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Abstract. Given parallel (n—1)-dimensional cross-sections of an n-dimensional
body, one would like to reconstruct the body. The method based upon distance
field interpolation gives a robust solution to this problem in its ability to deal
with any topology in any dimension. Still this method may give undesired so-
lutions to the problem if the changes from one cross-section to the next are
big relative to the size of the details in the cross-sections. In the present work
we suggest a way to improve the distance field interpolation method. For this
we first assume that the data to the problem are the cross-sections and some
specified points on them, prescribing geometric links between the different cross-
sections. These links may be manually user-defined, or automatically defined by
matching features in the cross-sections. The distance field interpolation method
is modified so that the interpolation is guided by those links. We describe some
rules for defining a smooth least-distorting mapping which realizes the desired
links, and present the corresponding guided interpolation.

§1. Introduction

The problem of reconstructing an n-dimensional body from its cross-sections ap-
pears in many applications, from biomedical imaging to 2D and 3D animation.
In 3D animation the problem can also be viewed as a surface blending problem.
Namely, the continuous evolution of a surface from a source surface, through inter-
mediate surfaces, into a target surface. This is an object-space problem of generating
intermediate 3D models [5], to be distinguished from image-space transformations
[10].

This paper describes a method that allows the user to create a series of models
which form a smooth transition of a given set of general keyframe models. The
method deals explicitly with surfaces and its principles are naturally extended from
2D space (contours) to 3D (surfaces) and to hyper-surfaces in higher dimensions.
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The problem of blending two surfaces, even for polyhedral ones, is not simple.
In order to blend between two polyhedral models, a correspondence between their
structure (vertices) has to be established [5]. However, a correspondence alone does
not guarantee a smooth transition from the source model to the target one, and the
vertices’ paths have to avoid unpleasant situations such as self-intersections. 2D
shape blending techniques that deal with the vertices’ path problem are not easy
to extend to 3D [7,9].

The problem of shape blending can also be considered as a problem of body
reconstruction from cross-sections [6,8]. Some of the reconstruction methods use
bivariate interpolation by finding a correspondence between the contours of two
cross-sections. Other methods use a univariate interpolation between values of cor-
responding 3D grid points [4]. When the cross-sections are not dense, they may
exhibit significant changes in the topology of the boundary contours. A method
that handles easily that issue is the Distance Field Interpolation (DFI) presented
and analyzed in [6]. The DFI is a general set-valued interpolation method for the
reconstruction of an n-dimensional model from a sequence of its (n — 1)-dimensional
cross-sections. It uses a univariate interpolation of the distance field, and it performs
well for most general topology in any dimension. The method is also defined in a
discrete space and generates intermediate discrete contours of arbitrary complex-
ity. The DFI method has been adapted successfully in biomedical reconstruction
applications [4]. Yet, the DFI method is not performing well if the original body,
from which the cross-sections are taken, is too ’twisted’. That is, if there are sig-
nificant differences between adjacent cross-sections. For example, if two adjacent
cross-sections are not aligned due to rotation or translation.

The reconstruction procedure presented in this paper is based on the DFI
method. However, it is extended in the sense that the interpolation, and thus the
blended surface, follow a warp transformation guided by means of a user-defined
control. The control is defined by a point-to-point correspondence between pre-
scribed anchor points on the given intermediate cross-sections. In order to achieve
least-distorted in-between shapes, we decomposed the warp transformation W into
a rigid (rotational) transformation R and an elastic transformation E, which are
separately interpolated. The rigid-elastic decomposition of the warp function, and
its particular interpolation are so chosen to minimize the distortion of the interme-
diate surfaces. The rigid part is used to rotate and translate the source object to a
matching general position of the target object, while the finer features of the object
are slowly evolved by the elastic part.

In Section 2 we review the DFI method for multi-dimensional reconstruction
from cross-sections. In Section 3 we introduce the problem of reconstruction guided
by anchor points and consider the application of a warp transformation. The warp
transformation, its decomposition and parameterization, and the new warp-guided
DFI method are constructed. Implementation details and numerical experiments
are described in [2].
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§2. Distance Field Interpolation for n-Dimensional Reconstruction

Reconstruction of 3D objects from cross-sections is of major importance in many ap-
plications, particularly in biomedical imaging. One class of reconstruction methods
builds a polygonal surface by assuming the cross-sections consist of closed polygo-
nal contours [1]. Another class of methods uses a volumetric approach. The entire
volume (3D voxel array) is reconstructed from the gray levels of the cross-sections.
The missing data is reconstructed by some interpolation of the gray values of the
cross-sections. The surface is then defined and reconstructed by iso-surfacing meth-
ods. These methods do suffer from discontinuities in the reconstructed surface, and
thus, do not yield smooth blending transformations.

