Linear differential equations with constant coefficients Method of undetermined coefficients

$$
e^{u+v i}=e^{u}(\cos v x+i \sin v x), u, v \in \mathbf{R}, i^{2}=-1
$$

Quasi-polynomial:
$Q_{\alpha+\beta i, k}(x)=e^{\alpha x}\left[\cos \beta x\left(f_{0}+f_{1} x+\ldots+f_{k} x^{k}\right)+\sin \beta x\left(g_{0}+g_{1} x+\ldots+g_{k} x^{k}\right)\right]$
$\alpha, \beta, f_{0}, f_{1}, \ldots, f_{k}, g_{1}, \ldots, g_{k} \in \mathbf{R}$
k is the degree, $\alpha+\beta i$ is the exponent of $Q_{\alpha+\beta i, k}(x)$

Examples:

$$
\begin{array}{ll}
3=e^{0 x}[3 \cos 0 x+\sin 0 x] & \rightarrow \\
x^{2}+7=e^{0 x}\left[\cos 0 x\left(x^{2}+7\right)+\sin 0 x\right] & \rightarrow \\
x^{2}=0, k+\beta i=0, k=2 \\
x e^{2 x}+e^{2 x}=e^{2 x}[\cos 0 x(x+1)+\sin 0 x] & \rightarrow \\
x \cos 2 x+\sin 2 x=e^{0 x}[x \cos 2 x+\sin 2 x] & \rightarrow \\
e^{x}+\beta+\beta i=2 i, k=1 \\
e^{x} \cos 5 x+e^{x} \sin 5 x\left(x^{7}+1\right)=e^{x}\left[\cos 5 x+\left(x^{7}+1\right) \sin 5 x\right] & \rightarrow \\
x \cos 3 x+\sin x & - \text { not a quasi-polynomial, but a sum of two quasi-polynomials } \\
x^{-2} e^{x}, \operatorname{tg} x, \cos x / x & \text { - not quasi-polynomials }
\end{array}
$$

Homogeneous linear differential equations

Homogeneous linear differential equation of the nth order:

$$
\begin{equation*}
y^{(n)}+a_{1} y^{(n-1)}+a_{2} y^{(n-2)}+\ldots+a_{n} y=0, \quad a_{1}, a_{2}, \ldots, a_{n} \in \mathbf{R} \tag{1}
\end{equation*}
$$

Initial conditions:

$$
\begin{equation*}
y\left(x_{0}\right)=\xi_{0}, y^{\prime}\left(x_{0}\right)=\xi_{1}, \ldots, y^{(n-1)}\left(x_{0}\right)=\xi_{n-1} \tag{2}
\end{equation*}
$$

The characteristical polynomial and the characteristical equation:

$$
p(\lambda)=\lambda^{n}+a_{1} \lambda^{n-1}+a_{2} \lambda^{n-2}+\ldots+a_{n}, \quad p(\lambda)=0
$$

Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}$ be the different real roots of $p(\lambda)$ and $m_{1}, m_{2}, \ldots, m_{s}$ be their multiplicities, and let $\mu_{1}, \bar{\mu}_{1}, \ldots, \mu_{q}, \bar{\mu}_{q}$ be the different conjugate complex pairs of roots of $p(\lambda)$ and $\underline{m}_{1}, \underline{m}_{2}, \ldots, \underline{m}_{q}$ be their multiplicities

$$
m_{1}+m_{2}+\ldots+m_{s}+2 \underline{m}_{1}+2 \underline{m}_{2}+\ldots+2 \underline{m}_{q}=n .
$$

The general solution of the homogeneous equation (1):

$$
y=y_{1}+y_{2}+\ldots+y_{s}+\underline{y}_{1}+\underline{y}_{2}+\ldots+\underline{y}_{q}
$$

Each y_{j} is a quasi-polynomial with the exponent $\lambda_{j} \in \mathbf{R}$ of the degree $m_{j}-1$. It contains m_{j} coefficients. All the coefficients are arbitrary numbers.

Each y_{j} is a quasi-polynomial with the exponent $\mu_{j} \in \mathbf{C}$ of the degree $\underline{m}_{j}-1$. It contains $2 m_{j}$ coefficients. All the coefficients are arbitrary numbers.

The total number of the free coefficients is

$$
m_{1}+m_{2}+\ldots+m_{s}+2 \underline{m}_{1}+2 \underline{m}_{2}+\ldots+2 \underline{m}_{q}=n .
$$

The concrete values of the free coefficients are determined from the initial conditions (2).

Nonhomogeneous linear differential equations

Nonhomogeneous linear differential equation of the nth order:
$y^{(n)}+a_{1} y^{(n-1)}+a_{2} y^{(n-2)}+\ldots+a_{n} y=b(x), \quad a_{1}, a_{2}, \ldots, a_{n} \in \mathbf{R}$
The general solution

$$
y=y_{h}+y_{p}
$$

where y_{h} is the general solution of the homogeneous equation (1) and y_{p} is a particular solution of (2) (each one fits). If $b(x)=b_{1}(x)+b_{2}(x)$, then any particular solution is a sum of some corresponding particular solutions: $y_{p}=y_{p 1}+y_{p 2}$. The component y_{h} contains n arbitrary coefficients, which can be determined from the initial conditions (2) after y_{p} is found.

