Ordinary Differential Equations – 1, 0366-2103, Tel-Aviv University

Problem Collection

Prof. Arie Levant, 2024

1. Find the general solution and solve the Cauchy problem, where it is relevant

a.
$$(1 + y^2 \sin 2x) dx - 2y \cos^2 x dy = 0$$

b.
$$y' + 2x = \cos(y - x + x^2)$$

$$c. \quad xy' = \frac{x^2 + y^2}{x + y}$$

d.
$$y' - x^2 y = x^2 / y^2$$

e.
$$\begin{cases} y_1' = 4y_1 - 5y_2 \\ y_2' = y_1 - 2y_2 + 2x \end{cases}$$

f.
$$y'' - 5y' = 3x^2 + \sin x$$
, $y(0) = 0$, $y'(0) = 0$

g.
$$y^{(4)} + \ddot{y} = e^t + t$$

h.
$$\begin{cases} \dot{x} = y \\ \dot{y} = z \end{cases}$$
, also calculate the exponent e^{At} of the system matrix A .
$$\dot{z} = -y + 2z + 1 + e^{t}$$

- 2. Find a solution bounded as $t \to \frac{\pi}{2}$, $0 < t < \pi/2$, of the DE $\dot{x} \sin 2t = 2(x + \cos t)$
- 3. In what form (only provide the formula corresponding to the method of undetermined coefficients) one searches for a particular solution of the following DE?

a.
$$y^{(7)} + 5y^{(6)} + 6y^{(5)} = 1 + te^t + te^{-2t} - t^3 + te^{-3t} \sin t - e^{-3t}$$

b.
$$p(\frac{d}{dt})y = f(t)$$
, where
$$p(\lambda) = (\lambda^2 + 4\lambda + 5)(\lambda^2 + 4\lambda - 5)(\lambda - 1)^2, \ f(t) = t + te^{-2t}\cos t - t\cos t - e^{-5t} + e^t + t^2e^{2t} + t^3$$

c.
$$P(\frac{d}{dt})x = 1 + 2t - e^t - \cos t + t \sin 2t$$
, where $P(\lambda) = \lambda(\lambda^2 - 1)^3(\lambda^2 + 1)^2Q(\lambda)$. The roots of the polynomial Q have real parts larger than 5. Does the DE have stable solutions?

4. Linearize the system of nonlinear DEs $\begin{cases} \dot{x} = -\cos(x + \sin y) \\ \dot{y} = \tan(3x) + 2\cos x \end{cases}$ at its equilibrium $(\frac{\pi}{2}, 0)$ and solve the obtained linear system.

- 5. Which pair of vector functions $\begin{pmatrix} t \\ t-1 \end{pmatrix}$, $\begin{pmatrix} t-1 \\ t \end{pmatrix}$ or $\begin{pmatrix} t \\ t+1 \end{pmatrix}$, $\begin{pmatrix} t+1 \\ t \end{pmatrix}$ can constitute a pair of solutions for the DE $\dot{y} = A(t)y$, $y \in \mathbb{R}^2$ with the matrix A(t) continuously depending on $t \in [0,1]$? Explain.
 - a. Find the corresponding matrix A(t) using the DE for the fundamental matrix.
 - b. Solve the Cauchy problem $\dot{y} = A(t)y$, $y_1(0) = 1$, $y_2(0) = 2$.
- 6. Which pair $(f_1(t), f_2(t))$ of two functions $(1, \tan t)$ or $(t, \tan t)$ can satisfy the DE $\ddot{y} + a_1(t)\dot{y} + a_2(t)y = 0$ with continuous real-valued coefficients in the interval $t \in (-\pi/2, \pi/2)$. Calculate the Wronskian $W[y, f_1, f_2](t)$ for some other solution y(t) of this DE.
- 7. Solve the DE $(t^2 1)\ddot{y} 6y = 1$ if it is known that the corresponding homogeneous problem has a polynomial particular solution.
- 8. Solve the DE $(t^2 1)\ddot{y} + 4t\dot{y} + 2y = 6t$ if its two particular solutions are $y_1 = t$ and $y_2 = \frac{t^2 + t + 1}{t + 1}$.
- 9. Solve the DE and the Couchy problem $\ddot{y} + \dot{y} \tan t = \sin(2t), |t| < \frac{1}{2}\pi$, y(0) = 1, $\dot{y}(0) = 1$, if $y = \sin t$ is a particular solution of the corresponding homogeneous DE.
- 10. Find the linear approximation with respect to $\varepsilon \in \mathbb{R}$, $\varepsilon \approx 0$, of the Cauchy-problem solution over the time interval $t \in [-T, T]$ for some T > 0.

