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Figure 1: The Statue of Liberty becomes the Christ statue on the Corcovado.

Abstract

We present an object-space morphing technique that blends the in-
teriors of given two- or three-dimensional shapes rather than their
boundaries. The morph is rigid in the sense that local volumes are
least-distorting as they vary from their source to target configura-
tions. Given a boundary vertex correspondence, the source and tar-
get shapes are decomposed into isomorphic simplicial complexes.
For the simplicial complexes, we find a closed-form expression al-
locating the paths of both boundaryand interior vertices from source
to target locations as a function of time. Key points are the identifi-
cation of the optimal simplex morphing and the appropriate defini-
tion of an error functional whose minimization defines the paths of
the vertices. Each pair of corresponding simplices defines an affine
transformation, which is factored into a rotation and a stretching
transformation. These local transformations are naturally interpo-
lated over time and serve as the basis for composing a global coher-
ent least-distorting transformation.
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1 Introduction

Techniques that transform one graphical object into another have
gained widespread use in recent years. These techniques, known as
morphing or blending techniques, involve the creation of a smooth
transition from an initial object to a target object. They have proven
to be powerful for visual effects, and there are now many breath-
taking examples in film and television. In most cases, these morph-
ing effects are generated using image-based techniques [3, 21, 30]
where the geometry of the source and target object are somewhat
similar, or the process requires extensive user labor. A primary chal-
lenge in this area is to devise algorithms to blend two given ob-
jects of significantly different shape, with minimal user interaction,
so that the in-between objects retain their original appearance and
properties as much as possible. The morph example in Figure 1 is
difficult to achieve with an image-based technique, because fore-
ground and background behave differently.

Object-space morphing treats explicit representations of the ob-
jects [14, 20] instead of discretizations of space (images, volumes).
Assuming the objects are either polygons (in 2D) or polyhedra (in
3D), the morphing process consists of generating a correspondence
between the geometric features of the representation, known as the
vertex correspondence problem [23, 19, 6, 18, 14, 1, 20], and then
interpolating the positions of the boundary representations along
predetermined paths, known as the vertex path problem [24, 25, 13,
8].

Most of the cited object-space morphing techniques are con-
cerned with the correspondence problem while simply linearly in-
terpolating the corresponding vertices, not taking into account that
the blended shapes are implicitly representing meta-physical en-
tities. Generally speaking, aesthetic and intuitive shape blending
should aim at treating the objects as rigidly as possible and avoid
superfluous global or local deformations. In [24], Sederberg intro-

Figure 2: Morph sequence of Haring-like figures showing their
homeomorphic dissections

Permission to make digital or hard copies of part or all of this work or 
personal or classroom use is granted without fee provided that copies are not 
made or distributed for profit or commercial advantage and that copies bear 
this notice and the full citation on the first page.  To copy otherwise, to 
republish, to post on servers, or to redistribute to lists, requires prior specific 
permission and/or a fee.   
 SIGGRAPH 2000, New Orleans, LA  USA 
 © ACM 2000 1-58113-208-5/00/07 ...$5.00 

157



a)

b)

Figure 3: Contour blends of the elephant-giraffe example. Simple
linear vertex interpolation in (a) vs. as-rigid-as-possible shape in-
terpolation in (b).

Figure 4: The homeomorphic dissections of the shapes in the
elephant-giraffe example

duced techniques that minimize the deformation of the boundaries.
Shapira and Rappaport [25] suggested that a proper morph cannot
be expressed merely as a boundary interpolation, but as a smooth
blend of the interior of the objects. To achieve such an interior inter-
polation, they represented the interior of the 2D shapes by compati-
ble skeletons and applied the blend to the parametric description of
the skeletons. The automatic creation of corresponding equivalent
skeletons of two shapes is involved, and though theoretically possi-
ble for all shapes, it seems natural for similar shapes,but ambiguous
for rather different shapes like the letters U and T.

In this paper, we present an object-space morphing technique
that blends the interior of the shapes rather than their boundaries
to achieve a sequence of in-between shapes which is locally least-
distorting. Assuming that a boundary vertex correspondence of the
source and target shapes is given, we apply an algorithm for dis-
secting the source and target shapes into isomorphic simplicial com-
plexes, i.e. triangles or tetrahedra. Then, we develop a method for
interpolating the locations of corresponding vertices, both boundary
and interior, along their paths from the source to the target object.

