INT. J. CONTROL, 1993, voL. 58, No. 6, 1247-1263

Sliding order and sliding accuracy in sliding mode control
ARIE LEVANTT%

The synthesis of a control algorithm that stirs a nonlinear system to a given
manifold and keeps it within this constraint is considered. Usually, what is
called sliding mode is employed in such synthesis. This sliding mode is
characterized, in practice, by a high-frequency switching of the control. It turns
out that the deviation of the system from its prescribed constraints (sliding
accuracy) is proportional to the switching time delay. A new class of sliding
modes and algorithms is presented and the concept of sliding mode order is
introduced. These algorithms feature a bounded control continuously depend-
ing on time, with discontinuities only in the control derivative. It is also shown
that the sliding accuracy is proportional to the square of the switching time
delay.

1. Introduction
Consider a smooth dynamic system described by

X =f(t,x, u) (1)

where x is a state variable that takes on values in a smooth manifold X,
i —time, u € R™—control. The design objective is the synthesis of a control u
such that the constraint o(¢, x) = 0 holds. Here, o1 R X X — R” and both f and
o are smooth enough mappings. Some choices of the constraints are discussed
by Emelyanov et al. (1970), Utkin (1977, 1981), Dorling and Zinober (1986),
DeCarlo et al. (1988).

This design approach enjoys the advantage of the reduction of the system
order. In addition, the resulting system is independent of certain variations of
the right-hand side of (1). The latter fact makes this approach effective in
control under conditions of uncertainty.

The quality of the control design is closely related to the sliding accuracy.
Existing approaches to this design problem usually do not maintain, in practice,
the prescribed constraint exactly. Therefore, there is a need to introduce some
new means in order to provide a capability for the comparison of the different
approaches.

2. Real sliding

We call every motion that takes place strictly on the constraint manifold
o=0 an ideal sliding. We also informally call every motion in a small
neighbourhood of the manifold a real sliding (Utkin 1977, 1981). The common
sliding mode exists due to an infinite frequency of the control switching.
However, because of switching imperfections this frequency is finite. The sliding
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mode notion should be understood as a limit of motions when switching
imperfections vanish and the switching frequency tends to infinity (Fillippov
1960, 1985, Aizerman and Pyatnitskii 1974 a, b).

Definition 1: Let (¢, x(¢, £)) be a family of trajectories indexed by & € R’ with
common initial condition (¢y, x(#)) and let ¢ = 14 {(or 1 € [£g, T]). Assume that
there exists ; 2 ¢y (or t; € [ty, T]) such that on every segment [¢', ¢"], where
t" 2t (or on [t;, T]) the function o(¢, x(¢, €)) tends uniformly to zero with ¢
tending to zero. In this case we call such a family a real sliding family on the
constraint o = 0. We call the motion on the interval [z, t{] a transient process,
and the motion on the interval [#, @) (or [¢;, T]) a steady state process.

We will use the following terminology: a rule for forming the control signal is
termed a control algorithm. We call a control algorithm an (ideal) sliding
algorithm on the comstraint o =0 if it yields an ideal sliding for every initial
condition in a finite time. O

Definition2: A control algorithm depending on a parameter ¢ € R is called a
real sliding algorithm on the constraint ¢ =0 if, with £¢— 0, it forms a real
sltiding family for every initial condition. O

Definition 3: Let y(¢)} be a real-valued function such that y(£) -0 as e— 0. A
real sliding algorithm on the constraint o =0 is said to be of order r (r > 0)
with respect to y(e) if, for any compact set of initial conditions and for any time
interval [Ty, T,], there exists a constant C, such that the steady-state process
satisfies

|o(z, x(1, e))] < Cly(e)l”

for t € [Ty, T3]
In the particular case when y(e) is the smallest time interval of control
smoothness the words ‘with respect to y* may be omitted. 0

Some examples are now in order. (1) High gain feedback systems (Young et
al. 1977, Saksena et al. 1984): such systems constitute real sliding algorithms of
the first order with respect to k!, where k is a large gain. (2) Regular sliding
mode: this system constitutes an ideal sliding mode (theoretically) and also
constitutes real sliding of the first order, provided switching time delay is
accounted for.