a.
$$\ddot{y} = -2\sin y + y$$
, $y(0) = 0$, $\dot{y}(0) = \varepsilon$

b.
$$\ddot{y} = -\varepsilon \sin t \cos y - y$$
, $y(0) = 2\varepsilon^3 - \varepsilon^2$, $\dot{y}(0) = \varepsilon^2$

c.
$$\ddot{y} + 2\dot{y}\cos\varepsilon + y - (e^t y + te^{-t} + \dot{y})\sin\varepsilon = 0$$
, $y(0) = \tan\varepsilon$, $\dot{y}(0) = (1+\varepsilon)^2$

- 11. Calculate the matrix exponent e^{At} for the matrix $A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -2 & 3 \end{pmatrix}$, and solve the Cauchy
 - problem $\dot{y} = Ay$, $y(0) = \begin{pmatrix} 1 \\ 2 \\ 2 \\ 1 \end{pmatrix}$. It is acceptable to not calculate matrix products in the final answer.
- 12. What are the possible DE orders n such that for some smooth real-valued function $f(t, y, \dot{y}, ..., y^{(n-1)})$ functions $y = t^3 + t^7$ and $y = t^3$ both satisfy $y^{(n)} = f(t, y, \dot{y}, ..., y^{(n-1)})$ for any $t \in \mathbb{R}$? Give an example for the found minimal order. Explain.

- 13. What is the minimal order n of the linear time-invariant DE $y^{(n)} + a_1 y^{(n-1)} + ... + a_n y = 0$ which has both solutions $y = t^4$, $y = t^2 \cos t + t^4$? Explain and find the DE in the form $p(\frac{d}{dt})y = 0$. There is no need to multiply polynomials in the final form of $p(\lambda)$.
- 14. Which of the functions t^2 or $t^2 + 1$ can satisfy the DE $\ddot{y} + a(t)\dot{y} + b(t)y = 0$ for any $t \in \mathbb{R}$ and continuous $a, b : \mathbb{R} \to \mathbb{R}$? Explain and provide an example.
- 15. What is the minimal order n of the DE $y^{(n)} + a_1 y^{(n-1)} + ... + a_n y = 0$ with constant real coefficients, if it has the solution $y = t \cos t + t^3$? Explain and find the DE. Does it have stable solutions?
- 16. It is known that the DE $y^{(5)} + a_1 y^{(4)} + a_2 \ddot{y} + a_3 \ddot{y} + a_4 \dot{y} = 0$ with constant real coefficients has the solution $y = \cos t + \sin(2t)$. Find the coefficients and the general solutions.
- 17. Check the stability of the following equilibriums of scalar differential equations:

$$\dot{y} = -y^3, y(0) = 0; \qquad \dot{y} = -y^3 + y^2, y(0) = 0; \qquad \dot{y} = -|y| + \sin^2 y, y(0) = 0;$$

$$\dot{y} = \cos(y^3), y(0) = \left(\frac{1}{2}\pi\right)^{1/3} \text{ and } y(0) = \left(\frac{3}{2}\pi\right)^{1/3}; \qquad \dot{y} = -y^3 \cos y, y(0) = \frac{1}{2}\pi \text{ and } y(0) = 0;$$