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Abstract. Subdivision started as a tool for efficient computation
of spline functions, and is now an independent subject with many
applications. It is used for developing new methods for curve and
surface design, for approximation, for generating wavelets and mul-
tiresolution analysis and also for solving some classes of functional
equations. This paper reviews recent new directions and new de-
velopments in subdivision analysis. Extensions of the uniform sta-
tionary binary subdivision process and their analysis are presented.
These include non-stationary subdivision, non-uniform subdivision,
integral subdivision, distributional subdivision and the convergence
of the above in the strong and in the weak sense.

§1. Introduction

The stationary uniform binary subdivision scheme is a process which recur-
sively defines a sequence of sets of control points {P¥ : a € 7°}rem, C R*
by a rule of the form

k k k
Pot'= ) aasPs= ), asPlapgp; (1.1)
BEZ® BEat 2T

which is denoted formally by P**! = §,P*. Here we assume that the set
supp(a) = {a : ag # 0} is finite.

The geometric interpretation to this sequence of sets of control points is
given by considering a corresponding sequence of geometrical entities

Fy(t)= ) Pkp(2%t—a), (1.2)

acZl®
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where (t) € C(IR®) is of compact support and satisfies

Y 9(-a)=1, (1.3)

acZ®

mllelloo < 1| D catp(- — )lloo < Mllelloo, € € Loo(Z°) (1.4)
a€cZ®

For s =1,d =2 or 3, Fi(t) is a curve, while for s = 2, d = 3 it is a surface.
For s = 1 and the choice 9(t) = 1 — |t|, ¢t € (—1,1) and zero otherwise, Fj(t)
is the control polygon through the control points. Stationary uniform binary
subdivision schemes received a lot of attention in the literature in recent years.
A general analysis of such schemes can be found in [3, 8, 9, 12, 13, 15, 19, 20,
21]. The subdivision scheme S, is termed uniformly convergent if for the initial
set of control points in IR, f° = § = {8a,0}tacz:, {Fk(t)} converges uniformly
to a non-zero function ¢. This property of the scheme is independent of the
choice of 9 in (1.2) [3] (see also [12]) and it implies that

klim sup ||PF — Fro(27%0)||oo = 0, (1.5)

for any compact Q C IR*, where Foo(t) = D, c- P24(t — ).
A necessary condition on the mask a for the corresponding subdivision
process {S,} to be uniformly convergent is [3]:

Y aaap=1, a;c{0,1}, i=1,...,s
BEZL"

which implies that ), z. aa = 2°.

We are interested in the smoothness properties of ¢ which determine the
smoothness of the components of Fo.(t). A scheme is termed C™ if ¢ € C™,
and it is termed H?Y with v € (0,1), if ¢ € H”, namely if

|6(t) — ¢(7)| < Alt — 7|7 . (1.6)

Thus, the analysis of the convergence of the scheme and the properties of ¢
requires the study of the scalar case d = 1.

A uniformly convergent {S,} defines its basic function ¢, which satisfies
the functional (refinement) equation

$(z) = ) aad(2z—a) . (1.7)

a€cZ®

This is the case, since (530)q = @, a € ZZ°, and ¢(2-) is the limit function for
the initial data é in the second level of the subdivision process. Also it is easy
to verify that the support of ¢ is contained in the convex hull of the points in
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7Z° coustituting the support of the mask a [3]. Equation (1.7) indicates that
the spaces V3 = span{¢(2* - —a) : o € Z°} are nested, namely

which is necessary for multiresolution analysis.

Example — B-splines. A typical example of a stationary uniform binary
subdivision scheme is provided by schemes generating B-splines with equally-
spaced knots. The B-spline with integer knots of order m (degree m — 1 and
smoothness C™~2) is the basic function of a scheme defined by the mask [5]

aa:2_m+1(m), a=01,...,m.

a

In this paper we review several different extensions and generalizations
of stationary uniform binary subdivision schemes, and the notion of their
convergence. Some of these extensions have geometric advantage and others
are of analytical interest. First we discuss briefly the extensions considered in
the paper, and list several more, some of which have not yet been investigated.