Simplicial complexes allow the local deformation of the shapes
to be analyzed and controled. Floater and Gotsman have used
barycentric coordinates to morph compatible triangulations with
convex boundary so that no triangles flip on their way from the
source to the target configuration [10]. However, interpolation of
barycentric coordinates is not motivated by or related to physical or
esthetical principles.

We start by determining an optimal least-distorting morphing be-
tween a source simplex and a target simplex (triangles in the 2D case
and tetrahedra in the 3D case). Then, the general idea is to find a
transformation which is locally as similar as possible to the optimal
transformation between each pair of corresponding simplices.

2 Transforming Shapes

Given two objects together with a set of point-to-point correspon-
dences between user-defined control (anchor) points, one can de-
fine an elastic transformation between the objects that exactly sat-
isfies the correspondences. However, to reduce the distortion of
the in-between shapes, it is advisable to determine the rigid part
of the transformation and interpolate it separately from the elastic
part [8, 31]. The rotational component of the rigid part should be
interpolated so that the object is non-deforming, e.g. using quater-
nion interpolation [27]. The rigid-elastic decomposition of the warp
function and its particular interpolation are so chosen to minimize
the distortion of the intermediate shapes. The rigid part performs
the general positional changes, while the fine details are gradually
changed by the elastic part.

In many applications, this decomposition does improve the mor-
phing results, though it cannot prevent local distortions in cases of
body movements which are more involved as may be found in ar-
ticulated objects. The underlying assumption in [6, 8, 31] is that the
movement can roughly be approximated by rotation, stretching and
translation. If we consider objects such as animals’ bodies or so-
phisticated mechanical objects, such as industrial robots, it is clear
that even the simplest movements cannot be well approximated by a
single rotation and translation. To reduce distortions in transforma-
tions of bodies comprising local rotations, the decompositionshould
be more elaborate. The idea is to determine local non-distorting
motions rather than a global one. The composed shape morphing
should behave locally as close as possible to the ideal local ones.
Figure 3 shows a blend between an elephant and a giraffe. The two
shapes are aligned and a single rotation cannot prevent the distor-
tions of a linear interpolation, whereas the locally least-distorting
interpolation yields a pleasing blend of such articulated objects.

Based on a compatible dissection of the interiors of the shapes
(see Figures 2 and 4), we first define local affine transformations.
Each of the local linear maps can be separately decomposed into
a rotation and a stretch. Thus, locally, we know how to achieve a
non-distorting morph. Then, these local transformations are com-
posed into a global coherent non-distorting transformation, which
minimizes the overall local deformation. It should be noted that our
transformation is (globally) rigidly reducible; that is, if there is a sin-
gle rigid transformation that aligns the objects, the morph follows
such a path.

We only consider simplicial complexes as dissections of shapes.
Specifically, a two-dimensional shape is a polygon and its dissection
a triangulation, and a three-dimensional shape is a polyhedron and
its dissection a tetrahedralization. In the following, we introduce an
interpolation technique for determining vertex paths in shape blend-
ing, given a source and a target shape represented by homeomor-
phic (compatible) triangulations. In Section 3, we show how to
compute such homeomorphic dissections from boundary represen-
tations. Note that we describe the concept of determining the vertex
paths in two dimensions for clarity; the extension to three or more
dimensions is straightforward.

2.1 Least-Distorting Triangle-to-Triangle Morph-
ing

Suppose the triangulation of the source and target shapes consists of
only one triangle each. Let the source vertices be P = ( ~p1; ~p2; ~p3)
and the target vertices be Q = (~q1; ~q2; ~q3), where vertices with the
same index correspond. An affine mapping represented by matrix
A transforms P into Q:

A~pi+~l =

�
a1 a2
a3 a4

�
~pi+

�
lx
ly

�
= ~qi; i 2 f1; 2; 3g (1)
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Figure 5: Transformations of a single triangle. (a) Linear vertex in-
terpolation. (b-d) An affine map from the source to the target trian-
gle is computed and factored into rotational and scale-shear parts.
Intermediate triangles are constructed by linearly interpolating the
angle(s) of rotation, the scaling factors, and the shear parameter.
(b) corresponds to Equation 4; (c) shows the results of reducing the
overall angle of (b) by subtracting 2� from one of the angles; (d)
corresponds to Equation 5 and represents the method of our choice.
The last column in all rows shows plots of the vertex paths.

