
Robust exact differentiation 
 Let a signal f(t) be a function defined on [0, ∞), which is a result of real-time noisy 

measurements of some unknown n-smooth signal f0(t) with the nth derivative f0
(n)(t) having a known 

Lipschitz constant L > 0. The function f(t) is assumed to be a Lebesgue-measurable function, the 

unknown sampling noise f(t) - f0(t) is assumed bounded. The task is to find real-time estimations of  

f0, 0f& , 0f&& , ..., f0
(n) using only values of  f  and the number L. The estimations are to be exact in the 

absence of noises when f(t) = f0(t). 

 Denote by Dn-1(f(⋅),L) the (n-1)th-order differentiator producing outputs i
nD 1− (f(⋅),L),    i = 0, 

1, ..., n-1,  being estimations of  f0, 0f& , 0f&& , ..., f0
(n-1) for any input f(t) with f0

(n-1) having Lipschitz 

constant L > 0. Then the nth-order differentiator has the outputs zi = i
nD (f(⋅),L),       i = 0, 1, ..., n, 

defined recursively as follows: 

0z&  = v , v = -λn L
1/(n+1)| z0 - f(t)|

 n/(n + 1) sign(z0 - f(t)) + z1, 

 z1 = 0
1−nD (v(⋅), L),  ..., zn = 1

1
−
−

n
nD (v(⋅), L). 

Here D0(f(⋅), L) is a simple nonlinear filter 

      D0:   z&  = -λ0 L sign(z - f(t)),    λ0 > 1.  

Thus, the nth-order differentiator [3] has the form 

z& 0 = v0, v0 = -λn L
1/(n+1) | z0 - f(t)|

 n/(n + 1) sign(z0 - f(t)) + z1,  

z& 1 = v1,  v1 = -λn-1 L
1/n | z1 - v0|

 (n-1)/n  sign(z1 - v0) + z2, 

  ...                               (1) 

1−nz& = vn-1,        vn-1 = -λ 1 L
1/2 | zn-1 - vn-2|

 1/2sign(zn-1- vn-2)+ zn, 

z& n = -λ0
 L sign(zn - vn-1), 

where λi > 0 are chosen sufficiently large in the list order. The solution is understood in the Filippov 

sense [1]. Note that it contains actually all the lower-order differentiators and each recursive step 

requires tuning one parameter only. With n = 1 the first-order differentiator from [2] is obtained. 

The Theorem [3] actually states that there exists a sequence {λi} suitable for all differentiators. 

 There is a simple, though rather conservative, algebraic criterion for the parameter choice 

when n = 1, a practically-exact simply-verified integral criterion is also available in that case [2]. 

Unfortunately, such criteria lack with n > 1. The author found a number of computer-checked 



parameter combinations for n = 5 and less. One of the combinations is λ0 = 1.1, λ1 = 1.5, λ2 = 3, λ3 

= 5, λ4 = 8, λ5 = 12, another one is λ0 = 1.1, λ1 = 1.5, λ2 = 2, λ3 = 3, λ4 = 5, λ5 = 8. Following 

relations are established in finite time with properly chosen parameters [2, 3]: 

1. if  f(t) = f0(t) (there is no noise) then 

 z0 = f0(t);       zi = vi-1 = f0
(i)(t),    i = 1, ..., n;  

2. if | f(t) - f0(t)| ≤ ε, then for some positive constants µi, νi depending exclusively on the parameters 

of differentiator (1) 

  |zi - f0
(i)(t)| ≤ µi ε

(n - i +1)/(n + 1), i = 0, ..., n,   

  |vi -  f0
(i+1)(t)| ≤ νi ε

(n - i)/(n + 1),  i = 0, ..., n-1; 

3. if f(t) = f0(t), but f(t) is sampled with a constant time period τ > 0, then for some µi, νi 

 |zi - f0
(i)(t)| ≤ µi τ

 n - i + 1, i = 0, ..., n,   

  |vi -  f0
(i+1)(t)| ≤ νi τ

 n - i ,  i = 0, ..., n - 1. 