1. Non-stationary schemes. The mask applied at level k of the subdivision
depends on the level:

k s
pPE = N o Pk acmt. (1.9)
BEZL*

(k)

Here a necessary condition for convergence is klim Zﬁez*’ Gy_95 = liora;c
—> o0
{0,1},7=1,...,s [16, 17].

2. Non-uniform schemes. The mask depends on the location of the defined
point. In the simplest case IR® is divided into disjoint domains, with different
rules in these domains:

PEFL = N 0P Pk 27 acqy, (1.10)
pezs

where Q, N Q; = 0 if j # £ and UgQy = IR°. The supports of the masks
{a®)} are uniformly bounded [14].

A more general non-uniform scheme is [2]

PM'= N a.pP, acZ’. (1.11)
Be2Z

Here an g has the property that an g = 0 for a — 28 ¢ J, where J is a
finite subset of 7ZZ°, which is termed the “support” of the masks. The matrix
A = {aqg} is termed two-slanted.
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3. Non-uniform and non-stationary schemes. These schemes are ob-
tained from (1.10) and (1.11) by adding dependence of the masks on the
subdivision level [2].

4. Integral schemes. All schemes discussed up to now have masks defined
on discrete sets of points. Consider a mask which is a function of compact
support in Lq(IR’) and sets of control points depending on a continuous pa-
rameter. The process becomes

PEFL(t) = /a(t — 27)P*(1)dr , (1.12)

and defines a sequence of vectors with components in C(IR®), starting with
such a vector P°(t). The geometrical entities are given by

Fi(t) = P*(2%1) (1.13)

and one can define the process directly in terms of the geometrical entities as

Fry1 = 2"a(2¥1) « Fy, = 2“’/ Fi(- — 27 )a(7)dr , (1.14)
with Fy(t) = P°(t). Equation (1.14) indicates that the process is equiv-
alent to repeated averaging over exponentially decreasing neighborhoods if

fR, a(7)dr = 2°, which is indeed a necessary condition for the convergence of
the process [10].

There is a way to unify the representation of discrete and integral subdi-
vision schemes. It is achieved by first extending the notion of convergence.

5. Weak convergence. The subdivision scheme

fr = Z Ga—20fs, o €7, ke, (1.16)
BeZ®

is weakly convergent if for every g € C$° and f° = 4, the following limit exists
[10]:
lim 27%¢ Z fig(2_ka) . (1.17)

k— oo
acZ®

The weak limit of the subdivision scheme is the distribution F, defined by

(Fe,g) = k11£02—’“ Y fkg(27*a), gecCs. (1.18)
acZl®

6. Distributional schemes. The distributional schemes include the discrete

and the integral schemes as special cases. A distributional scheme has the form
asin (1.14), Fpyq1 = 2’”@(2’“"’1 -)* Fy, with {F} } a sequence of distributions and
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a(-) a distribution of compact support satisfying (a,1) = 2%, where 1 denotes
any C§° function which is 1 on supp(a). For a € Ly (IR*) and Fy, € C(IR®)
it is an integral scheme, while for Fy = §(-), and a = Y 5. aad(- — @), the
distribution F} has the form

Fro= Y fks(2* —a), (1.19)

acZ®

with f* obtained by (1.16). The limit distribution of {F%} is the weak limit
of the discrete scheme (1.16) given by (1.18)[10].
Note that in the distributional case, §(-) denotes the Dirac distribution

(6(-),9) = 9(0).
7. Non-binary distributional schemes. These schemes have a similar

form to (1.14) . .
Fyt1 = p*a(p*™) * Fy (1.20)

with p € IR, p > 1, and a(-) a distribution of compact support satisfying
(a,1) =p°. For p € ZZ \{0,1}, a = ) - @ad(- — @) and Fy = §(:), we get

the discrete p-nary scheme

Fro= Y fk(p* -a), (1.21)
e 1=y/ A
where
P =Y aaraf} (122
BEZ

Another case of interest is when p is rational, namely p = r/q, r,q €
7 \{0}, r > q, and a(-) is the distribution

a= Z axd(- — a/q), Z an =p° . (1.23)
acZ*® acZ*®
Then for Fy = §(+), we get the discrete scheme
o
Fo= 3 fia(e*— ) (1.24)
acZ?®

ot =) aassfi, (1.25)