Let (¢, x(t, €)) be a real sliding family with ¢ — 0, ¢ belongs to a bounded
interval. Let o(z,x) be a smooth constraint function and r >0 be the real
sliding order with respect to (&), where (&) > 0 is the smallest time interval of
smoothness of the piecewise smooth function x(¢, ).

Proposition 1:  Let | = [r] be the maximum integer number not exceeding r. If
the [th derivative o) = (d/dr)'o(t, x(t, £)) is uniformly bounded in € for the
steady-state part of x(t, €), then there exist positive constants Cy, C,, ..., C_1,
such that for the steady-state process the following inequalities hold

lof = o=t ol = G2, L o) = e
Proposition2: Let 6§ >0 and p >0 be an integer, and let {g;} be a sequence

with €, — 0. Assume that for every &; there exists a time interval on which the
steady-state process is smooth, and such that for every one of these intervals the
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pth derivative of o satisfies |0'”)| = & on all of the interval. Then the real sliding
order r satisfies r < p.

It follows from these propositions that in order to get the rth order of real
sliding with a discrete switching it is required to satisfy the equalities 0= & =

. =0V =0 in the ideal sliding. Tt is obvious that in a regular variable
structure system only the first order of the real sliding may be achieved with
discrete switching.

To prove these propositions we need the following simple lemma.

Lemma 1: There is a constant I'> 0, such that for every real function a(t) € C"
defined on an interval of length T there exists an internal point t| on the interval
such that

" (1y)] < Tsupw|z™"
t

This lemma is proven by the successive application of Lagrange’s theorem.
Proposition 2 follows from the lemma. To prove Proposition 1 it is necessary to
use Lemma 1 for every integer ry, 1< r; =</ —1, and then integrate ol -1
times.

3. Ideal sliding
Consider the differential equation

y = v(y)

where y € R™, v: R" — R™ is a locally bounded measurable (Lebesgue) vector
function. This equation is understood in the Filippov’s sense (Filippov 1960,
1963, 1985); that is, the equation is replaced by an equivalent differential
inclusion

v eV(y)

In the particular case when the vector-field v is continuous almost every-
where, the set-valued function V(yp) is the convex closure of the set of all
possible limits of v(y,) as y, — yo, where {y,} are continuity points of v. The
solution of the equation is defined as the absolutely continuous function y(r),
satisfying the differential inclusion almost everywhere.

Definitiond: Let I' be a smooth manifold. The set I' itself is called the
first-order sliding point set. The second-order sliding point set is defined as the
set of the points y € I, where V(y) lies in the tangential space T,I" to the
manifold I" at the point y. a

Definition 5: It is said that there exists a first (or second) order sliding mode on
the manifold I in the vicinity of a first (second) order sliding point y; if, in this
vicinity of the point yg, the first (second) order sliding set is an integral set, i.e.
consists of the Filippov’s sense solutions. O

The above definitions are easily extended to include non-autonomous dif-
ferential equations by introduction of the fictitious equation t =1. A sliding
mode is considered to be stable if the corresponding integral sliding set is stable.

Regular sliding modes satisfy conditions that the set of possible velocities V'
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does not lie in 7,1, but V(y) N T,I"# &, and there exists a state trajectory on I’
with velocity vector lying in 7,I". Such modes are the main operation modes in
the variable structure systems (Emelyanov et al. 1970, Utkin 1977, 1981, 1983,
Itkis 1976, Ryan and Corless 1984, DeCarlo er al. 1988) and according to the
above definitions they are of the first order. When a switching error is present
the trajectory leaves the manifold with a certain angle. On the other hand, in
the case of second-order sliding, all the possible velocities lie in the tangential
space 7,(I) and even when a switching error is present, the state trajectory is
tangential to the manifold at the time of leaving,