We do not take the translation ~l into account for shape interpola-
tion since it does not describe any property of the shape itself except
for its placing in the scene. Rather, we want to describe intermedi-
ate shapes by varying the rotational and scaling parts comprisingA,
over time. Note that the coefficients of A are linear in the coordi-
nates of the target shape.

Intermediate shapes V (t) = ( ~v1(t); ~v2(t); ~v3(t)) are described
as V (t) = A(t)P . The question is how to define A(t) reasonably?
The simplest solution would be: A(t) = (1 � t)I + tA. However,
some properties of A(t) seem to be desirable, calling for a more
elaborate approach:

� The transformation should be symmetric with respect to t.

� The rotational angle(s) and scale should change linearly.

� The triangle should keep its orientation, i.e. should not be re-
flected.

� The resulting vertices’ paths should be simple.

The basic idea is to factor A into rotations (orthogonal matrices)
and scale-shear parts with positive scaling components. We have
examined several decompositions. A natural candidate is the singu-
lar value decomposition (SVD) [12], since the resulting decompo-
sition is symmetric and well-defined for arbitrary dimensions:

A = R�DR� = R�

�
sx 0
0 sy

�
R� ; sx; sy > 0 (2)

However, through experimentation, we have found a decomposition
into a single rotation and a symmetric matrix, to yield the visually-
best transformations. This result is supported by Shoemake in [27]
for mathematical, as well as psychological, reasons. The decompo-
sition can be deduced from the SVD as follows:

A = R�DR� = R�(R�R
T
� )DR� =

(R�R�)(R
T
�DR�) = R
S = R


�
sx sh
sh sy

�
(3)

with sx; sy > 0. Based on the decomposition,A(t) is computed by
linearly interpolating the free parameters in the factorizations in (2)
and (3) , i.e.

A�;�(t) = Rt�((1� t)I + tD)Rt� (4)

and respectively,

A
(t) = Rt
((1� t)I + tS) (5)

Figure 5 illustrates the resulting transformations from a source to
a target triangle. For comparison, 5(a) shows linear interpolation
of vertex coordinates. The transformation resulting from a singu-
lar value decomposition and linear interpolationA�;�(t) is depicted
in 5(b). Note that the result is symmetric and linear in the rotation
angle but still unsatisfactory, since a rotation of more than � is un-
necessary. However, if we subtract 2� from one of the angles (de-
picted in 1(c)) the result is even more displeasing. We have found
that decomposing A into one rotation and a symmetric matrix and
using A
(t) yields the best results (Figure 5(d)). It avoids unnec-
essary rotation or shear compared to the SVD and is usually more
symmetric than a QR decomposition-based approach. Note that the
rotation of the triangle does not contribute to its shape. However,
this is no longer true for more than a single triangle, as we shall see
in the next section, which discusses the generalization to more than
one triangle.

2.2 Closed-Form Vertex Paths for a Triangulation

We now considera triangulationT = fTfi;j;kgg rather than a single
triangle. Each of the source triangles Pfi;j;kg = (~pi; ~pj ; ~pk) corre-
sponds to a target triangle Qfi;j;kg = (~qi; ~qj; ~qk). For each pair of
triangles, we compute a mapping Afi;j;kg, which can be factored
by Eq. 5 to determine Afi;j;kg(t). Since most of the vertices corre-
spond to more than one triangle, a mapping of all vertices could not
(in general) be conforming with all the individual ideal transforma-
tions Afi;j;kg(t).
Let

V (t) = ( ~v1(t); : : : ; ~vn(t)); t 2 [0; 1] (6)

be the desired paths of the vertices, satisfying

V (0) = ( ~p1; : : : ; ~pn)

V (1) = (~q1; : : : ; ~qn):

We define Bfi;j;kg(t) to be the matrix in the affine transformation
from Pfi;j;kg to ~vi(t); ~vj(t); ~vk(t), i.e.

Bfi;j;kg(t) ~pf +~l = ~vf (t); f 2 fi; j; kg (7)

Note that the coefficients of Bfi;j;kg(t) are linear in
~vi(t); ~vj(t); ~vk(t). We define an intermediate shape V (t) as
the vertex configuration which minimizes the quadratic error
between the actual matrices Bfi;j;kg(t) and the desired ones
Afi;j;kg(t). This quadratic error functional is expressed as

EV (t) =
X

fi;j;kg2T



Afi;j;kg(t)� Bfi;j;kg(t)


2 ; (8)

where k�k is the Frobenius norm. In this expression, theAfi;j;kg(t)
are known for a fixed time t and each Bfi;j;kg is linear in the
~vi(t); ~vj(t); ~vk(t). Thus, EV (t) is a positive quadratic form in the
elements of V (t). In order to have a unique minimizer to EV (t), we
should predetermine the location of one vertex, say v1x(t); v1y (t),
for example, by linear interpolation.
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Figure 6: Transformations of different shapes representing solid ob-
jects. Note that parts of the shapes transform rigidly whenever pos-
sible. The lowest row shows an example where the shapes have no
obvious common skeleton.

