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is the existence and smoothness of these Daubechies type wavelets.
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1. Introduction

In the fundamental paper [9] G. Deslauriers and S. Dubuc investigated a subdivision scheme based on
polynomial interpolation of odd degree 2n− 1. An important result is the existence of the basic limit func-
tion ΦD2n for the subdivision scheme, and a deep analysis and new methods were developed to determine
its order of regularity. The present work originated in the desire to study a new concept of multivariate
subdivision scheme in the spirit of Deslauriers and Dubuc. According to the Polyharmonic Paradigm in-
troduced in [17], polyharmonic interpolation on parallel hyperplanes (or on concentric spheres) provides an
interesting genuine generalization of the one-dimensional polynomial interpolation and generates a natural
multivariate subdivision scheme. This polyharmonic subdivision scheme will be discussed in a forthcoming
paper [11] and it is shown there how to reduce it to an infinite family of one-dimensional non-stationary

* Corresponding author at: Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 8 Acad. G. Bonchev Str.,
1113 Sofia, Bulgaria. Fax: +359 2 971 3649.

E-mail addresses: niradyn@math.tau.ac.il (N. Dyn), kounchev@gmx.de (O. Kounchev), levin@tau.ac.il (D. Levin),
hermann.render@ucd.ie (H. Render).
1063-5203/$ – see front matter © 2014 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.acha.2013.12.003

http://dx.doi.org/10.1016/j.acha.2013.12.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/acha
mailto:niradyn@math.tau.ac.il
mailto:kounchev@gmx.de
mailto:levin@tau.ac.il
mailto:hermann.render@ucd.ie
http://dx.doi.org/10.1016/j.acha.2013.12.003


JID:YACHA AID:952 /FLA [m3L; v 1.123; Prn:27/01/2014; 11:28] P.2 (1-19)
2 N. Dyn et al. / Appl. Comput. Harmon. Anal. ••• (••••) •••–•••
subdivision schemes reproducing exponential polynomials of special type. It is a remarkable fact that the
notion of non-stationary subdivision is so essential for the multivariate subdivision.

In a parallel direction, the study of non-stationary subdivision schemes reproducing general exponential
polynomials was initiated in 2003 in [13], where the main results of Deslauriers and Dubuc were generalized.
In particular, the existence of a basic limit function was established and its order of regularity was estimated.
The subdivision scheme depends on a given vector of numbers (λ1, . . . , λn) (with possible repetitions);
this scheme reproduces the linear space E(λ1, . . . , λn) spanned by all exponential polynomials tseλjt, with
integers s satisfying 0 � s � μj − 1, where μj is the number of occurrences of λj in the vector (λ1, . . . , λn).
The scheme is characterized by a family of symbols {a[k](z)}k∈Z, where a[k](z) defines the refinement rule
at level k.

It is well known that subdivision schemes and wavelet analysis are intimately related subjects. Indeed,
Daubechies wavelets are closely related to the subdivision schemes of Deslauriers and Dubuc: the auto-
correlation function of the Daubechies scaling function is equal to the basic limit function ΦD2n of the
Deslauriers–Dubuc scheme (see [7,32], or Section 5 below).

The purpose of the present paper is to provide an analogous construction of generalized Daubechies
wavelets based on non-stationary subdivision schemes reproducing the space E(λ1, . . . , λn) for a given real
vector (λ1, . . . , λn). In Section 5 we provide the construction of the non-stationary Daubechies masks as
appropriate square roots of masks of non-stationary Deslauriers–Dubuc type subdivision schemes, and we
give a rigorous proof for the existence of the generalized Daubechies scaling function.

The main result of the paper is contained in Section 6: an estimate of the regularity of the generalized
Daubechies scaling function, and consequently, an estimate of the regularity of the generalized Daubechies
wavelets. An important technical tool is here the concept of asymptotically equivalent subdivision schemes
developed in [15]. Given the real-valued parameters λ1, . . . , λn we prove the existence of non-stationary
Daubechies masks leading to a subdivision scheme reproducing the corresponding space E(λ1, . . . , λn), which
is asymptotically equivalent to the classical subdivision scheme generating Daubechies scaling functions. The
proof of this important fact depends on an appropriate choice of the Daubechies masks at each level. With
this choice we are able to estimate from below the order of smoothness of the generalized Daubechies scaling
function: we make this by comparing the rate of decay of the Fourier transform of the classical Daubechies
scaling function with that of the generalized Daubechies scaling function. Let us emphasize that this method
provides an estimate from below for the smoothness but it does not give us a proof of our conjecture that
the order of regularity of the new Daubechies type wavelets reproducing the space E(λ1, . . . , λn), is equal to
the order of regularity of the classical Daubechies wavelets reproducing polynomials of degree � n − 1. Let
us mention that the regularity results of the present paper are essential for estimating the regularity of the
multivariate polyharmonic subdivision schemes and the corresponding multivariate wavelets in [11].

There is a substantial overlap between the present article and the work of C. Vonesch, T. Blu and M. Unser
in [35]. Our approach is written from the standpoint of subdivision schemes which leads in a very natural way
to the corresponding filters. The article [35] favorizes the standpoint of wavelet and filter bank design and it is
shown there that many results and techniques of classical multiresolution analysis, briefly MRA, carry over to
non-stationary MRA (except that all filters and scaling functions depend on the scale of the multiresolution).
The authors in [35] used the fundamental results in [15] for introducing non-stationary Daubechies-type
wavelets reproducing a family of exponentials {eλjt}nj=1 even for complex-valued parameters {λj}. However,
there are some key differences with the present paper which we now review. Firstly, the authors in [35] did
not discuss the regularity of the corresponding wavelets which is of high importance for theoretical and
practical aspects of the wavelets. Secondly, it was not known to the authors of [35] that for symmetric and
real-valued exponential parameters {λj} the shortest-possible symbols are always positive on the unit circle,
a result which has already been proved in [28] in 1996. In [35] it was shown by examples that the symbol
is in general not positive for complex parameters. They concluded that in this general setting it may be
necessary to introduce symbols that have longer support than in the standard Deslauriers–Dubuc scheme, so
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that they are positive and thus amenable to spectral factorization. Moreover [35] also discusses biorthogonal
wavelets and contains a wealth of additional information about non-stationary MRA. Let us also mention
that non-stationary MRA and Wavelet Analysis which reproduce exponentials have been discussed in [8].
These classes appear in a natural way in the context of multivariate polyspline wavelets, see [17]. Finally
let us mention that there are other systems of Daubechies-like non-stationary wavelets in the literature and
we refer to the work of M. Berkolaiko and I. Novikov in [1], see also [33].