In the case when the manifold I' is given by the constraint w(x) =0, the
second-order sliding set is given by equations

w=0,VveV(y) wo=0

The sliding modes on the constraint w=0 of an arbitrary natural order r
may be defined as by Levantovsky (1987). The system in this case has to satisfy
the condition that the derivatives @, @, ..., o1, being calculated with respect
to ¢ along the state variable path, may be considered as single-valued functions
of y almost everywhere (for example, v(y) is piecewise smooth). The rth order
sliding point yo is defined by the requirement that the equalities w*}(yq) = 0,

k=0, ..., r—1, provide continuity of the functions at y,.
Consider the closed loop control system
X = f(t, x, u) (1)
u=Ul(t, x, & 2)
E=w(r, x, & (3)

where U is a feedback operator, & is a special auxiliary parameter (‘operator
variable’ see Emelyanov and Korovin 1981 and Emelyanov 1984). The initial
value of § may be defined by a special function &(#;) = &y(ty, x,) or considered
to be arbitrary. Here (2) and (3) constitute what is called a binary control
algorithm (Emelyanov and Korovin 1981, Emelyanov 1984, Emelyanov et al.
1986 a). Let o(¢, x) = 0 be the desirable constraint o € C!, 3¢/3x # 0.

Definition 6: Equations (2) and (3) are called the first (second) order sliding
algorithm on the constraint o =0 if a stable sliding mode of the first (second)
order on the manifold o = 0 is achieved, and with every initial condition (#q, xo)
the state x is transformed to the sliding mode in a finite time. O

Sliding algorithms, which are used in the variable structure systems, are of
the first order and characterized by a piecewise continuous function U and
y=0. The second-order sliding algorithms (Levantovsky 1985, 1986, 1987,
Emelyanov et al. 1986 a, b, ¢, 1990) are given by a continuous function U and a
bounded discontinuous function . As a result of this the sliding problem is
solved by means of a continuous control. _

It follows from the definition that in second-order sliding with o =0, the
system is described by the equation

x = f(t, x, ueq(t, x)) (4)

where u.q is the equivalent control (Utkin 1977) that is evaluated from the
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equation
&= 0y(t, x) + o (t, x)f(t, x, ueq) =0

which is assumed to have a unique solution. Under certain obvious conditions,
(4) will be satisfied approximately with switching imperfections or with a
second-order real sliding (Proposition 1). For the first-order real sliding this
result was proven by Utkin (1977, 1981) when the process (1) is dependent
linearly on the control, and was generalized by Bartolini and Zolezzi (1986).
Here, there is no need for any conditions regarding the type of dependence on
the control.

4. Examples of high-order sliding

We now give several examples regarding the ideal and real sliding of the
second order. First, we formulate the conditions under which the problem is to
be solved. For simplicity we assume that oe R, ueR and ¢, of(f)
(o(t) = o(t, x(1))), u(r) are available. The goal is to force the constraint o to
vanish.

Assume positive constants oy, K,, Ky, Cy are given. We now impose the
following conditions.

(1) Concerning the constraint function o and equation (1)
X = f(t, x, u)

we assume the following: |u| <@, @ = constant > 1, f is a C' function,
o(t,x)is a C? function. Here, x € X, where X is a smooth finite-dimen-
sional manifold. Any solution of (1) is well defined for all ¢ provided
u(?) is continuous and satisfies |u(r)| < @ for each r.

(2) Assume there exists u; € (0, 1) such that for any continuous function u
with |u(t)| > u, for all ¢, o(+)u(s) > 0 for some finite time ¢.

Remark: This condition implies that there is at least one t such that
o(t) = 0 provided u has a certain structure.
Consider a differential operator

=%+ 2
Ly )Faz( )+ax()f(fsx,u)

where L, is the total derivative with respect to (1) when u 1s considered
as a constant. Define & as
a(t, x, u) = L,o(t, x) = oi(t, x) + oy (t, x)f(t, x, u) O
(3) There are positive constants 0y, K,, Ku, ug, o<1, such that if
|o(t, x)| < &g then
aa
0< K, = — = Ky
au

for all u, and the inequality |u| > uy implies gu > 0.
The set {t, x, u: |o(t, x)| < oy} is called the linearity region.

