Ordinary Differential Equations - 1 (ODE-1)

Exercise 6

Question 1

Find the first-order approximation in $\varepsilon \approx 0$ over any finite interval in x around 0 for the solution of the Cauchy problem $y^{\prime}=\sin x \sin y+\sin 2 x \sin 2 y, y(0)=\varepsilon$.

Question 2

Find the first-order approximation in $\varepsilon \approx 0$ over any finite interval in x around 0 for the solution of the Cauchy problem $\left\{\begin{array}{l}y^{\prime}=\sin (y-1+\varepsilon)+\sin \varepsilon, \\ y(0)=1+\varepsilon, \quad \varepsilon \approx 0 .\end{array}\right.$

Question 3

Let $x \in \mathbb{R}^{n}, b(t) \in \mathbb{R}^{n}, A(t) \in \mathbb{R}^{n \times n}$ be integrable vector and matricial functions in $[\alpha, \beta]$ satisfying the inequalities $\|A(t)\| \leq k(t),\|b(t)\| \leq k(t)$ where $k(t)$ is integrable, $\int_{\alpha}^{\beta} k(t) d t<\infty$. Let $t_{0} \in[\alpha, \beta]$ and consider the Cauchy problem $\left\{\begin{array}{l}\dot{x}=A(t) x+b(t), \\ x\left(t_{0}\right)=\xi .\end{array}\right.$
Prove that there exists a unique continuous function $\phi(t), \phi \in C[\alpha, \beta]$, which satisfies the identity
$\phi(t)=\xi+\int_{t_{0}}^{t}[A(s) \phi(s)+b(s)] d s$ for each $t \in[\alpha, \beta]$ (the Caratheodory solution).
Hint: Check that the proof of the uniqueness-and-existence theorem remains literally the same.

Question 4

Consider the $\mathrm{DE} y^{\prime}=x+\sin y, x \in[0,1]$. Let $y(x), z(x)$ be two solutions of the $\mathrm{DE}, y(0)=1, z(0)=1.1$. Estimate the difference $|y(x)-z(x)|$ for $x \in[0,1]$.

Question 5

Perform the linearization of the system $\left\{\begin{array}{l}y_{1}^{\prime}=\left(1+y_{1}\right) \sin y_{2}, \\ y_{2}^{\prime}=1-y_{1}-\cos y_{2}\end{array}\right.$ at its critical point $\left(y_{1}, y_{2}\right)=(0,0)$.

Question 6

Let $u, v, \varphi: \mathbb{R} \rightarrow \mathbb{R}$ be continuous functions in $[\alpha, \beta], \varphi>0$, such that the inequality $\varphi(t) \leq A+\int_{\alpha}^{t}[u(s) \varphi(s)+v(s)] d s \quad$ holds for some $A>0$ and any $t \in[\alpha, \beta]$. Prove that $\varphi(t) \leq A \exp \left(\int_{\alpha}^{t}\left[u(s)+\frac{v(s)}{A}\right] d s\right)$. Hint: Use the Gronwall-Bellman Lemma.

