Ordinary Differential Equations - 1 (ODE-1)

Exercise 2

Question 1 Solve the following DEs
a. $y^{\prime}+2 y=x+e^{-x}$
b. $y^{\prime}-\frac{1}{x} y=x$
c. $\quad x \ln (x) y^{\prime}+m y=\ln ^{-m}(x), m \in \mathbf{N}$
d. $\quad y^{\prime}=\frac{y}{3 x-y^{2}}$

Question 2

Prove that if $x(t) \leq B+\int_{t_{0}}^{t} a(s) x(s) d s$ holds for any $t \in\left[t_{0}, t_{1}\right]$ for some functions continuous in $\left[t_{0}, t_{1}\right]$, then also $x(t) \leq B e^{\int_{j_{0}}^{\frac{1}{i n}(s) d s}}$ holds for all $t \in\left[t_{0}, t_{1}\right]$.

Question 3 Solve the DE $y^{\prime}=y^{4} \cos (x)+y \tan (x)$

Question 4

Let $|f(x)| \leq M, x \in \mathbf{R}, M>0$, be a bounded function. Consider the DE $y^{\prime}+a y=f(x)$ for some $a>0$. Prove that each its solution is bounded over $[0, \infty)$.

Question 5 Solve the following DE
Let y_{1}, y_{2}, y_{3} be different particular solutions of the linear DE $y^{\prime}+a(x) y=b(x), x \in \mathbf{R}$, with continuous coefficients. Prove that the function $\frac{y_{2}-y_{3}}{y_{3}-y_{1}}$ is a constant.