The method of Distance Field Interpolation (DFI) presented in [6] better re-
constructs the surface by interpolating distance values rather than the gray values.
This method has been adapted successfully in biomedical reconstruction applica-
tions [4].

The DFI method can be described in terms of n-dimensional surface reconstruc-
tion from (n — 1)-dimensional cross-sections (n > 1). Consider an object ! C IR",
discretized or not.

Given a finite set of (n — 1)-dimensional cross-sections of the object,

Q, ={z=(z"...,2" )| (z",...,a" ,t;) €N}, to<ti...<tm, (1)

we would like to reconstruct 2. Throughout the paper we use lower indices for
numbering entities and upper indices to denote the components of a vector. Let us
define the distance fields at the levels tg,%; ...¢tpr : For ¢ = (a:l ...1:"_1)

| —dist(x,00y,) if z € Q
Dy (=) = {dist(w,aﬂtj) otherwise , (2)

where 9();; denotes the boundary of §);,, and dist denotes the Euclidean distance
in IR"'. Now, using univariate interpolation (with respect to the parameter t)
we interpolate, between the cross-sections, the distance values of points having the
same first n — 1 coordinates. The resulting interpolant approximates the n — 1
Euclidean distance between y = (z',...,2"7',¢) and 8Q; = 8Q |yn—s.

Once this approximated distance field is available, the surface of the object can
be determined by the zero points of the distance field, or, in the discretized version,
as the boundary between the positive and negative valued lattice points, while the
volume itself (its interior) is defined as the set of all negative valued points.

Formally, the DFI method defines an approximate domain Q ~ Q as follows:
For y = (z',...,2™',t) we first define the interpolant d,(t) (z = (z'...z""!)) by
univariate interpolation of the values {D;, (w)};\io Now,

Q={y | do(t) <0} . (3)
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Evidently, this method can be adapted for blending, where two or more cross-
sections are given, to generate the intermediate models. For more details on the
choice of the interpolation method, and for approximation rate analysis see [6]. The
DFI method suffers from two major deficiencies: The first one is the low approxi-
mation order near boundary points of {} with a tangent orthogonal to (0,0,...,1).
To the best of our knowledge, this problem is not resolved yet. The second prob-
lem is also related to the approximation power of the method. Here we refer to
the case where the ratio between the distances |tj11 — t;| and the ‘width’ of the
cross-sections (};; is large with respect to the slope of the boundary of {1 in the
direction (0,0,...,1). The approach taken in this work to overcome this problem
is the combination of the DFI with a proper point-to-point warp transformation.

§3. Guided DFI blending

Let us consider for simplicity the blending of two objects, § = (0 and 7' = ;. The
DFI gives us a way for blending by interpolating (linearly) between the distance
functions Do and D1, as described in Section (3). We call this blending process
the no-warp DFI blending. No-warp DFI blending is quite restricted, and it may
produce non-satisfactory results. To demonstrate this, consider the case when T is
just a rotation of §, and S is just a thin rod. The no-warp DFI blending gives at
t = % either a very small object, or an empty object, which is not the naturally-
expected result. On the other hand, the no-warp DFI blending works nicely if S is
a thin rod and T is just the rod S missing its middle third.

Consider now the possibility that T is obtained by a transformation (warp)
of S,ie, T = Wi(S). Further, let us assume that T is gradually evolving from
S, through a continuum of objects W;(S), where {W;};c[0,1) are smooth transfor-
mations, smoothly changing with ¢, where Wy = I is the identity transformation.
In such a case the blending can be the warp itself, this is the pure-warp blend-
ing. Pure-warp blending is also very restricted, for example, it does not allow the
possibility of changes in the genus of the objects.

We are going to hybridize the two different methods into a more powerful tool.
The first step of the hybrid method is finding a smooth warp {W:}¢[0,1) such that
W1(S) ~ T in some chosen sense. Then the DFI method is applied, now guided
by the warp {W;}. Note that the warp is operating in JR""' and the interpolation
of the distance field is performed along the n — th dimension. At this point we go
back to the case of M + 1 given objects, considered as cross-sections of (2, as in Eq.