The functionalEV (t) can be expressed in matrix form, settinguT =
(1; v2x (t); v2y (t); : : : ; vnx (t); vny (t)) as

EV (t) = u
T

�
c GT

G H

�
u; (9)

where c 2 IR represents the constant, G 2 IR2n�1 the linear,
and H 2 IR2n�2n the mixed and pure quadratic coefficients of the
quadratic form EV (t). The minimization problem is solved by set-
ting the gradient rEV (t) over the free variables to zero:

H

0
@

v2x(t)
v2y (t)

...

1
A = �G (10)

Note that H is independent of t. This means we can invert H and
find solutions for time t by computing the corresponding G(t) and
a single matrix multiplication:

V (t) = �H�1G(t) (11)

In practice, we compute the LU decomposition of H and find V (t)
by back substitution. Furthermore, the computations are separable
and are performed independently for the two coordinates. Note that
onlyG depends on the dimension, while H is the same for the x and
y components. Thus,H is effectively of size n� 1� n� 1, which
means the dominating factor of the computation is independent of
the dimension.

The above definition has the following notable properties:

� For a given t, the solution is unique.

� The solution requires only one matrix inversion for a specific
source and target shape. Every intermediate shape is found by
multiplying the inverted matrix by a vector.

� The vertex path is infinitely smooth, starts exactly in the source
shape, and ends exactly in the target shape. These are proper-
ties typically difficult to achieve in physically-based simula-
tions.

Figure 6 shows transformations of some simple shapes produced
with the described method.

2.3 Symmetric Solutions

While we were satisfied with the degree of symmetry the previosly
explained approach exhibited in most of our test cases, a symmetric
solution can be advantageous – in particular, if the corresponding
triangles in the source and target shapes have largely differing area.
We can make the solution symmetric by simply blending the opti-
mization problems from both directions. Let A!f (t) be the affine
transformation of triangle f from source to intermediate shape at
time t, and A f (t) the respective transformation coming from the
target shape. Similarly, we define B!f (t) and B f (t). We define
intermediate EV (t), the vertex configuration at time t, by

EV (t) = (1� t)E!V (t) + tE
 
V (t) (12)

where

E
!
V (t) =

X
f2 Tri



A!f (t)� B
!
f (t)



2 (13)

E
 
V (t) =

X
f2 Tri



A f (1� t)� B
 
f (1� t)



2 (14)

With this definition, we lose the advantage of only one matrix in-
version for given source and target shapes. Instead, every time t
requires the solution of a linear system of equations. Whether the
computation times are acceptable depends on the shapes and the de-
sired application.

3 Isomorphic Dissections of Shapes

In this section, we construct isomorphic dissections given two
shapes in boundary representation. We assume that the correspon-
dence of the boundaries has been established, i.e. a bijective map
between boundary vertices is given. For polygons, reasonable cor-
respondence can be found automatically [23, 7]. In difficult cases,
few correspondences could be specified manually and the remain-
ing vertices are matched automatically. For polyhedral objects, sev-
eral techniques exist, which are based on topological merging intro-
duced by Kent et al. [19]. Recentwork [14, 20] also allows the spec-
ification of corresponding features which seems sufficient to pro-
duce acceptable results for a variety of polyhedral models.

3.1 Polygons

The problem of constructing a common triangulation for two given
polygons is discussed in the literature as compatible triangulation
[2]. Triangulating a single polygon � is possible using only the ver-
tices of the polygon (e.g. [5]). However, this is usually not possi-
ble for two different polygons. Aronov et al. [2] show how to tri-
angulate two polygons in a compatible way if at most O(n2) addi-
tional vertices (so-called Steiner points) are allowed. The general
scheme [2] is to first triangulate each polygon independently. Then,
both polygons are mapped to a regular n-gon so that corresponding
boundary vertices coincide. The compatible triangulation is estab-
lished by overlaying the two edge sets in the convex n-gon. The
resulting new interior vertices are then mapped back into the orig-
inal polygons, yielding compatible triangulations of the source and
target shapes.