BeIk

where I¥ = {8 : a — 73 is divisible by ¢*}.
Note that the set F* = {f¥ : a € ¢*7ZZ°} defines the set F*! by the rule

f:;;;el-}-l = Z a'aq—r,@f'qu,a € 72° 5 (126)
BEZ®

and that fiqk is attached to the parameter value ap™*. Thus (1.26) gives rise

to the rational schemes introduced in [1].



6 N. Dyn and D. Levin

A more general non-binary scheme can be defined in terms of a sequence
of monotonically increasing reals {Pk}keZ_,. with pg = 1. This scheme has the
form

Fk+1 = pi+1a(pk+1') * Fk s (127)

with a(-), a compactly supported distribution satisfying (a,1) = 1.
The scheme (1.27) can be further generalized into a non-stationary scheme
of the form
Fk_|_1 :ak*Fk, k c Z_|_ y (128)

where a(-) is a distribution supported in p;ilﬂ, with @ C IR® compact, and
limk_,oo<a,k, 1> =1.

In the following sections we review results about convergence and smooth-
ness of some of the types of schemes presented above. We also consider several
interesting examples, and discuss properties of spaces spanned by the shifts
of the corresponding basic functions.

§2. Non-Stationary Discrete Schemes

A converging non-stationary scheme {S,x)}rcz, defines a system of refine-
ment equations [17]:

¢r=Y aP¢p1(2-—a), LeZy, (2.1)

a€cZ®

where ¢ is the basic function of the non-stationary scheme {S,x+¢) }rez, -

Thus the spaces V; = span{¢y(2¢ - —a) : a € Z*}, £ € 7L are nested
(satisfy (1.8)), and can be used for multiresolution analysis. The advantage
of this set-up over the nested spaces generated by stationary schemes, is the
possibility to get {¢;} of compact support and infinitely smooth [10].

Three classes of non-stationary schemes together with typical examples
are reviewed in this section. A mask is termed stationary if it determines a
stationary C° scheme. The first class of schemes consists of schemes defined
by stationary masks only.

2.1. Schemes defined by stationary masks

The simplest convergence result for non-stationary schemes is a direct con-
sequence of a convergence result for stationary schemes. In what follows

P =801 Sy f, k€ Zyand e =§;;,4,5=1,...,s
Theorem 2.1 (Convergence [17]). Let {S, ) }rcz, be a non-stationary

scheme such that each a'*) satisfies the conditions

Y alPp=1, aic{0,1}, i=1,...,s. (2.2)
BEZL®

Let Sﬁk) be the subdivision rule with a matrix mask mapping the set of
vectors

={Af} (]+e(,)_f;°, i=1,...,8) : j €}, (2.3)
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into the set of vectors Af¥**1. (The existence of Sﬁk) is guaranteed by (2.2).)
If there exists p € (0,1) such that for all k € 72

152 Aflleo < pllAflleos  f € L2(Z") (2.4)

where ||Af||oo = sup ||Afj||oo, then { S, }rez, is H”, v = min{—log, p,1}.
JEZ®

Note that a necessary and sufficient condition for a mask a to be station-
ary is the contractivity of the stationary scheme {§2} as an operator on the

space {Af : f € £°(ZZ°)}(see e.g. [12]). Hence by (2.4) a'® is stationary.

Theorem 2.2 (Smoothness [17]). Let {S,) trez, be such that for some
A€ 7Lf and kg € 7L+

Z alf)z® = (14 2%) Z 82%, k> ko (2.5)
aEZ’ aEZ‘

If {Sy) }rem, is convergent then {S,w) }rem, is convergent and the corre-
sponding basic functions denoted by ¢, and ¢,, respectively, are related by

8 po = ZM%% =¢p — (- — A) € C(IR*) . (2.6)
i=1 ?