The paper is organized as follows: In Section 2 we provide an introduction to non-stationary subdivision
schemes and to the concept of asymptotically equivalent subdivision schemes developed in [15] which is a key
ingredient in our proofs of the regularity results. Section 3 is devoted to subdivision schemes for exponential
polynomials and we give an estimate from below of the order of regularity of the basic limit function. In
Section 4 we briefly review the topic of non-stationary multiresolution analysis. In Section 5 we construct
the generalized Daubechies scaling functions via subdivision schemes. Section 6 contains the main results
about the order of regularity of the generalized Daubechies scaling functions. The short Section 7 provides
the construction of the generalized Daubechies wavelets using a non-stationary MRA.

Finally, we introduce some notations: N0 denotes the set of all natural numbers including zero, Z denotes
the set of all integers and we denote by 2−kZ the grid {j/2k: j ∈ Z}. By C�(R) we denote the set of all
functions f : R → R which are �-times continuously differentiable where � ∈ N0. The Fourier transform of
an integrable function f : R → R is defined by

f̂(ω) =
∞∫

−∞

f(x)e−ixω dx.

2. Basics in non-stationary subdivision schemes

In this section we briefly recall notations and definitions used in non-stationary subdivision schemes for
functions on the real line. The formal definition of a subdivision scheme is the following:

Definition 1. A (non-stationary) subdivision scheme S0 is given by a family of sequences (a[k]
j )j∈Z of real

numbers indexed by k ∈ N0, called the masks at level k, such that a[k]
j �= 0 only for finitely many j ∈ Z. Given

a sequence of numbers f0(j), j ∈ Z, one defines inductively a sequence of functions fk+1 : 2−(k+1)Z → C

by the rule

fk+1
j := fk+1

(
j

2k+1

)
=

∑
l∈Z

a
[k]
j−2lf

k

(
l

2k

)
for j ∈ Z.

If for each k ∈ N0 the masks (a[k]
j )j∈Z are identical the scheme is said to be stationary. The subdivision

scheme is called interpolatory if for all k � 0 and j ∈ Z there holds

fk+1
2j = fk

j .

An important tool in subdivision schemes is the symbol a[k] of the subdivision scheme, defined by

a[k](z) :=
∑
j∈Z

a
[k]
j zj

which is a Laurent polynomial since we assume that the sequence a
[k]
j , j ∈ Z, has finite support. We identify

the subdivision scheme S0 by its masks (a[k]
j )j∈Z, k ∈ N0, or its symbols a[k], k ∈ N0. It is clear that

a subdivision scheme is stationary if and only if a[k](z) = a(z), for all k ∈ N0. Moreover the scheme is
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interpolatory if and only if a[k]
2j = δ0,j , for all j ∈ Z and k ∈ N0; here δ0,j is the Kronecker symbol. In terms

of the symbol a[k] it is easy to prove that this is equivalent to the identity

a[k](z) + a[k](−z) = 2, z ∈ C \ {0}.

Definition 2. Let � ∈ N0. A subdivision scheme S0 is called C�-convergent if for any bounded initial sequence
{f0

j }j∈Z there exists F ∈ C�(R) such that

lim
k→∞

sup
j∈Z

{∣∣F (
j2−k

)
− fk

j

∣∣} = 0.

The function F is called the limit function of the subdivision scheme for the initial sequence {f0
j }j∈Z. The

limit function for the initial data function f0
j = δ0j is called the basic limit function of the scheme and it is

denoted by Φ0.

A subdivision scheme is called convergent if it is just C0-convergent. A central problem in the theory
of subdivision schemes is to estimate the order of regularity of a limit function whenever it exists. Let us
remark that for an interpolatory scheme the limit function F in Definition 2 is easily computed for dyadic
numbers t = j

2k with k � 0 and j ∈ Z through the values fk
j , and convergence of the scheme asks whether

it has a continuous extension over the whole R.

Remark 3. It is easy to see that for a convergent subdivision scheme S0 with symbols a[k](z) :=
∑N

j=−N a
[k]
j zj

for all k ∈ N0, the support of the basic limit function Φ0 is contained in [−N,N ].

In the non-stationary case the following concept is of importance:

Definition 4. Let S0 be a subdivision scheme given by the masks (a[k]
j )j∈Z. For any natural number m ∈ N0

define a new subdivision scheme Sm by means of the masks of level k:

a[k],m(z) := a[k+m](z) for all k ∈ N0.

The following result is proved in [14]:

Theorem 5. If S0 is a convergent subdivision scheme then Sm is convergent for any m ∈ N0.
The basic limit function of this scheme is denoted by Φm.

The following result is well-known, see e.g. the proof of Theorem 2.1 in [6], for further results see also [30].

Proposition 6. Let S0 be a subdivision scheme with symbols a[k](z) for each level k ∈ N0, such that

(i) a
[k]
j = 0 for all |j| > N and all k ∈ N0 for some fixed integer N > 0,

(ii) there is a constant M > 0 such that |a[k](eiω)| � M for all k ∈ N0 and

∞∑
k=0

∣∣∣∣12a[k](1) − 1
∣∣∣∣ < ∞.

Then the infinite product

∞∏
k=1

1
2a

[k−1](eiω2−k)
converges uniformly on compact subsets of R.
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Note that by Remark 3 the basic limit function Φ0 of a convergent subdivision scheme satisfying (i) in
Proposition 6 has compact support. Hence the continuous function Φ0 is integrable and square integrable.
It follows that the Fourier transform Φ̂0 of Φ0 is well-defined, continuous and square integrable.

Proposition 7. Let S0 be a convergent subdivision scheme with symbols a[k](z) for each level k ∈ N0, satis-
fying (i) and (ii) in Proposition 6. Then

Φ̂0(ω) =
∞∏
k=1

1
2a

[k−1](eiω2−k)
.

Definition 8. A subdivision scheme S0 with masks (a[k]
j )j∈Z for k ∈ N0 reproduces a continuous function

f : R → C at level k ∈ N0 if for all j ∈ Z

f

(
j

2k+1

)
=

∑
l∈Z

a
[k]
j−2lf

(
l

2k

)
. (1)

We say that S0 reproduces f step-wise if it reproduces f at each level k ∈ N0.