(4) Consider the boundedness of the second derivative of the constraint
function o with every fixed value of control. Within the linearity region



1252 A. Levant

|o] < aq for all ¢, x, u the inequality
| L Lyuo(z, x)| < Cy
holds.
The variable structure system theory deals with the following class of systems
X =a(t, x)+ b(t, x)u

where x € R". Under conventional assumptions the task of keeping the con-
straint =0 is reduced to the task stated above. A new control u and a
constraint function ¢ are to be defined in this case by the transformation
u=pk®(x), = o(t, x)/d(x), where

&(x) = [x'Dx + k]

k, h >0 are constants, D is a non-negative definite symmetric matrix (Levan-
tovsky 1985, Emelyanov et al. 1986 a, b, c¢).
In the simple case when

X = A(x + b(Hu, o = (c(t), x) + &(£)

all the conditions are reduced to the boundedness of ¢, ¢, &, & &, A, A, b, b
and to the inequality

(¢, b) = constant > 0

We now return to the general problem. The algorithm
{ —sign o with |ko| > 1

— ko with |ko| = 1

forms a real sliding algorithm of the first order with respect to k™! when &k — .
It is easy to show that & is also of the order of & L.
The algorithm

u= —signo (5)
is the ordinary sliding algorithm on o, i.e. it is of the first order. If the values of
o are measured at discrete times fy, #), t, ..., t; — t;_; = Ar >0 we get the
first-order real sliding algorithm u(¢) = — sign o(¢;), where ¢, < ¢ < 1;,,.

The A, -algorithm (Emelyanov and Korovin 1981, Emelyanov 1984)
L = —u with |u| > 1 (6)

—asign o with |u| < 1

constitutes, with & — o, a first-order real sliding algorithm with respect to o™ !.

Under the above assumptions there exists a unique function ucq(z,x)
satisfying &(1, x, ucq(t, x)) = 0 in the linear region. The second-order sliding set
may therefore be given by 0 =0, u = (¢, x) and is not empty. The next
theorem is easy to prove.

Theorem 1: Assume conditions (1), (3), (4) are satisfied and let the control
algorithm be

w=yY(t, x, u) (7)
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where v is a bounded measurable (Lebesgue) function. Assume also that for
every second-order sliding point M and for every neighbourhood V(M)

#(V(M) N l[)_]((—ﬁo, _C[)/Km])) >0
w(V(M) Ny ([Co/K,, ) >0

where w is a Lebesgue measure. Then there is a second-order sliding mode on the
constraint o =0 and the motion in this mode is described by (4)

= f(1, x, ueg(t, X))

Proof: In view of § 3 the system (1), (7) is equivalent to a differential inclusion

X = f(t,x, u) }
e 6(t,x,u) CR

It follows from the conditions of the theorem that for every second-order sliding
point (,x,u) the set O includes the interval [—Cy/K,, Co/K,]. So every
trajectory (7, x(1), u(r)) that satisfies (1) with it € [~ Co/Ky,, Co/K,] is @ solution
of (1) and (7) if it lies on the second-order sliding set o = & = 0.

It follows from conditions (3) and (4) and from the implicit function
theorem, that || < Cy/K,,. Therefore, we can choose

u = I']!cq = Luucq(ts X) (8)
The theorem follows now from the fact that the second-order sliding set o =0,
U = Uy is invariant with respect to (1) and (8). O

Theorem 1 implies that there is a second-order sliding mode in the system
(1) and (6) for any sufficiently large «. But, in general, it is not stable.
However, it may be shown that in certain cases this sliding mode is stable with
an exponential decay to zero of |o] and |6|. When a— « the properties of the
A, algorithm (6) approximates the properties of the regular first-order sliding
algorithm (5).

Consider a so-called ‘twisting algorithm’ (Levantovsky 1985, Emelyanov et
al. 1986 a, b)

—u with |u| > 1

g =1 —a,signo with 06 < 0, |u] <1 (9)
—ay sign o with 66 > 0, |u] = 1
where ay; > «,, > 0. Assume
a,, > 4Ky /0, o, > Co/K, } (10)
Koy — Cp > Kyap, + Gy
According to Theorem 1 there exists a second-order sliding mode.