We would like to stress that the quality of the blend, in terms of
the quality of the in-between shapes, strongly depends on the shape
of the simplices. In particular, skinny triangles (or tetrahedra in 3D)
cause numerical problems. Thus, in the following, we describe how
this scheme can be enhancedto yield compatible triangulations with
a significantly better triangle shape.

First, we apply Delaunay triangulations (see any textbook on
Computational Geometry, e.g. [4]) as the initial triangulation since
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Figure 7: A comparison of compatible triangulations. The upper
row shows triangulations generated from using ear-capping for the
initial triangulation step. Initial triangulations are overlaid on a con-
vex domain to produce compatible triangulations. The triangula-
tions in the lower row were generated with the same general proce-
dure, but using initial Delaunay triangulations. Far fewer triangles
are induced, since Delaunay triangulations yield similar partitioning
for similar regions.

Delaunay triangulations maximize the minimum interior angle and,
thus, avoid skinny triangles. Of course, any skinny triangle in the
independent triangulations is inherited by the merged triangulation.
Moreover, Delaunay triangulations are unique, and similar regions
in the shapes will result in similar triangulations. Thus, skinny tri-
angles resulting from the overlay process can be avoided.

Nevertheless, the merged triangulations still have skinny trian-
gles, and further enhancement is required to avoid numerical prob-
lems. We optimize the triangulations by further maximizing the
minimum interior angle, which is known to be a reasonable trian-
gulation quality criterion (see e.g. [4]). We use two independent
operations:

1. Moving interior vertices. Freitag et al. [11] show how to find
vertex positions which maximize the minimum angle for a
given triangulation.

2. Flipping interior edges simultaneously in both triangulations.
This procedure follows the edge flip criteria used in Delaunay
triangulation. Given that an edge flip is legal in both triangu-
lations, it is performed if the operation increases the overall
minimum angle.

The above two operations are applied in turn until no valid flips
are necessary. Convergence is assured since each step can only in-
crease the minimum angle. We call this procedure compatible mesh
smoothing. The smoothing step optimizes the compatible triangu-
lations without changing the vertex count.

However, we also consider changing the vertex count by means
of splitting edges. The split operation is well-defined in terms of
topology, if it is applied to both triangulations simultaneously, the
isomorphy remains. The idea is to split long edges to avoid long
skinny triangles. Splitting edges according to their lengths does not
guarantee an increase in triangle quality. In practice, smaller trian-
gles are more likely to be improved by the smoothing step. After
each edge split, the triangulations are smoothed. This avoids the

Figure 8: The mesh refinement process. In the first row, the merged
Delaunay triangulations from Figure 7 are refined by edge splits un-
til all edge lengths are bounded. The second row shows the result
of compatible mesh smoothing on this triangulation. The third row
shows the actual technique, where splitting and smoothing is per-
formed concurrently. Note that the edge length bound is the same
in the first and third row.

generation of edges in regions where the smoothing operation would
produce nicely-shaped triangles. Figure 8 illustrates the results of
splitting edges, as well as of the smoothing process.

3.2 Polyhedra

To the best of our knowledge, the three-dimensional analog to com-
patible triangulations has not been discussed in the literature. Work
has been done to dissect polyhedra into simplicial complexes, a
process referred to as tetrahedralization. However, the work of
Aronov et al. [2] can be extended to genus 0 polyhedra. First, the
source and target polyhedra are tetrahedralized independently us-
ing common techniques, e.g. Barry Joe’s Geompack [17]. Then,
the tetrahedralizations are mapped to a correspondingconvex shape.
Alexa [1] as well as Shapiro and Tal [26] describe methods to map
an arbitrary genus 0 polyhedron to a convex shape. Since the source
and target polyhedra are assumed to have the same vertex-edge
topology and the convexification process is deterministic, the poly-
hedra are mapped to the same convex shape. The interior vertices of
their tetrahedralizations are mapped using barycentric coordinates.
The fact that vertices are mapped to a convex shape using barycen-
tric coordinates for interior vertices assures that no tetrahedra will be
flipped. Then, an overlay of the two tetrahedralizations is computed,
where faces are cut against faces, resulting in new edges. Note that
the intersection of two tetrahedra results in four-, five-, or six-sided
convexshapes,which are easy to tetrahedralize. The resulting struc-
ture is mapped back into original polyhedra. In case the source and
target shapes are not genus 0, they have to be cut into genus 0 pieces
which are independently treated as explained above.

