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Final Exam

PROBLEM 1. (1, 13 points) The DE ¥ + a,j + a,y + ay = 0 with constant real coefficients has the particular solu-
tion cos t — 2sin ¢. Find its general solution and the coefficients a; and a, as functions of a.

(2, 12 points) Determine whether the following constant solutions of the first-order DE’s are stable or unstable:
@y = =yylyl, y(0) = 0; (b) y = |siny]|, y(0) = 0; (©) y = cos(y?), ¥(0) = Vr/2.

Answer. (1) General solution:'cfl-cost + ¢, sint + c;e™™, ¢}, ¢5, ¢3 € R. Coefficients: a; = a, a, = 1. (2) Stable (as-
ymptotically), unstable, stable (asymptotically).

Solution. (1) Let y be the characteristic polynomial of the equation, that is y(1) = A3 + ;42 + a,A + a = 0. Con-
sidering the form of the given solution and the fact that all the coefficients are real, we deduce that +i are roots
of x, thus, we have that

XD =A=-DA+DA—-2A3)=23-2342+1-1;, ('N)

where 4; is the remaining root of the polynomial. Thus, a = —A4;, so a, = a, a, = 1. Consecutively, the general
solution has the form ¢, cost + ¢, sint + c;e~*, where ¢, ¢;,¢; € R.

(2) In each item we take the function v(y) = (y — y(O))z as Lyapunov’s function and differentiate it with respect
to the equation (we denote the derivative by v*), that is v* = 2(y — y(0))y, so we have for the three cases (the in-
equalities are true in some vicinity of the initial condition)

ety Vo =-DWhI<0 7 0
* " A
._.3..5;- \* Uy = 2yIsiny| -0, O¢ Y << )
—e<— ) Vo= 2()’ - V”/Z) cos(y?) <0, } ¥ U’Z (small vicinity)
Lk
Thus, in the first and in the third cases the constant solution is stable, while in the second case it is unstable. &

PROBLEM 2. (1, 14 points) Find the general solution and the solution of the Cauchy problem for the DE
1
y - Fytanx = y3cosx (2)
with the initial condition y(0) = 1 (maybe, as an implicit function).
(2, 11 points) Check the stability of the equilibrium at the origin for « = 0 and a = 2 for the system

{J'c = sin(x — 3y) + xcosy 1)

y=ae*2Y +logl+x)—«a

Answer. (1) y = +1/4/-2xcos x + C cos x and y = 0. (2) Unstable for « = 0 and asymptotically stable for a = 2.

Solution. (1) This is a Bernoulli equation. Divide both parts by y* (note that y = 0 is a solution) to obtain

11
%—E?tanx=cosx )

and use the substitution z = 1/y?, then z’ = —2y’/y3, so Equation ('11) becomes

Lecturer: Prof Avie Levant 0127 N SN AN
Teaching Assistant: Mr Michael Fraiman mikhail f@tauex. tau.ac.il 1109 78N 10 NN
Reception Hours: Wednesday, 13:00-14:00. Schreiber building, room 309 3090 1w 1, 14:00 v 13.00°0 1 0 :any v
Course Period: 31.12.2023-15.03.2024 "N 0000, T'98N :0WFA N9IFN

This gocument has been produced srg the expeimental Typst v 0.11.0 ypeserting ergne Fonts: Hehvenca Neue World, Meta Sent Fro, Noea Forts, ST Two Math, Duolus SL. Paga10f5



Ordinary Differential Equations ni7n) nIfTe9T NINIUN dyslell dulslazll odsleall T'9¥N"n 21783 1"V 09:00-12:00 25.03.2024

Tel Aviv University 2870 NODWIIX Cuwl Ji dool> Final Exam. Solutions
z z 3.-:{ EnTt
—— ——tanx =cosx => z' + ztanx = —2cos x. "
2 2 + n 2 )

A function u, upon satisfying

y=/.¢'tanx=>#—=tanx—>u=-l—, (v
u cos X

serves as an integrating factor. Therefore,
(zu) =Z'u+zu' =z'u+2zutanx = (zu)' = —2ucosx = =2 =
z . ‘
=-=2x" C = z=-2xcosx + CcosX. CE/R

cosx
. 1 1 = = 0
The general solution: y=t—-== 5 C [/:| h) :}
_u) uWd \Vz v/ =2xcos x + C cos x

¢m)

Thus,

(v)

(2) First, note tha/ = Odl = 0is a solution, so the origin is indeed an equilibrium point. Computing the Jacobian
at the origin yields

cos(x — 3y) +cosy —3cos(x —3y)— xsiny

_ — _( 2 -3 '
I= aex-2y + # —2aex-2y 7(0,0)= (a +1 —Za) ()
X

Since the original equation has the form (;) = F(x,y), where the RHS is differentiable, we get that F(x,y) =

10.0)-G) + o)) 35 () = 0.

The eigenvalues of the Jacobian can be easily found and equal 1 £+ i\/i for a = 0 (so the point is unstable because

—~

the real parts are positive) and —1 (of multiplicity two) for & = 2 (so the point is asymptotically stable). ]
PROBLEM 3. (1, 14 points) Find the general solution of the DE

(x*=xy—-y?)dx +x2dy =0 (X™)
(maybe, as an implicit function).