Theorem 2: Under assumptions (1)-(4) and conditions (10) the wisting algo-
rithm (9) is a second-order sliding algorithm.

It may be shown that in systems (1), (6) and (1), (9) the state paths are
encircling the second-order sliding manifold o = & =0. Whereas the state path
of the A, algorithm does not converge to the manifold o = ¢ =0 (Fig. 1), the
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state path of the algorithm (9) converges to the manifold in a finite time and
makes an infinite number of rotations (Fig. 2). The result is achieved by the
switching of the parameter a in (9). The actual calculation of the derivative &
may cause a serious obstacle in applications. Let us use the first difference in (9)
instead of & itself. Suppose that the measurements of o are being made at times
to, t1, £y, o ooy £ — ti_1 = 7> 0. Define

0, i=190
AO’(f;) =
{ o(t, x(8) — o(tiy, x(4-1)),  i=1

Figure 2.
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Let r be the current time and assume ¢ € (t;, ;1) and
J —u(t;), u(t)] > 1
i =1 —aysigna(s), o(r)Ao(s) >0, |u(t)| <1 (11)
l —a,, sign o(t), o(tHAG() <0, |u(r)| =1

Theorem 3: Under the conditions of Theorem 2 with T— 0 the algorithm (11) is
a second-order real sliding algorithm. There are positive constants ag, a such that
in the steady-state mode inequalities |0| < ag7*, |6] < a7 hold.

It follows from Proposition 2 that this is the best possible accuracy which
may be achieved by means of a control with its derivative being switched.
Consider the so-called ‘drift algorithm’ (Emelyanov ef al. 1986 ¢)

j —u(t;),  fu(@)] =1
0 =1 —aysignAo(t), o(t)Ao(y) > 0, |u(y)| <1 (12)
l —a,, sign Ao(t), o(t)Ao(t) <0, |u(r)] <1

Here, oy > a,, > 0. After substitution of Ao for g, the first-order sliding mode
on the constraint ¢ = 0 would be achieved. This implies ¢ = constant. But, since
the artificial switching time delay is introduced by (12), we ensure a real sliding
on & with most of the time being spent in the set oo < 0. The algorithm does
not force the trajectory to reach the linearity region lo| < oy but forces this
trajectory to stay there once it reaches this set. Inequalities like the ones
appearing in Theorem 3 are ensured within a finite time by the algorithm. The
accuracy of the real sliding on & =0 increases with decreasing 7; in fact, it is
proportional to 7. Hence, the duration of the transient process is proportional to
77L. Such an algorithm does not satisfy the definition of a real sliding algorithm.
Let

i — =Tt =t0(5),i=0,1,2,... (13)
and let
TM> vIS|T = 1y
(S) =1 VISP, Ty < VISP < 1y (14)
T vS|? = 1,

where 0-5<p <1, 14y > 1, >0, v>0.
We call the region |o| < o0y— & where 6 is any real number, such that
0 < & < gy, the reduced linearity region.

Theorem 4: With initial conditions within the reduced linearity region, v and
an /oy sufficiently small and «,, sufficiently large, the algorithm (12), (13), (14)
constitutes a second-order real sliding algorithm on the constraint 0=0 with
respect to T, — 0.

The specific restrictions on T, a,, &y, v may be found in the paper by
Emelyanov et al. (1986 c). The characteristic forms of the transient process in
the cases of the twisting and drift algorithms are shown in Figs 3 and 4,
respectively. The drift algorithm has no overshoot if parameters are chosen
properly (Emelyanov et al. 1986 ¢).
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The algorithm with a prescribed law of variation of ¢ (Emelyanov et al.
1986 a) has the form
. { —u, |u| > 1 (15)

—asign (6 — g(0)), lu| = 1

where a > 0, and the continuous function g(o) is smooth everywhere except on
o = 0. It is assumed here that all the solutions of the equation ¢ = g(o) vanish
in a finite time, and the function g'(o)g(o) is bounded. For example
g = —Asign o]o]” where A >0, 0-5 < y < 1, may be used.

