictly concave. For any online algorithm A

there is an input sequence such that C(LAT)/C∗(LT) > γf .

The proof can be found in Appendix D.

6 Open Problems

In this work we defined the setting of an online learning with a global cost function C. For the case that
C is convex and C∗ is concave, we showed that there are online algorithms with vanishing regret. On the
other hand, we showed that for certain concave functions C the regret is not vanishing. Giving a complete
characterization when does a cost function C enable a vanishing regret is very challenging open problem. In
this section we outline some possible research directions to address this problem.

First, if C is such that for some monotone function g, C ′ = g(C) satisfy the same properties as d-norm:
C ′ is convex, C ′∗(L) = minα C

′(L � α) is concave, and α∗(L) is Lipschitz, the algorithm of Section 3 for

C ′ would still lead to vanishing regret for C. For example, C(L) =
∑k
i=1(LT (i))d can be solved with that

approach.
A more interesting case is when the properties are violated. Obviously, in light of the lower bound of

Section 5.2 attaining C∗ in all cases is impossible. The question is if there is some more relaxed goal that
can be attained. As in [19], one can take the convex hull of the target set in Eq. (2) and still consider
an approaching strategy. It can be shown that by using the approachability strategy to the convex hull,

13

the decision maker minimizes the regret obtained with respect to the function CC defined below (i.e.,
RCT (A) = C(LAT)− CC(LT)). Specifically:

CC(L) = sup
L1,L2,...,Lm, β1,...βm, βj≥0:∑

βj=1,
∑m
j=1 β

jLj=L

C

 m∑
j=1

βjα∗C(Lj)� Lj
 .

It follows that C∗(L) ≤ CC(L) and C∗(L) = CC(L) if C is convex and C∗ concave (since in that case the
convex hull of S equals S). In general, however, CC may be strictly larger than C∗. The question if CC is
the lowest cost that can be attained against any loss sequence is left for future research.

A different open problem is a computational one. The approachability-based scheme requires projecting
a point to a convex set. While this can be done in polynomial time, the resulting policy is still complicated
comparing to regret minimization algorithms for the additive cost case or the algorithm for the makespan we
developed. It would be interesting to devise regret minimization algorithms for d-norm cost functions that
are simple in the style, perhaps, of follow the perturbed leader or exponential weights (see [9] for a review
of these algorithms).

Finally, although we have shown that for any horizon T there is an Ld norm that has regret Ω(
√
T),

there is a significant room for improvement. Specifically, we are not able to show any ω(1) lower bound for
either the L2 norm or the makespan. Such lower bounds would significantly increase our understanding of
the model and contrast the difference with the linear case.

Acknowledgements

Robert Kleinberg was supported by NSF Awards CCF-0643934, IIS-0905467, and AF-0910940, a Microsoft
Research New Faculty Fellowship, and an Alfred P. Sloan Foundation Fellowship. Shie Mannor was sup-
ported by a Horev Fellowship and by the Israel Science Foundation (contract 890015). Yishay Mansour was
supported in part by a grant from the Ministry of Science, by a grant from the Israel Science Foundation, by
grant No. 2008-321 from the United States-Israel Binational Science Foundation (BSF), The Israeli Centers
of Research Excellence (I-CORE) program, (Center No. 4/11), and by the IST Programme of the European
Community, under the PASCAL2 Network of Excellence, IST-2007-216886. This publication reflects the
authors’ views only.

References

[1] Baruch Awerbuch and Robert Kleinberg. Online linear optimization and adaptive routing. J. Comput.
Syst. Sci., 74(1):97–114, 2008.

[2] Baruch Awerbuch and Yishay Mansour. Adapting to a reliable network path. In PODC, pages 360–367,
2003.

[3] D. Blackwell. An analog of the minimax theorem for vector payoffs. Pacific Journal of Mathematics,
6:1–8, 1956.

[4] Avrim Blum and Carl Burch. On-line learning and the metrical task system problem. In COLT, pages
45–53, 1997.

[5] Avrim Blum, Carl Burch, and Adam Kalai. Finely-competitive paging. In FOCS, pages 450–458, 1999.

[6] Avrim Blum, Shuchi Chawla, and Adam Kalai. Static optimality and dynamic search-optimality in lists
and trees. Algorithmica, 36(3):249–260, 2003. (A preliminary version appeared in SODA 2002.).

[7] Avrim Blum and Yishay Mansour. From external to internal regret. J. Mach. Learn. Res., 8:1307–1324,
2007.