(2, 11 points) The function f : R? — R is known to be locally Lipschitz. Can the function cost — 1 satisfy the DE
y=fy) ;3“ € [-1,1]orfort € [5,7]?
‘& (2) No.

| =X 9= X,
=3 (-0 +x)=cHCRy F=X; 3T (3)z0 |saso|ut|o

Answer. (1
Solution. (1) The equation is homogeneous, so we use the substitution y = zx to get for ¢ ;é D}

(x* = xy — y?)dx + x2dy = (x* — 2x? — 22x?) dx + x¥(zdx + xdz) = x}((1 - z¥)dx + xdz). (2™)

Considering the potential solutions x = const, we deduce

z 1 1 z-1 z-
1-224+x2' =0= =-==lo |=lo x| +c= | €|x ™)
-1 x 398751 = losl¥l z71| =~
- N \
, z='ll ‘s asobation, 2ot ZF_\£0

so, returning to y, we get (é’ e + )
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y; — sz C.Em. C+D (.I.,,,)

X -
y+ g ==, 5-— X
Note that if x is a constant functioa, then only x = 0 fits the original equation.

(2) Denote ¢ = 0, 3 = cost — 1. Note that at the points 27Z both functions vanish (in particular, they are equal
there). Also, their derivatives at those points are equal (again, both vanish), since

Y’ = —sint|, , =0. (")

Now, note that the equation has a unique solution for any initial condition y(ty) = yo, ¥'(to) = y1, since f(y,y) - y
is Lipschitz-continuous as a function of y and y in some neighbourhood U of an arbitrary point (y,, ;). Herefrom,
the theorem of existence and uniqueness must holds. Therefore,

However, since both ¢ and i both vanish at zero and their derivatives there are equal, the theorem of existence and
uniqueness is violated for the initial condition y(0) = 0, y'(0) = 0. Also, since 3 < & < 3.2, we have 27 € [5, 7],
so, for the initial condition y(27) = 0, y’(27) = 0, and we again have a contradiction. )

PROBLEM 4. Consider the matrixA = (_l 2). Solve the DEy = Ay, y € R? for an arbitrary initial condition y(0) =
C € R? and compute e'4

tA . :
tA _ [eta=1) et
Answer.y = & C 4 4= ( Cer e'(1+t))

Solution. ¢ METHOD 1 (FOR HIGHER-ORDER EQUATIONS FANS). Note that the system is equivalent to

a=p o )
B:—a+2ﬁ=>a_ﬁ__a+ Q. (V)

The last equation can be solved by constructing the characteristic polynomial as follows
A2-21+1=1-1), (™)
so the solution has the form
a = e'(a, + axt) = B =e'(a; + a, + ast). ()

If the initial condition is C = (2), then a, = ¢,, a, = ¢, — ¢;. The matrix exponential can be found from the fact
that if v; and v, are the columns of the ¢'4, then v,(0) = ((l)), v,(0) = ((1)) Considering the forms of « and g we find

_[et(1—1t) et .
eA‘_( —ett e‘(1+t)) (™)

& METHOD 2 (FOR MATRIX ENJOYERS). Find the Jordan form

. 1-1 11\ 01
A=SIS l,wheres=( ) J=( ) sl = 3
10 01 -11 (3)
Since
et tet . e‘(l — t) ett
e'.’ = ( ) = efA = SelJS 1 = (an)
0 et —eft et(t+1)
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The linear combinations of the columns constitute the set of general solutions, just as described in the previous

method. C
PROBLEM 5. Solve the DE
0 010
y=Ay+| 0 |, yeR? for A=|0 01 (")
ef +1 212

It is known that one of the eigenvalues of A is equal to 2.

Answer. See Equation (1”2) below.

x
Solution. Denote y = (ﬁ) and write the system as
Y
a=p
B=v (1"3)
y==2a+pB+2y+e +1
Then, & = y and
B=y==-2a+a+2d+e'+1=d-2d—-a+2a=¢e"'+1. ()

First we solve the corresponding homogeneous equation. The characteristic polynomial is

xA) =B =22-21+2=A=-2)A-1)(A+1). (1”2)
there is resonance, and a particular
Thus, the general solution has the form c;e? + c,e™ + cse'. For the RHs e! the'Solution can be found in the form

ate'. Plugging it into the equation, we can find that a = —1/2. For the RHS equal to 1 we ;,aﬁ find a particular solu-
tion 1/2 /-since there is no resonance.

Thus, the general solution can be written as

t
— 2t -t ¢ 1 e
a=ce” +ce " +ce + =
2 2
t t
e te
B=2e*—cet +cef == —— = (1”2)
2 2
2t - ¢ te
y=4ce? +ce”" +c3ef —e -3
Finally, we have
( 1 tet \
2 2
1 1 1 ot pet
y=cqeX|2]+cet| -1 +ce|1]+]|—=-— (12)
2 2
4 1 1
tet
—et — —
\ 2
)
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PROBLEM 6 (BONUS FOR THE GROUP 1+, 10 POINTS). The function f : R? — R islocally Lipschitz. Can both func-
tions sin(2t) and 2 arctan t simultaneously be solutions of the bE j = f(y,y) forallt € [-1,1]?
Answer. No.

Solution. Applying logic similar to the one seen in the solution of item (2) in Problem 3, we see that the unique-
ness and existence theorem must hold for any initial condition. However, again, for ¢ = sin 2t and ¢ = 2 arctant
we have

2
9(0) = $(0) =0, ¢'(0)=2cos2t|y=2, P(0)=——| =2, (")
1+ 12|,
so the existence and uniqueness theorem is violated for the initial condition y(0) = 0, y’(0) = 2. Cd
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