Let $b(x)$ be a quasi-polynomial of the degree k with the exponent $\alpha+\beta i$. There are two cases:

1. $\alpha+\beta i$ is not a root of the characteristical equation, i.e. $p(\alpha+\beta i) \neq 0$. Then the particular solution y_{p} is searched for in the form of a quasi-polynomial with the same exponent and the same degree:

$$
\begin{equation*}
y_{p}=e^{\alpha x}\left[\cos \beta x\left(f_{0}+f_{1} x+\ldots+f_{k} x^{k}\right)+\sin \beta x\left(g_{0}+g_{1} x+\ldots+g_{k} x^{k}\right)\right] . \tag{4}
\end{equation*}
$$

There are k unknown coefficients with $\beta=0$ and $2 k$ coefficients with $\beta \neq 0$. All of them are to be determined from the equality obtained after the substitution of $y=y_{p}$ into (3).
2. $\alpha+\beta i$ is a root of the characteristical equation, i.e. $p(\alpha+\beta i)=0$ (resonance). Let m ≥ 1 be the multiplicity of the root $\alpha+\beta i$. Then the particular solution y_{p} is searched for in the form of a quasi-polynomial with the same exponent and the increased degree $k+m$. The terms with the degrees of x up to $m-1$ can be canceled, for the corresponding lower degree quasi-polynomial is a solution of the homogeneous equation (1). The resulting form is

$$
\begin{equation*}
y_{p}=x^{m} e^{\alpha x}\left[\cos \beta x\left(f_{0}+f_{1} x+\ldots+f_{k} x^{k}\right)+\sin \beta x\left(g_{0}+g_{1} x+\ldots+g_{k} x^{k}\right)\right] . \tag{5}
\end{equation*}
$$

There are k unknown coefficients with $\beta=0$ and $2 k$ coefficients with $\beta \neq 0$. All of them are to be determined from the equality obtained after the substitution of $y=y_{p}$ in (3).

Form (4) can be considered as a particular case of form (5) with $m=0$.

Homogeneous systems of first-order linear differential equations

The homogeneous system

$$
\begin{gathered}
y_{1}^{\prime}=a_{11} y_{1}+a_{12} y_{2}+\ldots+a_{1 n} y_{n} \\
y_{2}^{\prime}=a_{21} y_{1}+a_{22} y_{2}+\ldots+a_{2 n} y_{n} \\
\ldots \\
y_{n}^{\prime}=a_{n 1} y_{1}+a_{n 2} y_{2}+\ldots+a_{n n} y_{n}
\end{gathered}
$$

The initial conditions:

$$
y_{1}\left(x_{0}\right)=\xi_{1}, y_{2}\left(x_{0}\right)=\xi_{2}, \ldots, \quad y_{n}\left(x_{0}\right)=\xi_{n}
$$

In the matrix form:

$$
\begin{align*}
& y^{\prime}=A y, \tag{6}\\
& y\left(x_{0}\right)=\xi, \quad y, \xi \in \mathbf{R}^{n} \tag{7}
\end{align*}
$$

The characteristical polynomial and the characteristical equation:

$$
p(\lambda)=\operatorname{det}(A-\lambda I), \quad p(\lambda)=0 .
$$

The roots of the characteristical equation are called eigenvalues, any non-zero solution V of the vector equation $(A-\lambda I) V=0$ is called an eigenvector with the eigenvalue λ.

The simple case: roots of the multiplicity 1

All roots of the characteristical polynomial have the multiplicity 1 . Then there are n different eigenvalues and n corresponding linearly independent eigenvectors.

Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}$ be the real eigenvalues of A and $\mu_{1}, \bar{\mu}_{1}, \ldots, \mu_{q}, \bar{\mu}_{q}$ be the conjugate pairs of complex eigenvalues of A

$$
s+2 q=n .
$$

The general solution of the homogeneous equation (1):

$$
y=y_{1}+y_{2}+\ldots+y_{s}+\underline{y}_{1}+\underline{y}_{2}+\ldots+\underline{y}_{q},
$$

where the components corresponding to the real eigenvalues have the form

$$
y_{j}=c_{j} e^{\lambda_{j} x} V_{j}, j=1, \ldots, s
$$

with V_{j} being the eigenvector corresponding to λ_{j}. The two real solutions corresponding to each conjugate pair of complex eigenvalues $\mu_{j}, \bar{\mu}_{j}$ are found as the real and the imaginative parts of the complex solution of the form $e^{\mu_{j} x} V_{j}$, where V_{j} is the corresponding complex eigenvector:

$$
y_{j}=d_{j} \operatorname{Re}\left(e^{\mu_{j} x} V_{j}\right)+\underline{d}_{j} \operatorname{Im}\left(e^{\mu_{j} x} V_{j}\right), j=1, \ldots, q .
$$

The general solution depends on n arbitrary coefficients. These coefficients can be determined from the initial conditions.