Let us note that in [14, p. 31] and [10] a slightly different terminology is used for the above notions.
Theorem 9 below extends Theorem 2.3 in [13] which was formulated only for interpolatory schemes.

(We will apply this later to Daubechies schemes which are not interpolatory.) For a proof we refer to an
extended version of the present paper in [12]:

Theorem 9. Let S0 be a subdivision scheme with masks (a[k]
j )j∈Z, k ∈ N0. Then for r = 0, . . . , μ − 1 the

functions fr(x) = xreλx are reproduced step-wise by S0 if and only if for all k ∈ N0 there holds

a[k](− exp
(
−2−(k+1)λ

))
= 0 and a[k](exp

(
−2−(k+1)λ

))
= 2

and

dr

dzr
a[k](± exp

(
−2−(k+1)λ

))
= 0, r = 1, . . . , μ− 1. (2)

It is easy to see that a function f : R → C is reproduced step-wise by a subdivision scheme if and only
if for the data function f0(j) := f(j) one has

fk

(
j

2k

)
= f

(
j

2k

)
.

From this it is easy to see that a convergent and step-wise reproducing subdivision scheme is reproducing
in the following sense:

Definition 10. A convergent subdivision scheme S0 with masks (a[k]
j )j∈Z for k ∈ N0, is reproducing a con-

tinuous function f : R → C if the limit function for the data function f(j), j ∈ Z, is equal to f(x).

Remark 11. In the definition of a convergent scheme some authors require bounded data.

An important concept for the investigation of non-stationary subdivision schemes is the following notion
introduced in [15]:
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Definition 12. Two subdivision schemes Sa and Sb with masks (a[k]
j )j∈Z and (b[k]

j )j∈Z for k ∈ N0, respectively,
are called asymptotically equivalent if

∞∑
k=0

∑
j∈Z

∣∣a[k]
j − b

[k]
j

∣∣ < ∞. (3)

We will also say that the two masks are asymptotically equivalent.

Remark 13. The following simple observation will be very useful in our further considerations: If for some
constant C > 0 the two subdivision schemes Sa and Sb satisfy the exponential estimate

max
j∈Z

∣∣a[k]
j − b

[k]
j

∣∣ � C · 2−k for all k ∈ N0, (4)

then they satisfy (3), and hence, they are asymptotically equivalent.
Suppose that for some integer N > 0, the masks (a[k]

j )j∈Z, k ∈ N0, and (b[k]
j )j∈Z, k ∈ N0, have support

in the set {−N, . . . , N}, i.e. a[k]
j = b

[k]
j = 0 for |j| > N . Then it is easy to see that a[k], k ∈ N0, and b[k],

k ∈ N0, satisfy estimate (4) if and only if for any R > 1 there exists D > 0 such that∣∣a[k](z) − b[k](z)
∣∣ � D · 2−k (5)

for all k ∈ N0 and for all z ∈ C with 1/R � |z| � R.

The following elementary result provides a sufficient method for constructing asymptotically equivalent
subdivision schemes. As one of the referees pointed out to us, a short proof depends on Vieta’s formulas
for expressing the coefficients of a polynomial by it roots and the fact that the product of several sequences
{s(i)

k }k∈N with the property |s(i)
k −1| = O(2−k), has the same property. Alternatively the reader may consult

Theorem 14 in [12].

Theorem 14. Let m ∈ N0 and assume that p[k](z) and p(z) are polynomials of degree m for each k ∈ N0
defined as

p[k](z) = c[k]
m∏
j=1

(
z − α

[k]
j

)
and p(z) = c

m∏
j=1

(z − αj)

for some complex numbers c[k], c, and α
[k]
j and αj, for j = 1, . . . ,m, and k ∈ N0. Suppose that there exists

a constant Dm > 0 such that for all k ∈ N0 and j = 1, . . . ,m∣∣α[k]
j − αj

∣∣ � Dm2−k and
∣∣c[k] − c

∣∣ � Dm2−k. (6)

Then p[k](z), k ∈ N0, and p(z), k ∈ N0, are close by an exponential estimate of the type (4), hence, by
Remark 13 they are asymptotically equivalent.

The next result is a direct consequence of the fact that a simple root of a polynomial is a locally Lipschitz
function of its coefficients:

Theorem 15. Assume that p[k](z) and p(z) are polynomials of degree � m for each k ∈ N0 and assume that
for each R > 0 there exists a constant Cm(R) such that for all k ∈ N0 and |z| � R∣∣p[k](z) − p(z)

∣∣ � Cm(R)2−k. (7)
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If α is a simple zero of p(z) then there exists k0 ∈ N0 and a constant ρ > 0 such that for each natural
number k � k0 there exists a zero α[k] of p[k](z) with∣∣α[k] − α

∣∣ � ρ2−k for all k � k0.

3. Subdivision schemes based on exponential interpolation and regularity of the basic limit function

The classical 2n-point Deslauriers–Dubuc subdivision scheme is defined via interpolation of polynomials
of degree 2n− 1, see [9]. We shall denote its symbol by D2n(z) which has the form

D2n(z) =
∑

|j|�2n−1

pjz
j . (8)

The scheme of Deslauriers and Dubuc is interpolatory, i.e., p2j = δ0,j , for all j ∈ Z, or equivalently

D2n(z) + D2n(−z) = 2, for all z ∈ C \ {0}. (9)

According to [9] the symbol D2n(z) satisfies condition

dj

dzj
D2n(−1) = 0, for j = 0, . . . , 2n− 1. (10)

Together, conditions (10) and (9) constitute a linear system which uniquely determines the symbol D2n(z)
of the Deslauriers and Dubuc scheme and it can be written in the form

D2n(z) =
(

1 + z

2

)2n

bD2n(z).

Let us mention that condition (10) means that polynomials of degree � 2n − 1 are reproduced by the
subdivision scheme.

Now we turn to subdivision schemes for exponential polynomials. Let L be the linear differential operator
given by

L =
(

d

dx
− λ0

)
· · ·

(
d

dx
− λN

)
.