Theorem 5:  With initial conditions within the reduced linearity region and for o
sufficiently large, the algorithm (15) constitutes a second-order sliding algorithin
on the constraint o= 0.
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The substitution of Ac(t;) — tg(o(t;)) for & — g(o) turns the algorithm (15)
into a real sliding algorithm. The order of real sliding depends on the function g
but does not exceed 2. In Fig. 5 the characteristic form of the transient process
is shown with g= —Mcr|2/3 signo. Near the transfer point t, with =1,
o(t) = 1274t — ..

All the above examples of the sliding algorithms use the derivatives of o
calculated with respect to the system. The following is an example that does not
utilize this property (Emelyanov et al. 1990).

u=uy + U (16)
_ —u, u| > 1 (17)
Uy =

—asigno, |ul <1

—Aog|Psigno  |o] > o
‘s _{ 0 0 (18)

—AMalPsigno o] < og

where o, 1> 0, pe (0, 1), and the initial values u,(ty) are to be chosen from the
condition

ul = lui(tg) + ua(to, x0)| < @
The following inequalities are to be satisfied
a > Colk,, a > 4Ky/oy (19)
PK)? > (Knar + Co)2Ku)? ™ (20)

Theorem 5: Assume that conditions (19), (20) are satisfied and 0<p=<1/2.
Then the algorithm (16), (17), (18) is a second-order sliding algorithm.

It may be shown that with p = 1, « and A/« sufficiently large there is a stable
second-order sliding mode. In this case |o| + |&] tends to zero with exponential
upper and lower bounds (Levantovsky 1986). Under the conditions of the

02604

-0-0004
0

0-4075 t

Figure 5.
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theorem, discrete measurements turn these algorithms into real sliding al-
gorithms. We remark here that, with p=1, no real sliding algorithm will be
obtained, since the rate of the convergence is only exponential. Such an
algorithm may be efficiently implemented because of its simplicity. The bound
on the convergence decrement may be assigned any desirable value.

Remarks:

(1) Utilizing (13) and (14), all the above-listed algorithms with discrete
variable measurements become stable with respect to small model disturbances
and measurement errors. It may be shown that the accuracy of such modified
algorithms without measurement errors is the same as the accuracy of the initial
algorithms.

(2) It may be shown that for all except for the last algorithms, smoothness of
fin (1) and of ¢ is not necessary. It is sufficient for f to be only a locally
Lipschitzian function and the same is true for the partial derivatives of o(t, x).

(3) In the case where X is a Banach space the conclusions of the above
theorems still hold provided the statements are changed as follows: ¢ and &
vanish in a finite time or |o| < ¢,72, || < ¢, after a finite time.

5. An outline of the proof of Theorems 2-5

All the described algorithms either stir the system into the linearity region or
perform in this region. It is easy to show that they are prevented from leaving
the region (Levantovsky 1985, Emelyanov et al. 1986 b). We consider now the
motion of the system within the linearity region. Clearly

2
4 o= d Ljo= L, L,o+ iLucr, 7}
de? ds du
Let C= L,L,0, K =93/3ulL,0, so that we have
&=C+ Ku (21)

According to Assumptions (3) and (4)

|ICl < Cyp, 0 < K,, <= K = Ky, (22)
Hence, the following differential inclusion is valid

G € [—Cqy, Col + [K,, K]t (23)

The real trajectory starting at the axis & on the plane o, & lies between the
extreme solutions of (23).

Figure 6 shows the set of the solutions of (23) and the solution of (21) which
are associated with the twisting algorithm (9). An infinite number encircling the
origin occurs here within a finite time. The total time duration of the origin
encircling is proportional to the total variation of ¢, which is estimated by a
geometric series.

The trajectories of the drift algorithm (12) are shown in Fig. 7. A real sliding
along the axis 0 =0 may be seen here. Due to the switching of & the motion
with 06 <0 prevails. The duration of any cycle MMM, M- is proportional to
7, where v is the time interval between the measurements of ¢, and the drift
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MM is proportional to 7°. So, the time that the drift takes to reach o =0 is
proportional to ! with T = constant. With the variable 7 (14) the convergence
time turns out to be bounded (Emelyanov et al. 1986 c).