Note that ¢, € C1(IR®) if (2.6) holds for s linearly independent vectors
DI C</AN

The first example we present is typical to nonstationary schemes with
supp(a(k)) growing linearly with k.

2.2. The up-function

Let s = 1 and let a(*) be the stationary mask generating the B-spline of order
k,

1 [k
agk):%__1<i>, i=0,...,k, k€7, . (2.7)

By Theorems 2.1 and 2.2 the functions {¢,}, with ¢, the basic function of
{S.x+0 }rem ., are in C§°(IR) with supp ¢¢ = (0,£+ 2). As shown in [10] the
function ¢ is the Rvachev’s up-function [22]. Also, by (2.1) the functions
{¢:} generate a nested sequence of shift invariant spaces {Vi}rez, -

The above example is interesting enough to deserve detailed analysis.

Here we cite the major properties of the sequence of nested spaces generated
by it.
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Theorem 2.3 (Stability [18]). The function $;(27) is a stable generator of

Vi = span{¢j(2j +—a) : a € 7L}, namely, there exist constants 0 < R; < Tj
such that for each d € £*(7Z)

Rjlld||exzy < 1| Y dati(27 - —a)|o(m) < Tilld|2(zy » (2.8)
acZ

k
with Ty /Ry = O((%) ) Moreover {¢;(- — a) : a € 7L} are linearly indepen-
dent.

Theorem 2.4 (Spectral approximation order [18]). Let
Ei(f) = inf{||f —vllz,(m) : v € Vi} .
Then for any r € 7ZZ; and f € WJ(IR) (the Sobolev space of order r)

lim 2kTEk(f) =0 ask— oco. (2.9)

k— o0

For the sequence of nested spaces {Vi}rcz, one can construct a sequence
of prewavelets {1 }rcz, such that

Vi @ span{¢p(- —a) :a € 2_kZ} = Vi1 - (2.10)

These prewavelets are given in terms of their Fourier transforms:

Theorem 2.5 (Properties of prewavelets [18]). Let pr = ¢1(2%.) and Iet
14() = Socprrig 94w + 2rn)?. Then

o 1 —iw 1 —iw 1 ~
Bu(w) = 5e 2 (e (@)phn (@) (2.11)

and |suppvr| = 2| supp pr| = Zk,;':zl . Also, 9y generates a stable basis of the

orthogonal complement of V; in V1.

2.3. Asymptotically stationary schemes

An interesting class of non-stationary schemes is that of “asymptotically sta-
(k) .
o .

tionary schemes” [16, 17]. The masks defining such a scheme a(*) = {a
a € 7Z°}, k € 71 satisfy the two conditions

(1) supp(a(k)) C [0,n]*, k € Z4 for some n € 7Z%.

(ii) There exists a limiting mask a* supported in [0,n]® such that

lim max [a®) —a%|=0. (2.12)
k—o0 a€[0,n]*
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Example — the exponential splines. Univariate exponential B-splines
with integer knots are basic functions of asymptotically stationary schemes,
with masks a(*), k € Z of the form

L
1 —k—1
52 e =TJa+e )2, ke Ty . (2.13)
a€EZ =0

For £ > 1, the scheme generates a C4~! piecewise exponential function in the
span of {eY® :7 =0,...,£} with integer knots and support (0,£ + 1) (see [2,
16, 17]). The scheme is asymptotically stationary since

j

1 ke 1 f+1 _
a;’“)zz_e Y exp{27* 12%}:2_2( ; )+0(2 kY. (2.14)

0<iy < o< <4 r=1

The limiting mask is that of a B-spline of order £ 4 1.
Similarly in the multivariate case, the sequence of masks

£
1 o i
9 E alk) 2 — H(l + exp{27% 1y} /2,

=y /A =0

with directions A = {A°,...,A*} C Z°*, £ > s, determines a C° scheme
with an exponential box-spline as its basic function, if any £ vectors from A
span IR® and there is a subset of s vectors in A with determinant +1 [6, 17].
The limiting mask is stationary generating the polynomial box-spline with

directions A [3].