Complex-valued solutions f of the equation Lf = 0 are called L-polynomials or exponential polynomials or
just exponentials. We shall denote the set of all solutions of Lf = 0 by E(λ0, . . . , λN ) which is a linear span
of the following set of functions: {

xkeλjx: 0 � j � N, 0 � k � μj − 1
}
;

here μj is the multiplicity of λj in the vector (λ0, . . . , λN ), i.e. the number of times the value λj occurs in
(λ0, . . . , λN ).

Throughout this article we shall assume that λ0, . . . , λN are real numbers. This assumption implies that
E(λ0, . . . , λN ) is a space spanned by an extended Chebyshev system, cf. [31,24]. In particular, for any pair-
wise distinct points t0, . . . , tN and data values y0, . . . , yN , there exists a unique element p ∈ E(λ0, . . . , λN )
with p(tj) = fj(tj) for j = 0, . . . , N , i.e. p is interpolation exponential polynomial.

Given real numbers λ0, . . . , λ2n−1 one can define the subdivision scheme based on interpolation in
E(λ0, . . . , λ2n−1): the new value fk+1(j/2k+1) is computed by constructing the unique function pkj ∈
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E(λ0, . . . , λ2n−1) interpolating the previous data fk((j + l)/2k) for l = −n + 1, . . . , n, and putting
fk+1(j/2k+1) = pkj (j/2k+1) (see [28] for details). Then the symbols of this scheme are of the form

a[k](z) =
∑

|j|�2n−1

a
[k]
j zj

and since the scheme is interpolatory one has

a[k](z) + a[k](−z) = 2, z ∈ C \ {0}. (11)

Due to the interpolatory definition of the subdivision it is clear that each function f ∈ E(λ0, . . . , λ2n−1) is
reproduced step-wise by the scheme, and Theorem 9 implies that

ds

dzs
a[k](− exp

(
−2−(k+1)λj

))
= 0, s = 0, . . . , μj − 1, (12)

where μj is the multiplicity of λj . Hence the subdivision scheme based on interpolation in E(λ0, . . . , λ2n−1)
is completely characterized by (11) and (12). In the terminology of [13] this is the even-order, symmetric and
minimal rank scheme reproducing E(λ0, . . . , λ2n−1). Note that the Deslauriers–Dubuc scheme is a special
case by taking λ0 = · · · = λ2n−1 = 0, reproducing the space of algebraic polynomials Π2n−1. Let us put

z
[k]
j = exp

(
−2−(k+1)λj

)
, j = 0, . . . , 2n− 1.

By means of (12) we can write

a[k](z) =
( 2n∏

j=1

z + z
[k]
j

2

)
b[k](z) (13)

which defines the important functions b[k](z) to be used later on.

Definition 16. For given real numbers λ0, . . . , λ2n−1 let us denote by SΛ2n
0 the subdivision scheme with

symbols a[k], k ∈ N0, satisfying (11) and (12).

In the rest of the paper we shall use the notation given in Definition 16. According to Definition 4, for
any natural number m ∈ N0, SΛ2n

m is a subdivision scheme given by the symbols

a[k],m(z) = a[k+m](z) for k ∈ N0. (14)

Remark 17. It is easy to see that the subdivision scheme SΛ2n
m is again an even-order, symmetric and minimal

rank scheme reproducing E(λ0/2m, . . . , λ2n−1/2m).

Many properties of the subdivision scheme SΛ2n
m for exponential polynomials can be derived from its

polynomial counterpart, the Deslauriers–Dubuc scheme. The key to these results is found in the following
observation in [13, Theorem 2.7].

Proposition 18. The subdivision scheme SΛ2n
m and the 2n-point Deslauriers–Dubuc subdivision scheme are

asymptotically equivalent in the sense of Definition 12. Even stronger statement holds: there exists a constant
C > 0 such that ∑

|j|�2n−1

∣∣pj − a
[k],m
j

∣∣ � C2−k for all k ∈ N0, (15)

where pj denotes the jth coefficient of the mask of D2n, see (8).
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The asymptotic equivalence follows from the last inequality, by applying Remark 13.
Deslauriers and Dubuc showed in [9] that their scheme D2n for n � 1 is C0-convergent implying the

existence of a basic limit function which will be denoted in the following by ΦD2n . Furthermore, one can
find sufficient conditions for C�-convergence in [9].

By Remark 17 we may apply Theorem 2.10 in [13] and obtain the following result:

Theorem 19. Let � ∈ N0. If the Deslauriers–Dubuc subdivision scheme of order 2n is C�-convergent then
the subdivision scheme SΛ2n

m is C�-convergent as well.

According to the last theorem the subdivision scheme SΛ2n
m has a basic limit function which will be

denoted in the following by ΦΛ2n
m .

A function f : Rd → C is called Lipschitz function of order α ∈ (0, 1) (or Hölder function of order α) if
there exists a number L > 0 such that for all x, y ∈ Rd

∣∣f(x) − f(y)
∣∣ � L|x− y|α.

The set of all Lipschitz functions of order α is denoted by Lip(α). Lemma 7.1 in [9, p. 56] provides a sufficient
condition for a function to belong to the space Lip(α) in terms of Fourier transform:

Lemma 20. Let f : R → C be an integrable function whose Fourier transform is g(ξ). We assume that
|ξ|�+αg(ξ) is integrable where � ∈ N0 and α ∈ [0, 1). If α = 0 then f is � times continuously differentiable.
If α �= 0, then f (�) is a Lipschitz function of order α.

We prove one of the main results of the paper.

Theorem 21. Let α ∈ [0, 1) and � ∈ N0 and assume that the basic limit function ΦD2n of the 2n-point
Deslauriers–Dubuc scheme satisfies for some ε > 0 and C > 0 the inequality∣∣Φ̂D2n(ω)

∣∣ � C
(
|ω| + 1

)−�−1−α−ε

for all ω ∈ R. Then the basic limit function ΦΛ2n
m of the scheme SΛ2n

m (defined by the symbols in formula (14))
has its �th derivative in Lip(α).