In Fig. 8 the trajectories of the algorithm (15) are shown. On the line
& = g(o) a common sliding mode (of the first order) arises. Considering now the
existence of the sliding mode on the manifold ¢ — g(o) = 0 we have

d . e , ) , a .
— (U - g(o’)) =0 - go(G)U = LuLuG - gag(a) + '—Luoa U
dt ou

= C - gy(0)g(o) — Kasign(o — g(0))
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Figure 8.

The last term must dominate the first two terms but it can do so only when
g+(0)g(o) is bounded. That puts a restriction on g(o).
Consider now the algorithm (16), (17) and (18). In this case

The last term here involves ¢ and a gain which is unbounded when o — 0. The
real trajectory lies inside the set of the solution points of the associated inclusion
equation (with |u| < 1)

-0

of'=?

g € —[Kna — Cy, Ky + Cylsigno — Ap[K,,,, Ky]

Figure 9 depicts this case.

It follows from the accurate estimations that for p = 1/2 the sequence {d;} of
the intersection points with the axis o=0 satisfies |6,,,/6;| < g <1 which
implies |&;| — 0 as i — . For 0 < p < 1/2 the convergence to the origin is even
faster. Also, the sum of the encircling time sequence is estimated by a geometric
series.

6. Mathematical modelling
We consider now the following example

X1 = =5x; + 10x5 + 4x3 + xysint + (u? — D(x; — x3)

Xy =6x; —3x; — 2x3 + 3(x; + x5 + x3)cos¢ | (24)

X3 = Xy + 3x3 + 4x;c085¢ + 4sin5¢
+ 10(1 + 0-5cos 10#)u(u) P(x)

where
w(u) = 3u — cos30¢sinu — u/4 } @5
D(x) = [x3 4+ x5+ 2+ 1]
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Let ¢ = x3/P(x) be the constraint function. It is easy to show here that all the
assumptions are satisfied.

Consider the algorithm (16), (17) and (18). Here (17) may be simplified
because of the inequality ou >0 which holds for the entire state space with
lu| = 1. Let

u=u — |offsigno
—u, lu| > 1

f.-ll =
—8signo, |ul =1

Here, Euler’s method has been employed for the numerical solution with the
step of 107%. Figures 10 and 11 depict o(¢) and u(¢) with p=0-5. In Fig. 12 the
graphs u(t, u(t)) and peq(f, x(2)) are shown, where p = pieq is found from the

0-9578

° g 03208 1

Figure 10.
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Figure 12.

equation x3 = 0. It is seen from the graph that u converges to the equivalent
control u.q. With the initial conditions x{0)=(2,—2,10) the accuracy
|o| =< 1-65 x 1075 was achieved.

Figures 3, 4 and 5 show the graph of o(r). The figures correspondingly
describe the twisting algorithm (11} with a,, = 8, a; = 40 and the measurement
interval 1, =5 x 107%; the drift algorithm (12), (13) and (14) with a,, =8,
ay =40, 7y =005, y =002, p=0-5, 1, =5 x 107*; and the algorithm with a
prescribed law of variation of o (15) with a=16, g=10/0*’signo,
T, = 5 X 107*. This system is slightly different from the previous example (24),
(25) and (26) (the last term in the first equation of (24) is absent). In all cases,
an accuracy of |o| = 1073 was achieved. For the twisting and drift algorithms
with a reduction of T, to 7,,/100, the accuracy changes from 6-6 x 10™* and
1-3 X 1072 to 7-04 x 1078 and 7-12 x 1078, respectively.

The use of the regular sliding algorithm w = —sign o(¢;) gives, with the
measurement interval ,, =5 X 107*, the accuracy |o| <12 x 1072 and after
reducing T, to 7,,/100 it gives an accuracy of |o| =< 1-04 x 10™*. Note, that with
this algorithm the behaviour of the system (24), (25) and (26) in the ideal sliding
mode cannot be described uniquely (Utkin 1981, Bartolini and Zolezzi 1986).
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