Theorem 2.6 (Convergence and smoothness [17]). Let {a(®} satisfy condi-
tions (i), (ii) with a* a stationary mask, and let

0r = max{|a") —a’|:ac Z*}, kecZ,.

If for somem > 0, Zkez+ 6;2%¥™ < oo and {S,+} is C™, then {Sa) Yrez, is
C™. If{Sq+} is H”, v € (0,1), and 0, < A27** k € 7, for some p € (0,1),
then the scheme {S, ) }rcz, is HY with ¥ = min(v, u).

For asymptotically stationary schemes there is an analogous result to

Theorem 2.2.

Theorem 2.7 (Smoothness [17]). Let {a®}icz, be a sequence of masks
satisfying supp(a(k)) C [0,n)®, and

8

ar(z) = Y a2 = [J(1 +rei2® You(z), k> ko, (2.15)
=y /A i=1

with A',...,\* € ZZ° a basis of IR®. If , moreover, for eachi = 1,...,s, the
polynomials {ar(2)/(1 + rk,izx)}kez+ determine a C™ scheme and

lim ("'i,i — 1)2’“ =c¢; < 00, Z 2k|rk_|_1’i —Tri| < oo, (2.16)

k—oo
k:ko
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then {S, }rez, is a C™ ! scheme.

Example — exponential B-splines revisited. For the exponential B-
spline scheme (2.13) with £ > 1, S,+ generates B-splines of order £ + 1 hence
S,+ is Ct1. By (2.14), {a(k)}kez+ satisfies the conditions of Theorem 2.6
with m = 0. Hence the scheme {S,x) }rcz, is converging uniformly to a
C° function. The stronger result in Theorem 2.7 allows us to conclude that
{Sa) }rem, is C*~!. Indeed, a repeated application of Theorem 2.7 with
rr, = exp(27%71y;), k € Zy for j = 0,...,£ — 2, yields the desired property
of the scheme, since ri_H =rp, 1 —ri= 0(27%).

2.4. Schemes with C§° basic functions

A general class of univariate (s = 1) non-stationary schemes generating com-
pactly supported C'* basic functions is studied in [4]. The interesting exam-
ples are the C§° cardinal interpolatory basic functions (¢|z = §) and the C§°
orthonormal wavelets. Typical to the masks of these examples is the linear
growth of their support with the subdivision level. In this sense it is a gener-
alization of the process leading to the up-function studied in Subsection 2.2,
where the Fourier transforms ax(w) = (1/2) Y,z aFle—iow k¢ 7., of the

masks {G(k)}kez_l_, given by (2.7) are of the form
ar(w) = exp(—i(k + 1)(w/2)) cos* (w/2), ke Zy . (2.17)

Theorem 2.8 (Convergence and smoothness [4]). Let a(w) be a 2m-periodic
function satisfying

m

a(0) =1, a(w) = cos"(w/2)q(w), wes[lggﬂ] H |q(2j_1w)| < 2™ | (2.18)

for some r > 0 and m € 7 \ {0}, with ¢ bounded and Hélder continuous
at the origin. Let {a(k)}kez+ be a sequence of masks of finite support with
Fourier transforms ay(w) satisfying the four requirements

() llokllo < C, b € 2.
(i) Jae(@)] < (1+ me)la(@), k€ Z, Yye, linl < oo.
() Sper, deg(ar)2™* < oo.
(iv) Yrez, lar(0) — 1] < oo.
Then the subdivision scheme { Sy }rez, is uniformly convergent and its ba-

sic function ¢ is a compactly supported C'*° function. Moreover the sequence
of functions

Fr=) fA(2*—a), f*=Su-0S@b keZi,  (2.19)

acZ
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with ¢ = sin(2n)/(2n), and the sequences of their derivatives, converge
uniformly to ¢¢ and its derivatives:

lim ||F{ — ¢||o =0, j€Zy . (2.20)
k— o0

Note that requirement (iii) guarantees the finite support of the basic
function ¢¢ of the scheme {S, ) }rez, , with

deg(ay) = max{a : a&k) # 0} — min{a : a&k) £ 0} .
This is the case since

|suppgol < Y 27%7" deg(ax) -
kez+

Approximation orders of the shift invariant spaces of the multiresolution
analysis determined by {a(k)}kez+ are studied in [4], and similar results to
those in Theorem 2.4 for approximation in the L, — norm are obtained for
approximation in Sobolev norms..