Proof. In formula (13) we have defined the function b[k](z). Let D2n(z) = (1+z
2 )2nbD2n(z) be the symbol of

the Deslauriers–Dubuc scheme. It was shown in [13, formula (2.32)] that b[k] is asymptotically equivalent to
bD2n , by proving an estimate as in (5): there exists a constant B > 0 such that∣∣b[k](eiω)− bD2n

(
eiω

)∣∣ � B · 2−k (16)

for all ω ∈ R and for all k ∈ N0. As an intermediate step we consider the non-stationary scheme Sc
m defined

by the symbols

c[k]
m (z) =

(
z + 1

2

)2n

b[m+k](z). (17)

In the proof of Theorem 2.10 in [13] it is shown that the scheme Sc
m has a basic limit function denoted

by Φc
m. Let ΦΛ2n

m be the basic limit function of SΛ2n
m . By Proposition 7

̂ΦΛ2n
m (ω) =

∞∏ 1
2a

[m+k−1](eiω2−k)
.

k=1



JID:YACHA AID:952 /FLA [m3L; v 1.123; Prn:27/01/2014; 11:28] P.10 (1-19)
10 N. Dyn et al. / Appl. Comput. Harmon. Anal. ••• (••••) •••–•••
Similarly, Φ̂D2n(ω) =
∏∞

k=1
1
2a(e

iω2−k) and we see that

Φ̂c
m(ω)

Φ̂D2n(ω)
=

∞∏
k=1

b[m+k−1](eiω2−k)
bD2n(eiω2−k)

(18)

=
∞∏
k=1

(
1 + b[m+k−1](eiω2−k) − bD2n(eiω2−k)

bD2n(eiω2−k)

)
. (19)

It is well known [9] that the trigonometric polynomial bD2n(e−iω2−k) does not vanish on the unit circle,
hence the denominator in (19) satisfies ∣∣bD2n

(
eiω2−k)∣∣ � δ > 0 (20)

for some δ > 0. Using (20) and (16) it is straightforward to prove that the infinite product in (18) is
uniformly bounded for ω ∈ R, and we obtain∣∣∣∣ Φ̂c

m(ω)
Φ̂D2n(ω)

∣∣∣∣ � Mm.

Recalling that each factor 1+z
2 induces convolution with a B-spline of order 0 (denoted as usual by B0) the

above inequality can be written as

∣∣Φ̂c
m(ω)

∣∣ =
( sin ω

2
ω
2

)2n ∞∏
k=1

∣∣b[m+k−1](eiω2−k)∣∣ � Mm

∣∣Φ̂D2n(ω)
∣∣

� MnC
(
|ω| + 1

)−�−1−α−ε
. (21)

Comparing (13) and (17) we see that in order to prove the theorem we need to replace each factor sin ω
2

ω
2

by

the Fourier transform of the basic limit function generated by the subdivision scheme with symbols { z+z
[k]
j

2 }.
This should be done with care since sin ω

2
ω
2

vanishes at infinite number of points on R. We employ another
observation from [15], that the basic limit function Φ0 of the scheme with symbols { z+z

[k]
j

2 } is an exponential
B-spline of order 0,

Bj
0(ω) :=

{
eλjx for x ∈ [0, 1],
0 otherwise.

Adding such factors, { z+z
[k]
j

2 }2n
j=1 to the symbols {c[k]} results in repeated convolutions of Φ̂c

m with

{Bj
0}2n

j=1. Since B̂j
0(x) decays as 1

|x| for |ω| → ∞, each convolution adds one power to the decay power
α in (21). Hence, after 2n convolutions we obtain

Ψ̂m(ω) :=
( sin ω

2
ω
2

)2n ∞∏
k=1

a[m+k−1]b
(
e−iω2−k)

=
( sin ω

2
ω
2

)2n
̂ΦΛ2n
m (ω) = O

((
|ω| + 1

)−�−1−α−2n)
.

It follows by Lemma 20 that the (2n+ �)th derivative of Ψm is Lip(α). Now we are ready to return to ̂ΦΛ2n
m

by removing the factors ( sin ω
2

ω )2n from Ψ̂m(ω). We need to show that each factor removed implies that the

2
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order of the derivative which is in Lip(α) is reduced by one. To show this we consider g = B0 ∗ f , where f

is a function of compact support and g′ is in Lip(α). It follows that

g′(s) = f(s) − f(s− 1).

Summing the above relations over all numbers s ∈ {t + j}Nj=0, for large enough N , we obtain

f(t) =
N∑
j=0

g′(t + j),

implying that f is Lip(α). Since ĝ(ω) = sin ω
2

ω
2

f̂(ω), we have just shown that the consequence of removing

a factor sin ω
2

ω
2

is that the order of the derivative which is in Lip(α) is reduced by one. Removing 2n such
factors yields the desired result, namely, that the �th derivative of {ΦΛ2n

m } is in Lip(α). �
Remark 22. In [11,18–21] motivated by the multivariate polyharmonic subdivision and wavelets on parallel
hyperplanes, an explicit expression for the polynomial b[k](z) is found and used, for the case of parameters
given by λj = ξ, j = 0, 1, . . . , n− 1, for some real ξ � 0, and λj = −ξ, for j = n, . . . , 2n − 1. The classical
Deslauriers–Dubuc case corresponds to ξ = 0.

4. Non-stationary multiresolution analysis

The concept of a multiresolution analysis, introduced by S. Mallat and Y. Meyer, is an effective tool to
construct wavelets in a simple way from a given scaling function ϕ, see e.g. [2,7]. Non-stationary multires-
olution analysis was introduced in [8] by C. de Boor, R. DeVore and A. Ron. A systematic investigation
of non-stationary MRA can be found in [29], see also [1]. For convenience of the reader we recall here the
definition for the univariate case:

Definition 23. A non-stationary multiresolution analysis consists of a sequence of closed subspaces Vm,
m ∈ Z, in L2(R) satisfying

(i) Vm ⊂ Vm+1 for all m ∈ Z,
(ii) the intersection

⋂
m∈Z

Vm is the trivial subspace {0},
(iii) the union

⋃
m∈Z

Vm is dense in L2(R),
(iv) for each m ∈ Z there exists a function ϕm ∈ Vm such that the family of functions {ϕm(2mt−k): k ∈ Z}

form a Riesz basis of Vm.