(1). First we find a smooth warp {W;}¢jo,1] such that
Wtj(QO)thj ,jZO,...,M. (4)

The signed distance function at each level are defined here also by Eq. (2). For

z = (z!,...,z" 1) we then interpolate the values {D:; (W3, (m))}jﬂio, denoting the

interpolant d,(t). The approximated domain Q defined by the hybrid warped DFI
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procedure is

G={y=(Wi(e),t) | doft) <0} (5)

Obtaining the approximated warp W;.

The way we choose to define the approximated warp W; is derived from several
applications. On each level ¢; we assume we are given N points {p;;}¥, whose
mapping is predetermined. Later we refer to these points as anchor points. The
warp is to be determined so that

Wi; (po,i) = pji » 1<i<N. (6)

The warp function maps the source (level zero) anchor points to their corresponding
target points at levels {tj}]-]vio, while other points in the source domain comply
to those constraints. A warp defined by anchor points is attractive because it is
applicable in any dimension in a most natural way. ;From the user point of view,
this method is intuitive and very easy to handle. It also has the advantage of being
robust and very stable, in the sense that the results are not very sensitive to the
small perturbations in the anchor points.

We now describe the definition of the warp transformation based on anchor
points, starting with the case n = 3, i.e., the cross-sections are in IR®>. As stated
earlier in the introduction, in order to achieve control over the shapes of the in-
between objects the warp transformation W; is decomposed into a rigid part R and
an elastic part E. To explain the motivation here, let us view a very simple case:
Consider the blending of two objects in IR*, § = Qo and T = 4, where T = RyS
and Ry is a rotation in angle 6. There are two obvious options for defining a warp
W;. One is the linear interpolation warp W; = (1 — t)I + tRg. The other is the
linear rotation warp W; = R;s. Both warps vary smoothly from the identity I at
t = 0to Rg at t = 1. However, the second option is the preferable one since it
is an isometry for any ¢, i.e., non-distorting. Now consider the case where T is
obtained from S by a rotation Ry, a translation ¢, and an elastic transformation
E,ie., T = E(R¢S + c¢). In the following we will choose the rotation Ry and the
translation ¢ so that E is as close as possible to I, in some sense. The warp W; is
defined by

Wi(z) = ((1 — t)I + tE)(Rioz + tc) . (7)
This approach can be applied to the case of M +1 objects in IR?, {9 };Vio. First we
find a sequence of rotations {R(9) = R, };-Vio, a sequence of elastic transformations

{E'j}]-]vio, and translations {Cj}j]\io, with 68y = 0, E;, = I and ¢p=0. Now we define

M M M
0(t) = D bs(0085 , Be=Y bi0E; , clt) = Y bilt)es , ®

J=0 J=0
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where {b; (t)};-vio are Lagrange-type basis functions for interpolation at the levels

to,...,tm. Finally, the warp transformation W; is defined as
Wi(z) = Ei(Royz + c(t)) - (9)

In the following we describe a way for obtaining the rotations, the elastic trans-
formations and the translations, and we consider the main case n = 4, namely

blending of 3D objects.

The Rigid Transformation in IR®.

We start with given sets of anchor points in IR®, {Pj,i}izil, corresponding to the
levels {t;},7 =0,..., M. The rigid part of the transformation from level ¢, to level
t; is defined by the rotation R and the translation c¢; which minimizes

N
Q=" RDpo; +c; —pjil? - (10)

=1

Imagine that the points {po ;} are connected by identical elastic springs to the corre-
sponding points {p;,;}. The form () represents the elastic energy of this system, and
the rigid transformation which minimizes ¢, brings {}y to an equilibrium position
in the springs’ system.

The above least-square fitting problem of the two sets of anchor points in IR® is
solved using an explicit algorithm, which involves the singular value decomposition
(SVD) of a 3 x 3 matrix. As a result, we obtain a 3 X 3 rotation matrix charac-
terized by three angles, R() = Ro; 4, v;, and a translation vector c;. The warp
transformation in the 3D case is defined by

Wt(m) = Et(RO(t),([)(t),'z[;(t)m —+ c(t)) , (11)
with Iy Iy
$(t) = ij(t)%' , P(t) = ij(t)¢j : (12)

The Elastic Warp in IR®.

Once we have computed the rigid transformation, say in IR, we move to calculating
the elastic transformation. In accordance with Eq. (6) and Eq. (9), we look for a
transformation Fj, in general a non-linear transformation, F; : R?® — IR®,such
that .

