Ordinary Differential Equations – 1 (ODE-1)

Exercise 5

Question 1 Consider the Cauchy problem

$$y' = 2y - 1, y(0) = 1$$

a. Find the solution $y = \varphi(x)$ and calculate $\varphi(0.1), \varphi(0.2), \varphi(0.3)$

b. Estimate the same values $\varphi(0.1), \varphi(0.2), \varphi(0.3)$ using the Euler approximation method with the integration step h = 0.1.

Question 2 Consider the Cauchy problem

$$y' = 1 - x + y, y(x_0) = y_0$$

a. Prove that $y(x) = \varphi(x) = (y_0 - x_0)e^{x - x_0} + x$ is the exact solution.

b. Apply the Euler method with the step h > 0 and obtain $y_k(x) = (1+h)y_{k-1} + h - hx_{k-1}$, k = 1, 2, ...

c. Prove that $y_n(x) = (1+h)^n (y_0 - x_0) + x_n$. Prove that $y_n(x) \to \varphi(x)$ for each fixed x and $h = (x - x_0) / n, n \to \infty$.

Question 3 Solve the Cauchy problem

$$\begin{cases} y'' + \sin(x^2)y' - \arctan(x)y = \arctan(x)\\ y(0) = -1, \ y'(0) = 0 \end{cases}$$

Question 4

Consider the DE $y^{(n)} = f(x, y)$ for a smooth function f(x, y). For which orders *n* can it simultaneously have both solutions $y_1 = x$ and $y_2 = x + x^4$?

Question 5

Let function F(x, y) be non-increasing in y for each fixed x.

a. Show that, if f(x), g(x) satisfy the DE y' = F(x, y), then the numeric inequality a < b implies $|f(a) - g(a)| \ge |f(b) - g(b)|$.

b. Prove that the statement a. implies right-hand uniqueness of the solutions, i.e. the Couchy problem y' = F(x, y), $y(a) = y_0$, has not more than one solution for $x \ge a$.