14

[8] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge University
Press, 1998.

[9] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University Press, New
York, 2006.

[10] D. P. de Farias and N. Megiddo. Combining expert advice in reactive environments. Journal of the
ACM, 53(5):762–799, 2006.

[11] Eyal Even-Dar, Sham M. Kakade, and Yishay Mansour. Online Markov decision processes. Math. Oper.
Res., 34(3):726–736, 2009.

[12] Yoav Freund, Robert E. Schapire, Yoram Singer, and Manfred K. Warmuth. Using and combining
predictors that specialize. In STOC, pages 334–343, 1997.

[13] Thomas P. Hayes. A large-deviation inequality for vector-valued martingales, 2005. Working paper,
available at http://www.cs.unm.edu/∼hayes/papers/.

[14] Sham M. Kakade, Adam Tauman Kalai, and Katrina Ligett. Playing games with approximation algo-
rithms. In STOC, pages 546–555, 2007.

[15] A. Kalai and S. Vempala. Efficient algorithms for online decision problems. Journal of Computer and
System Sciences, 71(3):291 – 307, 2005. An earlier version appeared in COLT 2003.

[16] Olav Kallenberg and Rafal Sztencel. Some dimension-free features of vector-valued martingales. Probab.
Th. Rel. Fields, 88:215–247, 1991.

[17] Hellmuth Kneser. Sur un théorème fondamental de la théorie des jeux. Computes Rendues Acad. Sci.
Paris, 234:2418–2420, 1952.

[18] Ehud Lehrer. A wide range no-regret theorem. Games and Economic Behavior, 42(1):101–115, 2003.

[19] S. Mannor and N. Shimkin. The empirical Bayes envelope and regret minimization in competitive
Markov decision processes. MOR, 28(2):327–345, 2003.

[20] Jia-Yuan Yu, Shie Mannor, and Nahum Shimkin. Markov decision processes with arbitrary reward
processes. Math. Oper. Res., 34(3):737–757, 2009.

A Properties of Norms

We are now ready to extend the results to any norm. Let us start by computing what is the optimal
assignment and what is its cost.

Lemma A.1. Consider the d-norm global cost function and a sequence of losses `1, . . . , `T . The optimal

stationary distribution is given by α∗Cd(`) =

(
1/LT (i)

d
d−1∑k

j=1 1/LT (j)
d
d−1

)
i∈K

and the optimal global cost function is

given by

C∗d(`) =

(
1∑k

j=1 1/LT (j)
d
d−1

) d−1
d

.

Proof. Recall that LT (1), . . . , LT (k) are the average losses of the alternatives. To compute the optimal

d-norm static distribution, we need to optimize the following cost function Cd(`) =
(∑k

i=1(α(i)LT (i))d
)1/d

15

subject to the constraint that
∑k
i=1 α(i) = 1. Using Lagrange multipliers we obtain that the optimum is

obtained for the following values

(α∗Cd(`))(i) = α(i) =
1/LT (i)

d
d−1∑k

j=1 1/LT (j)
d
d−1

.

This implies that the cost of the optimal distribution is given by

C∗d(L) =

(
k∑
i=1

(α(i)LT (i))d

)1/d

=

 k∑
i=1

(
1/LT (i)

d
d−1∑k

j=1 LT (j)
d
d−1

LT (i)

)d1/d

=

 k∑
i=1

 1

LT (i)
1
d−1∑k

j=1 1/LT (j)
d
d−1

d

1/d

=
1∑k

j=1 1/LT (j)
d
d−1

(
k∑
i=1

1

LT (i)
d
d−1

)1/d

=

(
1∑k

j=1 1/LT (j)
d
d−1

) d−1
d

.

After computing C∗d we are ready to prove its concavity.

Lemma A.2. The function C∗d(`) is concave.

Proof. In order to show that C∗d is concave we will prove that its Hessian is negative semidefinite. We
first compute the derivative and the second partial derivatives. We define for simplicity β = d

d−1 > 1 and

γ∗(x) = 1∑k
j=1 1/xβj

thus C∗d(x) = γ∗(x)1/β .

