Ordinary Differential Equations – 1 (ODE-1)

Exercise 2

Question 1 Solve the following DEs

a.
$$xy' - y = (x + y)(\ln(x + y) - \ln(x))$$

b.
$$y' = \frac{2y^3 - x^2y}{2x^2y - x^3}$$

Question 2

a. Consider the DE $x^{\alpha}y \cdot y' + y^{\alpha} = x^{\beta}$, where $\beta = \frac{\alpha(\alpha - 1)}{\alpha - 2}$, $\alpha, \beta \in \mathbb{R}, \alpha \neq 2$. Prove that for some $m \in \mathbb{R}$, the substitution $y = z^m$ turns it into homogeneous.

b. Solve the obtained DE for $\beta = \frac{\alpha(\alpha - 1)}{\alpha - 2}$, $\alpha \notin \{0,1,2\}$, $y = z^m$. The solution contains indefinite integral.

Question 3 Solve the following DEs

a.
$$\frac{dy}{dx} = \frac{6x + y}{6x - y}$$

b.
$$\frac{dy}{dx} = \frac{6x + y + 4}{6x - y + 8}$$

Question 4 Solve the following DEs

a.
$$(2xy^4 + \sin(y)) + (4x^2y^3 + x\cos(y))y' = 0$$

b.
$$y' = \frac{1 + y^2 + 3x^2y}{1 - 2xy - x^3}$$

Question 5 Solve the following DE

$$(2x^{3}y^{2} - y)dx + (2x^{2}y^{3} - x)dy = 0$$