Ordinary Differential Equations – 1 (ODE-1)

Exercise 7

Question 1

Prove that all solutions of the DE $\dot{y} = tye^{-y^2} + y$ are extendable in time to the whole axis t.

Question 2

Prove that no solution of the DE $\dot{y} = |t| y^3$ is extendable in time to the whole axis t.

Question 3

Consider the DE $\dot{y}=A(t)y,y\in\mathbb{R}^2$, where the elements of the matrix $A(t)=\begin{bmatrix}a_{11}(t) & a_{12}(t)\\a_{21}(t) & a_{22}(t)\end{bmatrix}$ are continuous functions of the time $t\in\mathbb{R}$. Let the matrix $Y(t)\in\mathbb{R}^{2\times 2}$ be the fundamental matrix for the DE. It means that the columns of $Y(t)=\begin{bmatrix}y_{11}(t) & y_{12}(t)\\y_{21}(t) & y_{22}(t)\end{bmatrix}$ are fundamental solutions of the DE.

- a. Prove that both Y(t) and its transpose $Y^{T}(t) = \begin{bmatrix} y_{11}(t) & y_{21}(t) \\ y_{12}(t) & y_{22}(t) \end{bmatrix}$ are invertible.
- b. Prove that $(Y^T(t))^{-1}$ is a fundamental matrix for the conjugate DE $\dot{y} = -A^T(t)y$.

Question 4

Calculate the matrix exponent exp(A) for the following matrices A

a.
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
, b. $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$, c. $A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}$, d. $A = \begin{bmatrix} 3 & 2 \\ 0 & 3 \end{bmatrix}$.

Question 4

Let
$$y_1(t) = \begin{pmatrix} t^2 \\ 2t \end{pmatrix}, y_2(t) = \begin{pmatrix} e^t \\ e^t \end{pmatrix}$$

- a. Calculate the Wronskian $W[y_1(t), y_2(t)]$.
- b. What are the intervals of the linear independence of $y_1(t), y_2(t)$?