4 Results and Conclusion

We have applied the techniques explained above to various inputs.
The two-dimensional shapes are generated by extracting a contour
out of an image. For the correspondence of contours, we defined
manually several vertex-to-vertex correspondences, while the re-
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Figure 9: The contour of a maple leaf blended with a plane using
as-rigid-as-possible shape interpolation. Note that the features of
the plane grow out of contour according to the current direction of
wings and not their final position.

maining vertices were automatically aligned. The resulting poly-
gons were dissected as described above. In Figures 10, 11, 12, and
15, the triangulations were used to map a texture to the shape (as was
suggested by Tal and Elber in [28]). Textures were extracted with
the contours from the source images. More elaborate techniques for
space-time control (e.g. [21]) could be easily integrated in our work
to give the user more control as to what is transformed and when.
Also note that the techniques are not restricted to simple polygons.

Since our technique interpolates shapes “naturally” in the sense
that it preserves parts that just change relative position or orienta-
tion, it could be also used to extrapolate beyondthe source and target
shapes. Figure 13 demonstrates this with the example of Leonardo
DaVinci’s studies on proportions (see Figure 15 for the interpola-
tion). We can generate shapes for time values -0.5 and 1.5 while
preserving the proportions of the human figure.

We have also applied the interpolation technique to three-
dimensional models. The examples in Figure 14 were generated by
using deformed versions of a polyhedral model. Note the differ-
ence between linear vertex interpolation (upper row) and as-rigid-
as-possible interpolation (lower row). In Figure 16, morphable
polyhedral models were generated using topological merging. As
in the two-dimensional case, the vertex paths result from defining
transformations for each pair of corresponding tetrahedra by factor-
ing the affine transform into rotational and stretching components
and, then, minimizing the deviation from these ideal transforma-
tions.

The current implementation seems to be robust and fast. The
most time-consuming step is optimizing triangle shape. Without op-
timizing triangle shape numerical problems are likely to occur. In
all our examples no simplex changedorientation (i.e. flipped), how-
ever, we have not been able to prove this to be a property of our ap-
proach.

The examples clearly demonstrate the superior quality of our ap-
proach compared to plain linear vertex interpolation. Additionally,
it offers the possibility to texture the shapes, so that shape blending
becomes applicable to images. In turn, traditional image morphing
techniques could serve to generate the homeomorphic dissections of
the shapes and, thus, make use of more advanced vertex/pixel inter-
polation technique(s). However, the quality of a morph lies in the
eye of the beholder. Nevertheless, there is a clear consensus that -
lacking other information - the geometry along the morph sequence
should change monotonically with no superfluous distortions. The
idea of as-rigid-as-possible shape interpolation is to avoid distor-
tions as much as possible and let angles and scales change linearly.
We believe that this captures the notion of the above-mentionedcon-
sensus.

Despite this, shape blending is always an aesthetic problem and
no automatic method will meet the needs that arise in different ap-
plications. Consequently, user interaction will always be necessary
to produce the desired results. Nevertheless, we believe that more
elaborate methods for shape blending simplify and minimize the in-
volvement of the designer.

Finally, we want to mention that dissections of shapes seem to
extend the concept of skeletons while fully capturing their informa-
tion. Dissections are more powerful in representing the mechanics

Figure 10: Morphs between Egyptian art pieces using textures
from the original images. Contours are blended using as-rigid-as-
possible shape interpolation and texture colors are linearly interpo-
lated.

Figure 11: Contour blend of a penguin and a dolphin using only the
texture of the penguin.

of shapes as they allow fine grained analysis of local behaviour. In
many cases, shapes naturally have no skeleton or their metamor-
phoses could not be described in terms of a skeleton. These benefits
come along with easier and less ambiguous computation of dissec-
tions as compared to skeletons.
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Figure 15: Leonardo DaVinci’s studies on proportions. The two rows contrast linear and as-rigid-as-possible interpolation of the figure. The
difference is subtle, but Leonardo proves our method right (see the feet leaving the circle in the linear interpolation).

Figure 16: Our technique is also useful to mimic motions of articulated three-dimensional objects in case the underlying skeleton is missing,
as demonstrated for a horse turning its head. The example in the lower row was produced using a polyhedral morphing technique (facilitating
topological merging). Note that the lengths of the tails/necks are preserved.
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