Ej(R9po; +¢;)=pji, 1<i< N, (13)

This is a multivariate scattered data interpolation problem, which we suggest
to solve by using Radial Basis Functions, abbreviated RBF [3]. In IR?® this means
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solving three interpolation problems in IR?, for each component of the vector equa-
tion defined in Eq. (13).

Radial basis functions have proven to be an effective tool in multivariate inter-
polation problems of scattered data: Given the scattered d-dimensional data

(zi,F;), z; ¢ R*, F;e R , :=1,2,...,N,

we look for an interpolatory function S(z) of the form

5($)=Zai9(||m—mi 1) (14)

where || - | denotes the usual Euclidean norm on R* and g: R™ — IR. A function
of this type is usually referred to as a pure radial sum. Using radial functions
reflects the fact that the scattered data has no preferred orientation, and their
choice is dimension-dependent [3]. Other multivariate approximations, generalizing
the univariate splines, use augmented radial sums, where the sum in Eq. (14) is
augmented by a low degree polynomial.

Our discussion is mainly concerned with the 3-dimensional case (d = 3). We
define the elastic transformation E : IR* — IR?® as:

E(q) = L(q) + Z(q) , (15)
where L is a linear transformation and Z is of the form:
Z(q) = (51(q), 52(q) Ss(q9)) (16)
where
N
Si(a) = Y abg(lg —ail) , 1<k <3, q=(¢",¢",¢") € .
=1
g : IR" — IR is a univariate function, || - || is the Euclidean norm on IR®, and {g;}
forz = 1,2,...,N are the source anchor points after the rigid transformation has

been applied to them.

The above definition of the transformation F, includes a linear part L. This
linear part is added because pure radial sums often yield poor approximation of the
transformation for points away from the anchor points. Moreover, the linear part
is natural here since we would like to reconstruct exactly those transformations £
which are linear, and especially the identity transformation.

A proper choice of g is also important. Choosing g as a function with a fast
decay results in a finer local influence of the radial part, which can be used in order
to obtain different effects for various parts of the object. Other natural choices of
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the function g are g(r) = 72 log(r) in IR? and g(r) = r* in IR® [3]. In the following
we describe the computation of the elastic warp in IR>.

After computing the rigid part, namely, the rotation R(/) and the translation
cj, the elastic mapping F; is defined by the following N interpolation conditions:

E;j(R9po; +¢c;) =Ej(qi) =pji=yi » i=1,...,N, (17)

where q; = (¢;,92,q;), and y; = (y},y7,y3). This interpolation problem is always
solvable if we use an augmented radial approximation (with a properly chosen g) of
the form

Ej(q) =) aig(lg—al) + Ag + aa , (18)

=1

where
A=(or,a2,03)7 ,a; € R, 1<i<N,yeR,1<£<4.

Thus E; is determined by N + 4 coeflicients in IR®. The computation of those
coeflicients involves the solution of 3 square linear systems of size N +4 each, where
N conditions are derived by the interpolation requirements, as defined in (17), and
the additional compatibility conditions are

N N N N

k k k k
E :ai = E :aiqg = E :aiqz? = E :aiq? =0,k=1,2,3.
=1 i=1 =1 i=1

These conditions guarantee that the transformation is affine reducible, i.e., the
transformation is affine whenever possible. The system of equations for the vectors

of unknowns uy = (af,...,a%)T and vy = (af,ak ok of)T k=1,2,3,is

Guy, + Hvy, = by,
{ G o 19)

where b, = (y*,...,y%), G = { 9(|la: — 4;|) }ﬁrjzl and H is an N X 4 matrix with
an i-th row {1,q},4%,¢3},1 <i < N.

Now that the warp transformation W; is fully defined. The warped DFI ap-
proximation is obtained by (5), that is, the approximated domain Q. at time t,

defined by the hybrid warped DFI procedure, is defined by
Q= {y = (Wi(e),t) | do(t) <O}, (20)

with W; given by (12) and d, as defined in Section 2.
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Practical implementation.

The formal definition (20) seems rather simple, however, it is quite involved to
realize. To make the warped DFI approximation an applicable tool in computer
graphics, efficient algorithms for computing distance fields and for boundary detec-
tion, in 2D and in 3D, should be developed and employed. Implementation details
and numerical experiments with the warped DFI method are described in [2]. Ex-
amples of 2D and 3D animations generated by the presented method can be found
in the URL address: http://www.math.tau.ac.il/~daniel/Morph/morph.html/.
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