∂C∗d
∂x(i)

=
1

β
(γ∗(x))1/β−1 βx(i)−(β+1)(∑k

m=1
1

x(m)β

)2

= x(i)−(β+1)γ∗(x)
1
β+1

∂2C∗d
∂x(i)∂x(j)

= x(i)−(β+1)(
1

β
+ 1)(γ∗(x))1/β βx(j)−(β+1)(∑k

m=1
1

x(m)β

)2

= (β + 1)γ∗(x)
1
β+2x(i)−(β+1)x(j)−(β+1)

16

∂2C∗d
∂2x(i)

= −(β + 1)x(i)−(β+2)γ∗(x)
1
β+1

+x(i)−(β+1)(
1

β
+ 1)γ∗(x)

1
β

βx(i)−(β+1)(∑k
m=1

1
x(m)β

)2

= −(β + 1))x(i)−(β+2)γ∗(x)
1
β+1 + (β + 1)x(i)−2(β+1)γ∗(x)

1
β+2

= (β + 1)γ∗(x)
1
β+2

(
−x(i)−(β+2)

k∑
m=1

x(m)−β + x(i)−2(β+1)

)

= (β + 1)γ∗(x)
1
β+2

−x(i)−(β+2)
k∑

m=1,k 6=i

x(m)−β

 .

Since all entries of the Hessian are factor of (β+1)γ∗(x)
1
β+2 which is positive we can eliminate it without

effecting the semidefinte negative property. Let H be the Hessian and a any vector, then,

aHa′ =

k∑
i=

k∑
j=i+1

2x(i)−(β+1)x(j)−(β+1)aiaj +

k∑
i=1

a2
i

−x(i)−(β+2)
k∑

m=1,k 6=i

x(m)−β

=

k∑
i=1

k∑
j=i+1

(
− a2

ix(i)−(β+2)x(j)−β − a2
jx(j)−(β+2)x(i)−β + 2x(i)−(β+1)x(j)−(β+1)aiaj

)

=

k∑
i=1

k∑
j=i+1

x(i)−βx(j)−β

(
− a2

i

x(i)2
−

a2
j

x(j)2
+

2aiaj
x(i)x(j)

)

=

k∑
i=1

k∑
j=i+1

−x(i)−βx(j)−β(
ai
x(i)

− aj
x(j)

)2 ≤ 0.

Now consider the makespan metric which is the standard metric for load balancing and job scheduling
tasks. The optimal stationary distribution is the one which balances load evenly across all k machines, which
implies the following:

Lemma A.3. Consider the makespan global cost function and a sequence of losses `1, . . . , `T . The optimal

stationary distribution is given by α∗C∞(`) =

(
1/LT (i)∑k
j=1 1/LT (j)

)
i∈K

and the optimal global cost function is given

by

C∗∞(`) =
1

T

(
1∑k

j=1 1/LT (j)

)
.

Having derived the formula for C∗∞, we now proceed to prove that it is concave.

Lemma A.4. The function C∗∞ is concave.

Proof. In order to do so we will show that the Hessian of C∗ is negative semidefinite. We start by computing
the partial derivatives of C∗.

∂C∗

∂x(i)
=

1/x(i)2

(
∑k
j=1 1/x(j))2

∂2C∗

∂x(i)∂x(j)
=

2/(x(i)2x(j)2)

(
∑k
j=1 1/x(j))3

,

∂2C∗

∂x(i)2
=
−2
∑
j 6=i

1
x(i)3x(j)

(
∑k
j=1 1/x(j))3

.

17

Next we show that aHa′ < 0, where H is the Hessian and a is any vector. To simplify the computation we
eliminate the common factor 2/(

∑k
j=1 1/x(j))3 which is positive from all entries.

aHa′ =

k∑
i=1

k∑
j=i+1

2aiaj
x(i)2x(j)2

−
k∑
i=1

∑
j 6=i

a2
i

x(i)3x(j)

=

k∑
i=1

k∑
j=i+1

1

x(i)x(j)

(
− a2

i

x(i)2
+

2aiaj
x(i)x(j)

−−
a2
j

x(j)2

)

=

k∑
i=1

k∑
j=i+1

−1

x(i)x(j)

(
ai
x(i)

− aj
x(j)

)2

≤ 0.

Therefore, we showed that C∗ is concave and we conclude the proof.

B Proof of Blackwell’s Theorem

This section provides a proof of Theorem 3.3, Blackwell’s Approachability Theorem. For convenience, we
begin by restating the theorem, preceded by the relevant definitions.

Definition 3.1. We say that V is approachable with convergence rate r(t) if there exists an algorithm for
choosing a sequence of vectors a1, a2, . . . ∈ A such that for every sequence b1, b2, . . . ∈ B and all integers
t ≥ 1:

1. the value of at depends only on the values of m(as, bs) for s < t;

2. the average payoff m̂t = 1
t

∑t
s=1m(as, bs) satisfies dist(m̂t, V) ≤ r(t).