The function ϕm in condition (iv) is called a scaling function for Vm. The requirement (iv) means that
for each f ∈ Vm there exists a unique sequence (ck)k∈Z in l2(Z) (i.e.,

∑∞
k=−∞ |ck|2 < ∞) such that

f(t) =
∞∑

k=−∞
ckϕm

(
2mt− k

)
with convergence in L2(R) and

Am

∞∑
k=−∞

|ck|2 �
∥∥∥∥∥

∞∑
k=−∞

ckϕm

(
2mt− k

)∥∥∥∥∥
2

� Bm

∞∑
k=−∞

|ck|2

for all (ck)k∈Z in l2(Z) with 0 < Am � Bm < ∞ constants independent of f ∈ Vm.
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The wavelet space Wm is the unique subspace such that Vm ⊕ Wm = Vm+1 for m ∈ Z and Wm is
orthogonal to Vm. Then Wk and Wm are orthogonal subspaces for k �= m and conditions (ii) and (iii) imply
that

L2(R) =
⊕
m∈Z

Wm.

Definition 24. A multiresolution analysis is called orthonormal if in condition (iv) the functions t 	→
2m/2ϕm(2mt− k) for k ∈ Z are an orthonormal basis of Vm.

The general aim in non-stationary wavelet analysis is to find a sequence of functions ψm ∈ L2(R), m ∈ Z,
such that the set of functions

ψm,k(x) = 2m/2ψm

(
2mx− k

)
with m, k ∈ Z, is an orthonormal basis of L2(R).

Important examples of non-stationary MRA occur in the context of cardinal exponential-spline wavelets
which generalizes the work of C.K. Chui and J.Z. Wang about cardinal spline wavelets in [5,3,4]. The
interested reader may consult [27,31] for the theory of exponential splines and [8,17,22,23,26,34] for the
construction of wavelets in this context.

5. The scaling functions for generalized Daubechies wavelets

Daubechies wavelets ψ are orthonormal wavelets with compact support and certain degree of smoothness,
see e.g. [2,16,25]. Using the concept of an orthonormal MRA it suffices to construct a suitable scaling
function ϕ. It is well known that the Fourier transform ϕ̂ of the scaling function ϕ should be of the form

ϕ̂(ω) =
∞∏
k=1

H
(
2−kω

)
where H(ω) is a trigonometric polynomial with real coefficients and H(0) = 1 satisfying the equation∣∣H(ω)

∣∣2 +
∣∣H(ω + π)

∣∣2 = 1.

This leads to the question which non-negative trigonometric polynomials q(ω) satisfy an equation of the
type

q(ω) + q(ω + π) = 1 and q(0) = 1. (22)

There are many explicit solutions of (22). For example, if n is a natural number then the trigonometric
polynomial

qn(ω) = 1 − cn

ω∫
0

(sin t)2n−1 dt

with cn :=
∫ π

0 sin2n−1 t dt satisfies Eq. (22). By the Fejér–Riesz lemma one can find a (non-unique) trigono-
metric polynomial H(ω) such that

qn(ω) =
∣∣H(ω)

∣∣2. (23)
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We call a Laurent polynomial H(ω) with real coefficients and H(0) = 1 satisfying (23) a Daubechies filter
of order n. The Daubechies scaling function ϕH for the Daubechies filter H(ω) is then defined by

ϕ̂H(ω) =
∞∏
k=1

H
(
2−kω

)
.

Let us emphasize that I. Daubechies has shown more (see e.g. [7, p. 210] or [36]): the regularity of the
wavelet and the scaling function imply that the symbol H(ω) must contain a factor (1 + eiω)n/2n. Hence
qn(ω) is of the form

qn(ω) = (1 + eiω)2n

2n F2n−1(ω)

where F2n−1(ω) is a suitable trigonometric polynomial with real coefficients which can be determined by
Bezout’s theorem from (22). Indeed, it follows from these considerations that

qn(ω) = D2n
(
eiω

)
where D2n is the symbol of the Deslauriers–Dubuc subdivision scheme, a fact which is already mentioned by
Daubechies in her book [7, Section 6.5] giving credit to this observation to M.J. Shensa in [32], see [7, p. 210].
Hence the Deslauriers–Dubuc scheme leads in a very natural and direct way to the construction of the
Daubechies scaling function and therefore, by MRA-methods, to Daubechies wavelets.

Now we want to use this concept for introducing Daubechies type wavelets for exponential polynomials. In
this setting we have some additional freedom which is interesting for applications: we may choose real num-
bers λ0, . . . , λn−1 and we shall construct Daubechies type wavelets reconstructing the space E(λ0, . . . , λn−1).
In the case of Daubechies wavelets this corresponds to the fact that the Daubechies wavelet reproduces
polynomials of degree � n− 1.

We shall write shortly Λ0 = (λ0, . . . , λn−1) and define λn+j := −λj for j = 0, . . . , n − 1. We consider
now the subdivision scheme based on interpolation in E(λ0, . . . , λ2n−1). According to Definition 16 the
subdivision scheme SΛ2n

0 has the symbols

a[k](z) =
2n−1∏
j=0

z + z
[k]
j

2 b[k](z) with z
[k]
j := exp

(
−2−(k+1)λj

)
(24)

for k ∈ N0 and j = 0, . . . , 2n − 1. For subdivision, a crucial role plays the result by Micchelli in [28,
Proposition 5.1], according to which the symbols a[k] satisfy

a[k](z) � 0, for |z| = 1,

with equality possible only if z = −1. By the Fejér–Riesz lemma we can find for each level k a “square root”
Laurent polynomial M [k](z) with real coefficients, satisfying

a[k](eiω) = 1
2
∣∣M [k](eiω)∣∣2 and M [k](1) > 0. (25)

Note that this implies that

a[k](z) = 1
M [k](z)M [k]

(
1
)

2 z
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for all complex z �= 0. Again, there are many Laurent polynomials M [k](z) which satisfy (25) and all
possible choices can be described through suitable subsets of the zero-set of a[k](z). First we choose the
roots z = − exp(−λj/2k+1) for j = 0, . . . , n − 1, in order to obtain step-wise reproduction of the space
E(λ0, . . . , λn−1), see Proposition 25 below. Further, we have to choose another n− 1 roots of the factor b[k]

in (24). Since b[k] is symmetric, its 2n− 2 roots come in inverse pairs, say zi and z−1
i , and as well complex

conjugates zi and zi
−1 if zi is not real, for i in an index set In−1. We choose either the set {zi, zi} or the

set {z−1
i , zi

−1} for each i ∈ In−1, leading to a Laurent polynomial with real coefficients which still has to
be normalized so that M [k](1) =

√
2a[k](1) > 0. We shall call a sequence of filters M [k](z), k ∈ N0, chosen

in this way a non-stationary Daubechies type subdivision scheme of order n.
Since M [k](1) is positive it follows that 1 � 1

2M
[k](1) + 1. Therefore, a[k](1) = 1

2M
[k](1)2 implies the

inequality ∣∣∣∣12M [k](1) − 1
∣∣∣∣ � ∣∣∣∣12M [k](1) − 1

∣∣∣∣∣∣∣∣12M [k](1) + 1
∣∣∣∣ =

∣∣∣∣12a[k](1) − 1
∣∣∣∣.