Theorem 2.9 (Spectral approximation in Sobolev norms [4]). Let {a(k)}kez+
satisfy the assumptions of Theorem 2.8 and the additional condition

lak(w)] > (1 — vi)|A(w)|*

where |vg| < 1, > okez, lvk| < oo, A(0) = 1 and A(-) is Hélder continuous
at the origin. Then the spaces {V;};jcm. generated by this subdivision have
density order v in H® for all r > s, namely forr > s and f € H" = {g :

lgllr = Jir 1§(@)* (1 + |w|*")dw < oo}

i _ i(s—7) ;
Jnf IIf = vlls < €27 fllne( )

with 0 < €(f,7) < 1 and lim;_, €(f,j) = 0. Moreover, there exists t € (0, ]
such that the sequence of the Ly-projections of S;f into Vj, 3 € 7L, with

(S; )" = = X[—2it,2i1] f, constitutes an approximation scheme which achieves
density order r in H" for all r > s.

Example — C§° cardinal interpolatory basic functions. The construc-
tion is based on a family of stationary univariate interpolatory subdivision
schemes with masks {a(")}nez+, introduced in [11]. The stationary scheme

with the mask a(™ reproduces polynomials of degree < 2n + 1. The non-zero
elements of a(™ are

ai® =1, o, =a" | =.(0), a=0,1,...,n, (2.21)

where £4(z) € mop41 satisfies Za((2ﬁ + 1)/2) =60ap, B=—n—1,—n,...,n.
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The Fourier transform of the mask (2.21) is [11]
n 1— .
an(w) = cos®™ 12 (w/2) Z (n , J) v, y=sin’(w/2) . (2.22)
Jj=0

Thus an(0) = 1, deg(an) = 4n+ 2, and requirements (iii) and (iv) of Theorem
2.8 hold.
It is shown in [4] that |a,(w)| < (a(w))n where

17 |w|§§7
d@—{-z’ T < fu| <. (2.23)

Hence ||an||oo < 1, and requirements (i) and (ii) of Theorem 2.8 are valid.
Defining a(w) = cos?(w/2)q(w) we get from (2.23) that q(w) < g(w) = 4 for
lw| < m, and hence (2.18) holds with » = 2 and m = 2. Thus the non-
stationary scheme {S,)}rez, with a'*) given by (2.21) or (2.22) generates
a C§° interpolatory basic function ¢¢ satisfying ¢o|z = §. In fact, for any
j € 7Ly, the basic function ¢; corresponding to the scheme {S,w+) }rez.,
is C§° and interpolatory. Also, {¢;} generates multiresolution analysis, with
the property of spectral approximation in Sobolev norms.

It should be noted that although a{™ in this example is stationary for
n € 7Z4 [11], Theorem 2.1 does not apply, since

185 lec > 1, n#0.

§3. Non-Uniform Discrete Schemes

First we consider the case s = 1 and non-uniformity according to domain as
n (1.10). Let Q; = [zj,2j41), § € J C ZZ, with {z;};c; C ZL satisfying
tjy1 —x; > L > 0,35 € J, and U]-EJQ]- = IR. We are concerned with
non-uniform schemes of the form

_f£+1 — (l) Zﬁf,@7 a2—k—1 € Ql , (31)
B

where a®) is the mask applicable in Q.
To each point z; there corresponds an index set I; and a matrix A; of

the form
S_;ﬁ), a<0
(Aj)as =9 (5 (a,8) €1 . (3.2)
@y 95, @20

The index set I is given by I; = {a:a+1 € I~J or a—1¢ I~]}, where TJ

is the smallest set of integers including zero with the property
(-1fa>e acl;, al;Y#0=pcl; for £=0,1. (3.3)

The cardinality of I; is denoted by |I;]|.
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Theorem 3.1 (Convergence and smoothness [14]). Let m € ZZy, and let
{S.i )} be a C™ stationary scheme for j € J. If for all j € J the eigenvalues

of Aj, {)\57)}1121 have the form

)\gz‘):2—i’ i=0,...,m, |\ <2™™, i=m+1,...,|]|, (3.4)

then the scheme (3.1) is C™.