Definition 3.2. We say that V satisfies the Blackwell criterion if V is closed and convex and for every
b ∈ B there exists a ∈ A such that m(a, b) ∈ V .

Theorem 3.3. Given compact, convex sets A ⊆ Ra, B ⊆ Rb and a bilinear function m : Ra × Rb → Rc,
if V satisfies the Blackwell criterion then V is approachable with convergence rate r(t) = 2D/

√
t, where

D = supx,y∈m(A×B) ‖x− y‖ is the diameter of the set m(A×B) and D ≥ supx,y∈V ‖x− y‖.

Proof. For every vector u ∈ Rc, the mapping (a, b) 7→ m(a, b) ·u defines a two-player game with scalar payoff.
Kneser’s Minimax Theorem [17] (a generalization of von Neumann’s Minimax Theorem) implies that

inf
a∈A

sup
b∈B
{m(a, b) · u} = sup

b∈B
inf
a∈A
{m(a, b) · u}.

Our assumption that for every b ∈ B there exists a ∈ A such that m(a, b) ∈ V implies that the right side
is less than or equal to sups∈V s · u. Our assumption that A is compact implies that the infimum on the
left side is attained at some a ∈ A. Putting these observations together, we conclude that for every u ∈ Rc,
there exists some a = a(u) ∈ A such that

sup
b∈B

m(a(u), b) · u ≤ sup
s∈V

s · u, (8)

a fact which will be crucial to designing and analyzing the algorithm whose existence is asserted by the
theorem.

To state the algorithm, let us first define the following notation. Let m̂0 be an arbitrary element of V ,
and for t > 0 let m̂t = 1

t

∑t
s=1m(as, bs) denote the average payoff vectors realized in the first t rounds. Let

δt = dist(m̂t, V) and let st be the point in V that is closest to m̂t in Euclidean distance. At time t+ 1 ≥ 1
the algorithm computes the vectors m̂t and st. If m̂t ∈ V then it chooses at+1 to be an arbitrary element of
A. Otherwise, it chooses at+1 = a(m̂t − st).

18

To analyze the algorithm we analyze the relationship between δt+1 and δt. Putting

u = m̂t − st
v = m(at+1, bt+1)− st

and using the facts that

δt = ‖u‖
δt+1 ≤ ‖m̂t+1 − st‖

m̂t+1 − st =

(
t

t+ 1

)
u+

(
1

t+ 1

)
v

we obtain the bound

δ2
t+1 ≤

(
t

t+ 1

)2

δ2
t +

2t

(t+ 1)2
(v · u) +

(
1

t+ 1

)2

‖v‖2. (9)

The dot product v · u occurring in the middle term is non-positive. This can be seen by a case analysis: if
m̂t ∈ V then u = 0, whereas if m̂t 6∈ V then the vector at+1 = a(u) satisfies (8), and thus

v · u = (m(at+1, bt+1)− st) · u ≤ sup
s∈V
{(s− st) · u}.

To prove that the right side is non-positive, we observe that (s − st) · u is the derivative of the function
− 1

2‖m̂t− (xst+ (1−x)s)‖2 at x = 1. This function is maximized at st, by our assumptions that V is convex
(hence contains xst + (1−x)s for x ∈ [0, 1]) and that st is the point of V that minimizes the distance to m̂t.

Having proven that the middle term on the right side of (9) is non-positive, we turn to the task of
bounding the third term. The triangle inequality implies that

‖v‖ = ‖m(at+1, bt+1)− st‖ ≤ ‖m(at+1, bt+1)− m̂t‖+ ‖m̂t − st‖. (10)

The convexity of the 2-norm implies that for any m(a, b) ∈ m(A×B), we have

‖m(a, b)− m̂t‖ ≤
1

t

t∑
s=1

‖m(a, b)−m(as, bs)‖ ≤ diam(m(A×B)) = D. (11)

In particular, the first term on the right side of (10) is bounded above by D. The second term is also bounded
above by D. To see this, note that there is some m(a, b) ∈ V (recall that for every b ∈ B there exists a ∈ A
such that m(a, b) ∈ V , which is much stronger). Hence,

‖m̂t − st‖ = min
s∈V
‖m̂t − s‖ ≤ ‖m̂t −m(a, b)‖ ≤ D,

where the last inequality follows by another application of (11).
Applying these bounds to (9), we have thus derived

δ2
t+1 ≤

(
t

t+ 1

)2

δ2
t +

(
1

t+ 1

)2

· (2D)2

(t+ 1)2δ2
t+1 ≤ t2δ2

t + 4D2.