By inequality (15) (which implies the asymptotic equivalence of a[k](z) to the Deslauriers–Dubuc scheme in
Proposition 18) and equality 1

2D2n(1) = 1 we infer that there exists C > 0 such that for all k ∈ N0∣∣∣∣12M [k](1) − 1
∣∣∣∣ � C · 2−k. (26)

At first we notice the following result:

Proposition 25. Let λ0, . . . , λn−1 be real numbers. Then there exists k0 ∈ N0 such that the Daubechies type
subdivision scheme reproduces step-wise functions in E(λ0, . . . , λn−1) for all levels k � k0.

Proof. Let z[k]
j = exp(−λj/2k+1). By construction M [k](z) has a zero at −z

[k]
j of multiplicity μj , the number

of times λj occurs in (λ0, . . . , λn−1), hence

ds

dxs
M [k](−z

[k]
j

)
= 0 for s = 0, . . . , μj − 1 and j = 1, . . . , n− 1. (27)

By (25) and the fact that {a[k]} reproduces step-wise functions in E(λ0, . . . , λ2n−1) we conclude that

1
2
∣∣M [k](z[k]

j

)∣∣2 = a[k](z[k]
j

)
= 2.

Since z
[k]
j is real and M [k](z) has real coefficients it follows that M [k](z[k]

j ) is real so M [k](z[k]
j ) = 2 or −2.

Since z
[k]
j converges to 1 for k → ∞ and M [k](z[k]

j ) converges to MD2n(1) > 0 there exists k0 ∈ N0 such
that M [k](z[k]

j ) > 0 for all k � k0 and j = 1, . . . , n − 1. Hence M [k](z[k]
j ) = 2 for all k � k0. From (25) we

infer that for real x

ds

dxs
a[k](x) =

s∑
r=0

(
s

r

)
dr

dxr
M [k](x) · ds−r

dxs−r
M [k](x).

For s = 1 this means that 0 = M [k](z[k]
j ) d

dxM
[k](z[k]

j ) + d
dxM

[k](z[k]
j ) · M [k](z[k]

j ). Since M [k] has real

coefficients and z
[k]
j is real we conclude that d

dxM
[k](z[k]

j ) = 0. Inductively we obtain that ds

dxsM
[k](z[k]

j ) = 0
for s = 1, . . . , μj − 1. �
Proposition 26. The product

∏∞ 1M [k−1](ei
ω

2k ) converges.
k=1 2
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Proof. By construction M [k](eiω) has real coefficients and M [k](1) > 0. Since a[k](eiω) � 0 we infer from (11)
that |a[k](eiω)| � 2, and therefore |Mk(eiω)| � 2. Moreover, it follows from (26) that

∞∑
k=1

∣∣∣∣12M [k](1) − 1
∣∣∣∣ � C

∞∑
k=1

2−k.

Proposition 6 finishes the proof. �
6. Regularity of the generalized Daubechies scaling function

In order to obtain asymptotic equivalence for the non-stationary Daubechies subdivision scheme we have
to choose the filter M [k](z) with more care:

Theorem 27. Let MD2n be the Daubechies filter of order n as defined above and let λ0, . . . , λn−1 be real
numbers. Then there exists a non-stationary Daubechies type subdivision scheme {M [k](z)} which is asymp-
totically equivalent to MD2n . Moreover, there exists a natural number k0 such that this scheme reproduces
the space E(λ0, . . . , λn−1) step-wise for all k � k0.

Proof. Note that MD2n(z) has n zeros at −1 and n − 1 other zeros, say α1, . . . , αn−1 which are of course
zeros of the factor bD2n(z) of the Deslauriers–Dubuc symbol D2n(z) = (1+z

2 )2nbD2n(z). It is well-known
that α1, . . . , αn−1 are pairwise different and simple zeros of D2n(z). Recall that by Proposition 18, a[k](z) is
asymptotically equivalent to the symbols D2n(z) by means of an estimate of the type (4). Then z2n−1a[k](z)
are polynomials and z2n−1a[k](z) is obviously asymptotically equivalent to z2n−1D2n(z) by means of a similar
estimate. By Theorem 15 there exists a constant C > 0 and a zero α

[k]
j of a[k](z) such that |α[k]

j −αj | � C2−k

for all k ∈ N0 and j = 1, . . . , n− 1. Take k0 ∈ N0 large enough so that:

(i) for each k � k0 the balls |z − αj | � C2−k have empty intersection with the unit circle,
(ii) they are pairwise disjoint for j = 1, . . . , n− 1, and
(iii) they have empty intersection with the x-axis if αj is a non-real zero.

Then for each k � k0 there is for given αj exactly one zero α
[k]
j with

∣∣α[k]
j − αj

∣∣ � C2−k for j = 1, . . . , n− 1, (28)

leading to a unique choice for M [k](z) for k � k0. Further the leading coefficient c[k] of the polynomial
z2n−1M [k](z) is determined by the equation

M [k](1) = c[k]
n−1∏
j=0

(
1 + z

[k]
j

)
·
n−1∏
j=1

(
1 − α

[k]
j

)
. (29)

Let c be the leading coefficient of z2n−1D2n(z). By (26) and (28) and (29) it is easy to see that there exists
D > 0 such that ∣∣c[k] − c

∣∣ � D2−k

for all k ∈ N0. By Theorem 14 the subdivision scheme defined by the symbols z2n−1M [k](z), k ∈ N0, is
asymptotically equivalent to the scheme defined by the symbol z2n−1MD2n , by means of an exponential
estimate (4). This implies that M [k](z), k ∈ N0, is asymptotically equivalent to MD2n by means of a similar
estimate. This ends the proof. �
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Remark 28. Assume that MD2n is the Daubechies filter such that all zeros �= −1 have absolute value bigger
than 1. Then one can define M [k](z) in the last theorem by the condition that all its non-trivial zeros have
absolute value bigger than 1.