Results on the convergence of non-uniform schemes of the type (1.11) with
non-negative masks and of several generalizations are obtained in [2]. Here
we cite one result which applies to non-uniform and non-stationary schemes.

Theorem 3.2 (Convergence [2]). Let v,n € ZL% such that v; < n;, 1 =

1,...,s, and let {A(k)}kez+ be a sequence of stochastic matrices with the
property
Agcﬁ)#o only if v <o;—28;<m;, 1=1,...,s5. (3.5)

If moreover, Akaﬁ) >e >0 fora; —26; € {vi,vi+ 1,m — 1,mi}, 1 =1,...,s,

then the scheme

PEY — APk p 7, |

is uniformly convergent.

§4. Integral Subdivision and Weak Convergence

The discrete binary subdivision process generates points { P**1} at level k41
by a linear operation on {P*}, where the operator is a two slanted matrix [2].
Viewing {Pk} as values of a function F}, at the points {27 *a} respectively,
the slanted matrix operator can be viewed as a discrete convolution operator.
In the following we discuss the natural extension of the discrete binary subdi-
vision to integral binary subdivision where the entities are functions instead
of sequences of points, and the operators are convolutions. Here the mask is a
function @ € L'(IR®) of compact support, and starting with an initial ‘control’
function Fp : IR® — IR® we recursively define a sequence of functions {F:} by
the rule

Fii1 = 2Fa(2F11.) & ), = 2" / Fp(t)a(2*'(t —7))dt, kecZy. (4.1)
Rs

As shown in the introduction, the rule (4.1) is derived from (1.12) by the
substitution Fy(t) = P*(2*t). It is interesting to note that the two slanted
nature of the discrete subdivision, which is still apparent as the two slanted
convolution (1.12), is absent when we consider the function Fy(t) = P*(2*¢).
In (4.1) the operator is a simple convolution operator on F} defined by a
weight function whose support is exponentially decreasing with k. A neces-
sary condition for the convergence of the integral subdivision process is that

fR’ a(t)dr = 2°, which simply means that 2**a(2*¥*1.) — §(.) as k — oo [10].
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Example — the up-function. The up-function derived in Section 2 by a
non-stationary subdivision scheme is also the natural example for integral
subdivision. We consider s = d = 1 and the mask

1, -1<z<1,

a(z) = x[-1,1(2) = { 0,

Starting the integral subdivision process with F; = a(2-) (corresponding to

(4.2)

otherwise .

the initial distribution Fy = §(-)), the sequence {F}} is uniformly convergent
to the up-function, up (-) € C§® [10].

As in the discrete case, the integral subdivision process is related to a
dilation equation which is now an integral functional equation

Flz) = / a(t)F (20 — t)dt = (a + F)(20) . (4.3)
Ra
For example, the up-function satisfies the functional equation

1

up(z) = /up(2:v —t)dt . (4.4)

-1

The convergence of integral subdivision processes, the nature of the limit
functions and the relation to the integral functional equation, are discussed
in [10] for s =1 and in [7] for s > 1. The following theorems and example are
straightforward extensions of some of the results in [10] to the case s > 1. The
analysis is based on Fourier methods and the results depend strongly on the
decay rate of the Fourier transform @()) of a as [A| = co. Here [A| = > 7_, |\l

Theorem 4.1 (Convergence [10]) . If the infinite product H;il (27*@(A277))
is convergent in L'(IR®) to ﬁ, and if we apply the integral subdivision process

(1.5) starting with Fy = a(2-), then {F} converges uniformly on IR® to F
which is a solution of the integral functional equation (4.3).

The condition @(0) = 2° is evidently a necessary condition for the con-
vergence of the above infinite product, and for the existence of an L' solution

of (4.3) with ﬁ(O) # 0. The limit function F' in Theorem 4.1 is termed “the

basic function” of the integral subdivision (4.1).