Vector quasi-polynomial:

$Q_{\alpha+\beta i, k}(x)=e^{\alpha x}\left[\cos \beta x\left(F_{0}+F_{1} x+\ldots+F_{k} x^{k}\right)+\sin \beta x\left(G_{0}+G_{1} x+\ldots+G_{k} x^{k}\right)\right]$ $F_{0}, F_{1}, \ldots, F_{k}, G_{1}, \ldots, G_{k} \in \mathbf{R}^{n}$
k is the degree, $\alpha+\beta i$ is the exponent of $Q_{\alpha+\beta i, k}(x)$

Examples:

$$
\begin{aligned}
& \binom{2}{x^{2}}=e^{0 x}\left\{\cos 0 x\left[\binom{2}{0}+\binom{0}{1} x^{2}\right]+\sin 0 x\right\} \quad \rightarrow \quad \alpha+\beta i=0, k=2 \\
& \binom{e^{2 x} \cos x}{x e^{2 x} \sin x}=e^{2 x}\left\{\cos x\binom{1}{0}+\sin x\binom{0}{1} x\right\} \quad
\end{aligned} \quad \rightarrow \quad \alpha+\beta i=2+i, k=1
$$

General homogeneous case.

Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}$ be the different real roots of $p(\lambda)$ (eigenvalues of A) and m_{1}, m_{2}, \ldots, m_{s} be their multiplicities, and let $\mu_{1}, \bar{\mu}_{1}, \ldots, \mu_{q}, \bar{\mu}_{q}$ be the different conjugate complex pairs of roots of $p(\lambda)$ (eigenvalues of A) and $\underline{m}_{1}, \underline{m}_{2}, \ldots, \underline{m}_{q}$ be their multiplicities

$$
m_{1}+m_{2}+\ldots+m_{s}+2 \underline{m}_{1}+2 \underline{m}_{2}+\ldots+2 \underline{m}_{q}=n .
$$

The general solution of the homogeneous equation (1):

$$
y=y_{1}+y_{2}+\ldots+y_{s}+\underline{y}_{1}+\underline{y}_{2}+\ldots+\underline{y}_{q}
$$

Each y_{j} is a vector quasi-polynomial with the exponent $\lambda_{j} \in \mathbf{R}$ of the degree m_{j} - 1 . It contains $n m_{j}$ coefficients. Only m_{j} coefficients are independent and can be taken arbitrary, all the others are to be expressed through them. The independent coefficients are identified by the substitution of the general vector quasi-polynomial instead of y into (6).

Each y_{j} is a vector quasi-polynomial with the exponent $\mu_{j} \in \mathbf{C}$ of the degree \underline{m}_{j}-1. It contains $2 n m_{j}$ coefficients. Only $2 m_{j}$ coefficients are independent and can be taken arbitrary, all the others are to be expressed through them. The independent coefficients are identified by the substitution of the general vector quasi-polynomial instead of y into (6).

The total number of the independent free coefficients is n. The concrete values of the free coefficients are determined from the initial conditions (7).

Nonhomogeneous systems of first-order linear differential equations

Nonhomogeneous linear system:

$$
y^{\prime}=A y+B(x), \quad B(x)=\left(\begin{array}{c}
b_{1}(x) \tag{8}\\
b_{2}(x) \\
\ldots \\
b_{n}(x)
\end{array}\right)
$$

The general solution

$$
y=y_{h}+y_{p}
$$

where y_{h} is the general solution of the homogeneous system (6) and y_{p} is a particular solution of (8) (each one fits). The component y_{h} contains n arbitrary coefficients, which can be determined from the initial conditions (7) after y_{p} is found.

If $B(x)=B_{1}(x)+B_{2}(x)$, then any particular solution is a sum of some corresponding particular solutions: $y_{p}=y_{p 1}+y_{p 2}$.

Let $B(x)$ be a vector quasi-polynomial of the degree k with the exponent $\alpha+\beta i$. Let m be the multiplicity of $\alpha+\beta i$ as of a root of the characteristical polynomial, i.e. $m=0$ if $p(\alpha+\beta i) \neq 0$ and $m \geq 1$ if $p(\alpha+\beta i)=0$ (the resonance case). Then the particular solution y_{p} is searched for in the form of a vector quasi-polynomial with the same exponent and the degree $k+m$:
$y_{p}=e^{\alpha x}\left[\cos \beta x\left(F_{0}+F_{1} x+\ldots+F_{k+m} x^{k+m}\right)+\sin \beta x\left(G_{0}+G_{1} x+\ldots+G_{k+m} x^{k+m}\right)\right]$.
There are $n(k+m)$ unknown coefficients with $\beta=0$ and $2 n(k+m)$ coefficients with β $\neq 0$. All of them are to be determined from the equalities obtained after the substitution of $y=y_{p}$ into (8). In the resonance case the number of the coefficient choices is infinite. Then some of them are defined arbitrarily (as zero, for example).

Remark. The low degrees of x cannot be canceled like in the scalar case!