It thus follows, from the theory of asymptotically equivalent schemes in [15], that the scheme with symbols
{M [k+m](z), k ∈ N0} defines continuous basic limit functions {ϕΛ0

m (·)}. Proposition 7 shows that

ϕ̂Λ0
m (ω) =

∞∏
k=1

M [m+k−1](ei
ω

2k )
2 . (30)

In particular, we have

∣∣ϕ̂Λ0
m (ω)

∣∣2 = ̂ΦΛ2n
m (ω) (31)

where ΦΛ2n
m is the basic limit function of SΛ2n

m .

Theorem 29. Let MD2n(z) be a Daubechies filter of order n and assume that M [k](z) is as in Theorem 27.
Let α ∈ [0, 1) and � ∈ N0, and assume that the scaling function ϕD2n of Daubechies defined by the sym-
bol MD2n(z), satisfies for some ε > 0 and C > 0 the inequality

∣∣ϕ̂D2n(ω)
∣∣ � C

(
|ω| + 1

)−�−1−α−ε

for all ω ∈ R. Then the scaling function ϕΛ0
m associated to the subdivision scheme M [k+m](z), k ∈ N0, has

�th derivative in Lip(α).

Proof. Let us define z
[k]
j = exp(−2−(k+1)λj). Then the symbol M [k](z) can be written as

M [k](z) =
(

n∏
j=1

z + z
[k]
j

2

)
B[k](z).

Similarly we can write for the Daubechies filter

MD2n(z) =
(

n∏
j=1

z + 1
2

)
BD2N (z).

We apply Proposition 18 and inequality (15) there to obtain that M [k](z) is asymptotically equivalent to
the Daubechies filter MD2n . Since B[k](z) has only simple zeros, it follows from Theorems 15 and 14 that
there exists a constant C > 0 such that∣∣B[k](eiω)−BD2N (z)

(
eiω

)∣∣ � C · 2−k,

hence, by Remark 13, we prove that B[k] is asymptotically equivalent to BD2N (z). Now one can proceed as
in Theorem 21. �
7. Construction and regularity of generalized Daubechies wavelets

The construction will follow the classical pattern in MRA. Below we only outline the main procedure,
while for the standard details we refer to [35,12].
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The following fact is straightforward:

Proposition 30. The functions 2m/2ϕΛ0
m (2m · −k), m, k ∈ Z, are orthonormal.

Remark 31. For completeness sake, let us mention that the numerical stability of our subdivision scheme
obviously follows from the above statement, however in [35] the numerical stability for biorthogonal systems
follows from the Riesz-basis property.

Definition 32. For each m ∈ N0 we define the linear spaces Vm by

Vm :=
{
f ∈ L2(R)

∣∣∣ f(t) =
∑
j∈Z

cjϕ
Λ0
m

(
2mt− j

)
,
∑
j∈Z

|cj |2 < ∞
}
.

We remark that we could also define Vm for integers m ∈ Z since the symbols a[k+m](z) and the scaling
functions ΦΛ2n

m and ϕΛ0
m could be defined for all m ∈ Z.

Proposition 33. The spaces Vm are nested, i.e., Vm ⊂ Vm+1 for all m ∈ N0.

Proof. Using the product representation (30) we obtain

ϕ̂Λ0
m (ω) =

∞∏
k=1

M [m+k−1](ei
ω

2k )
2 = M [m](eiω

2 )
2

̂ϕΛ0
m+1

(
ω

2

)
. (32)

Let us write M [m](z) =
∑n

j=−n+1 μ
[m]
j zj where μ

[m]
j are real numbers. Using elementary techniques in

Fourier analysis it is easy to see that Eq. (32) is equivalent to the refinement equation

ϕΛ0
m (t) =

n∑
j=−n+1

μ
[m]
j ϕΛ0

m+1(2t + j). (33)

Replacing t by 2mt in (33) we obtain that ϕΛ0
m (2m·) ∈ Vm+1. Similarly it follows that ϕΛ0

m (2mt− j) ∈ Vm+1
for each j ∈ Z. �

Let us write the refinement equation (33) in the form used in MRA, namely

ϕΛ0
m (t) =

∑
j∈Z

μ
[m]
−j ϕ

Λ0
m+1(2t− j).

The Daubechies type wavelets ψΛ0
m are now defined in the classical way, namely by

ψΛ0
m (t) =

∑
j∈Z

ν
[m]
j ϕΛ0

m+1(2t− j), (34)

where the coefficients {ν[m]
k } are related to those in (33) by

ν
[m]
j = (−1)j+1μ

[m]
−1+j .

Then ψΛ0
m has compact support since ϕΛ0

m+1 has compact support. It is a routine exercise to see that the
system of functions {2m/2ψΛ0

m (2mt− r): r ∈ Z} is orthonormal.
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It follows from (34) that the smoothness of Daubechies type wavelet ψΛ0
m is at least as large as that of the

scaling function ϕΛ0
m+1. Hence one can apply Theorem 29 for an estimate. In this connection the following

conjecture seems to be reasonable:

Conjecture. The smoothness of the Daubechies type wavelets ψΛ0
m is equal to the smoothness of the classical

Daubechies wavelet ψ.

Finally, let us mention that as usual the wavelet spaces Wm are defined as the orthogonal complement Wm

of Vm in Vm+1, and that the following identity holds:

Wm =
{
f ∈ L2(R)

∣∣∣ f(t) =
∑
j∈Z

cj2m/2ψΛ0
m

(
2mt− j

)
,
∑
j∈Z

|cj |2 < ∞
}
.

The concept of reproduction for a non-stationary MRA is defined in the following way, see e.g. [35]:

Definition 34. A non-stationary multiresolution analysis (Vm)m∈Z with compactly supported scaling func-
tions ϕm reproduces a function f : R → C if for each m ∈ Z there exist complex coefficients cm such
that

f(x) =
∑
l∈Z

cmϕm

(
2mx− l

)
. (35)

Let us remark that Definition 34 reduces to the particular case of Definition 10 when the subdivision
scheme is interpolatory. It is proved in [35] that condition (27) implies that the MRA (Vm)m∈Z of the
Daubechies subdivision scheme reproduces the space E(λ0, . . . , λn−1) and the wavelets ψm have vanishing
“exponential” moments in the sense that∫

ψΛ0
m (t)eλjt dt = 0 for all j = 0, . . . , n− 1.
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