Theorem 4.2 (Uniform convergence to C* functions [10]). Let a be of finite
support and satisfy for somer > 0,

/a(t)dt = 2%, / la(t)|dt < 2°F1) @A) = o(]A|™") as |A| = oo . (4.5)
R R*
Then the integral subdivision process starting with Fy; = a(2-) is a sequence
which converges uniformly on IR® to a C§° function F. Moreover any deriva-
tive of { F}, } is a sequence which converges uniformly on IR® to the correspond-
ing derivative of F'.

The asymptotic behavior of @(A) as A — 0 and as |A| — oo gives us
indication on the continuity of the limit function F:
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Theorem 4.3 (Smoothness of limit function [10]). Let @ satisfy the two
conditions

la(A) —2°| =0(]A]") as |A]|—=0, >0, (4.6)
and

la(A)| <g <2751 for |A|>R, £>0. (4.7)

Then the integral subdivision process converges weakly to F' € C™(IR®).
Corollary 4.4. Ifa satisfies (4.6) and also

la(A)] =o(1) as |A|— oo, (4.8)
then the integral subdivision converges weakly to F € C*(IR*).

In the up-function example a(}A) = 2% and a satisfies the conditions
of Theorem 4.2. Thus the uniform convergence and the C'*™ property follow.

The relation between the integral subdivision and the non-stationary sub-
division which appears in the case of the up-function is not a coincidence. The
following theorem reveals that if the mask a(-) of the integral subdivision pro-
cess (or the integral functional equation) is itself a basic function of a discrete
uniform binary subdivision (stationary or not), then the basic function of the
integral subdivision process can be obtained as the limit of a non-stationary
discrete subdivision process.

Theorem 4.5 (Relation between integral and non-stationary subdivisions).
Let a(2-) € L*(IR®) be the basic function of a non-stationary subdivision
process with coeflicients {cgk)} satisfying Zﬂez= clgc) = 2°. Let cx(w) =

27°¢ Eﬁez-’ c(ﬁk)e_iﬁ“’, and define another non-stationary subdivision process

with coeflicients {b&k)} determined by the trigonometric equality

br(w) =270 ) biFei e =TT eh(w) (4.9)
{=0

1Y/

If the non-stationary process, {Syx) }rez, , converges weakly to an L' limit
function, then its basic function is the basic function of the integral subdivision
process with the mask a, and it is a solution of the integral functional equation
with the mask a.

Example — box-up functions. Consider an integral subdivision process
with a mask @ = B(-/2), where B(z) is a box-spline function in IR® centered
at the origin and normalized such that [, B(z)dz = 1. Clearly this a satisfies
condition (4.5) of Theorem 4.2, and the integral subdivision process with the
initial function F; = a is uniformly convergent to Fg € C>°(IR’). Recalling
the up-function example, we term Fp a box-up function. Directly from the
infinite convolution process and the non-negativity of B, it follows that

supp Fg = supp B(+/2) .
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Also, as in the case of the up-function, the integer shifts of Fg, {Fg(- —a) :
a € 72°} are linearly independent if {B(-—a) : a € ZZ*} are, and both spaces
reproduce the same subspace of polynomials. Furthermore, since box-splines
based on a set of directions which includes a subset with determinant +1,
are basic functions of a discrete stationary subdivision process [3], we get by
Theorem 4.5 that the box-up function Fg can also be computed by a discrete
non-stationary subdivision with easily computable masks.

As is shown in the Introduction, by allowing the mask and the initial Fp
in (4.1) to be distributions of §-type, the integral subdivision scheme (4.1)
gives rise to the discrete subdivision scheme (1.1), and the notion of weak
(distributional) convergence becomes natural. The following is a strong result
on weak convergence of discrete schemes:

Theorem 4.6 (Weak convergence [10]). The discrete uniform stationary bi-
nary subdivision process (1.1) with a mask a satisfying ) cz. aa = 2°, is
always weakly convergent. Its basic function is the weak solution of the func-
tional equation (1.7).
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