Ordinary Differential Equations - 1 (ODE-1)

Exercise 5

Question 1 Consider the Cauchy problem

$$
y^{\prime}=2 y-1, y(0)=1
$$

a. \quad Find the solution $y=\varphi(x)$ and calculate $\varphi(0.1), \varphi(0.2), \varphi(0.3)$
b. Estimate the same values $\varphi(0.1), \varphi(0.2), \varphi(0.3)$ using the Euler approximation method with the integration step $h=0.1$.

Question 2 Consider the Cauchy problem

$$
y^{\prime}=1-x+y, y\left(x_{0}\right)=y_{0} .
$$

a. Prove that $y(x)=\varphi(x)=\left(y_{0}-x_{0}\right) e^{x-x_{0}}+x$ is the exact solution.
b. Apply the Euler method with the step $h>0$ and obtain $y_{k}(x)=(1+h) y_{k-1}+h-h x_{k-1}, k=1,2, \ldots$
c. Prove that $y_{n}(x)=(1+h)^{n}\left(y_{0}-x_{0}\right)+x_{n}$. Prove that $y_{n}(x) \rightarrow \varphi(x)$ for each fixed x and $h=\left(x-x_{0}\right) / n, n \rightarrow \infty$.

Question 3 Solve the Cauchy problem

$$
\left\{\begin{array}{l}
y^{\prime \prime}+\sin \left(x^{2}\right) y^{\prime}-\arctan (x) y=\arctan (x) \\
y(0)=-1, y^{\prime}(0)=0
\end{array}\right.
$$

Question 4

Consider the DE $y^{(n)}=f(x, y)$ for a smooth function $f(x, y)$. For which orders n can it simultaneously have both solutions $y_{1}=x$ and $y_{2}=x+x^{4}$?

Question 5

Let function $F(x, y)$ be non-increasing in y for each fixed x.
a. \quad Show that, if $f(x), g(x)$ satisfy the DE $y^{\prime}=F(x, y)$, then the numeric inequality $a<b$ implies $|f(a)-g(a)| \geq|f(b)-g(b)|$.
b. Prove that the statement a. implies right-hand uniqueness of the solutions, i.e. the Couchy problem $y^{\prime}=F(x, y), y(a)=y_{0}$, has not more than one solution for $x \geq a$.