Together with the initial condition δ0 = 0, an obvious induction now establishes that t2δ2
t ≤ 4D2t for all

t ≥ 0. The bound δt ≤ 2D/
√
t in the theorem statement follows by an algebraic manipulation.

19

C Proof of Lemma 4.8

Let W1 = W (I) and W2 = W (J). The first inequality follows from the fact that our assumption of the
regret of AM2 implies that max{W1,W2} ≤ 1

1/W1+1/W2
+ α√

T
. This also proves the base of the induction for

r = 1.
For the proof let π1 =

∏
i∈I LT (i), π2 =

∏
j∈J LT (j) and π = π1π2. Also, s1 =

∑
i∈I
∏
k∈I\{i} LT (k),

s2 =
∑
j∈J

∏
k∈J\{j} LT (k), and s = s1π2 +s2π1. One can verify that the optimal cost opt = (

∑
i 1/LT (i))−1

equals to π/s.

Let β = (r−1)α√
T

. From the inductive assumption that we have Wi ≤ πi/si + β for i ∈ {1, 2}. The proof

follows from the following.

1

1/W1 + 1/W2
+

α√
T
≤ 1

1
π1/s1+β + 1

π2/s2+β

+
α√
T

=
1

s1
π1+s1β

+ s2
π2+s2β

+
α√
T

=
(π1 + s1β)(π2 + s2β)

s1(π2 + s2β) + s2(π1 + s1β)
+

α√
T

=
π1π2 + β(s1π2 + s2π1) + β2s1s2

s1π2 + s2π1 + 2s2s1β
+

α√
T

=
π + βs+ β2s1s2

s+ 2s2s1β
+

α√
T

≤ π

s
+ β

s+ βs1s2

s+ 2s2s1β
+

α√
T

≤ opt+ β +
α√
T

= opt+ r
α√
T
.

D Lower bound for a concave loss function

Theorem 5.3. Consider the following three sequences of losses: (1) sequence σ1 has t time steps each with
losses (δ, δ), (2) sequence σ2 starts with sequence σ1 followed by t time steps each with losses (1, δ), (3)
sequence σ3 starts with sequence σ1 followed by t time steps each with losses (δ, 1) and δ will be determined
later

The opt for all sequences σ1, σ2 and σ3 has a loss of f(δ).
Given an online algorithm A, after σ1 it has an average loss of βδ on alternative 1 and (1 − β)δ on

alternative 2. Therefore, its loss on σ1 is f(βδ) + f((1− β)δ). If β ∈ [1/3, 2/3] then the loss of A is at least
f((1/3)δ) + f((2/3)δ) compared to a loss of f(δ) of OPT . Hence C(LAT)/C∗(σ1) ≥ γf .

If β > 2/3 then consider the performance of A on σ2. On the first t time steps it behaves the same as
for σ1 and at the remaining t time steps it splits the weight such that its average loss on those steps is λ for
alternative 1 and (1−λ)δ for alternative 2. Therefore its cost function is f((βδ+λ)/2)+f((1−β+1−λ)δ/2).
First, we note that for λ > 1/2, we have that C(LAT) ≥ f(1/4). Since the cost of OPT is f(δ) and as δ goes
to 0 C∗(σ2) goes to zero, then for sufficiently small δ we have that C(LAT)/C∗(σ2) ≥ γf . For λ ≤ 1/2 define
h(λ) = f((βδ + λ)/2) + f((1 − β + 1 − λ)δ/2)δ/2. First, we would like to show that h′(λ) > 0 for every
λ ∈ [0, 1/2]. Consider,

h′(λ) = f ′((βδ + λ)/2)/2− δ

2
f ′((1− β + 1− λ)δ/2) > 0.

Since f is concave f ′ is decreasing and given our assumption that δf ′(δ/2) goes to zero as δ goes to zero,
then for small enough δ and λ ≤ 1/2 we can bound as follows:

20

f ′((βδ + λ)/2) ≥ f ′(1) ≥ 4δf ′(δ/4)

≥ δf ′((1− β + 1− λ)δ/2).

Thus h(λ) is increasing and its minimum is obtained at λ = 0. Therefore the cost function of algorithm,
A, is at least f(2δ/3) + f(δ/3) while the optimum achieves f(δ). Hence C(LAT)/C∗(σ2) ≥ γf .

The case of β < 1/3 is similar to that of β > 2/3, just using σ3 rather than σ2.

21