 It is easy to see that the nth order differentiator provides for a much better accuracy of the lth 

derivative, l < n, than the lth order differentiator. Thus, the additional smoothness of the unknown 

input signal f0(t) can be used to improve its derivative estimation based on the noisy measurement 

f(t). 

 Results of the 5th-order numerical differentiation of the signal f0(t ) = 0.5 sin 0.5t + 0.5 cos t 

with λ0 = 1.1, λ1 = 1.5, λ2 = 3, λ3 = 5, λ4 = 8, λ5 = 12, L = 1 are shown in Fig. 1.  

 

Fig.  1: 5th-order numerical differentiation 

 



Numeric differentiation: instructions 

 In case  |f(n+1)| ≤ L the nth order differentiator parameters are changed with respect to the rule 

λi = λ0i L1/(n- i+1) . Following are equations of the 5th-order differentiator with simulation-tested 

coefficients. As mentioned, it contains also differentiators of the lower orders: 

 z& 0  =  v0 ,   v0   =  - 8 L1/6 | z0 - f(t)|
 5/6sign(z0 - f(t)) + z1 ,    

 z& 1  =  v1 ,   v1    = - 5 L1/5 | z1 - v0|
 4/5 sign(z1 - v0) + z2 ,      

 z& 2   =  v2 ,   v2    =  - 3 L1/4 | z2 - v1|
 3/4 sign(z2 - v1) + z3 ,      

 z& 3   =  v3 ,    v3    = - 2 L1/3| z3 - v2|
 2/3 sign(z3 - v2) + z4 ,      

 z& 4  =  v4 ,    v4    =  - 1.5 L1/2 | z4 - v3|
 1/2 sign(z4 - v3) + z5 ,      

 z& 5  =  -1.1 L sign(z5 - v4);          

Here zi are the estimations of f (i)(t), i = 0, ..., 5, |f (6)(t)| ≤ L. The differentiator parameters can be 

easily changed. For example, increasing the gain in the line for z& 3 does not influence the 

coefficients for z& 4  and z& 5, but may require some enlargement of the above gains. The tradeoff is as 

follows: the larger the parameters, the faster the convergence and the higher sensitivity to input 

noises and the sampling step. 

 

 For example, the second order differentiator for the input f with | f&&& | ≤ 1 is 

  z& 0   =  v0 ,    v0    =  -2 | z0 - f|
 2/3 sign(z0 - f) + z1 ,      

  z& 1  =  v1 ,    v1    =   -1.5 | z1 - v0|
 1/2 sign(z1 - v0) + z2 ,      

  z& 2  =   -1.1 sign(z2 - v1).  

 

 In particular, with | f&&& | ≤ L the second order differentiator is 

  z& 0   =  v0 ,    v0    =  -2 L1/3| z0 - f|
 2/3 sign(z0 - f) + z1 ,      

  z& 1  =  v1 ,    v1    =   -1.5 L1/2 | z1 - v0|
 1/2 sign(z1 - v0) + z2 ,      

  z& 2  =   -1.1 L sign(z2 - v1);  

 



and the first order differentiator with | f&& | ≤ L is 

  z& 0  =  v0 ,    v0    =   -1.5 L1/2 | z0 - f|
 1/2 sign(z0 - f) + z1 ,      

  z& 1  =   -1.1 L sign(z1 - v0) =  -1.1 L sign(z0 - f).  

z0, z1, z2, ... stay for the smoothed input f and its successive derivatives f& , f&& , ... respectively. The 

last equality in the second line is just an identity, showing the compliance with [2]. 

 With discrete sampling the latter differentiator takes on the form 

  z& 0  =  v0 ,    v0 =   -1.5 L1/2 | z0  - f(ti)|
 1/2 sign(z0  - f(ti)) + z1 ,      

  z& 1  =   -1.1 L sign(z1 - v0(ti)) = -1.1 L sign(z0  - f(ti)),        

where the current time t satisfies ti ≤  t  <  ti + τ = ti+1. 

 In order to differentiate a real signal, one needs to estimate approximately the constant L and 

to use the smallest available integration and sampling time steps. It is important to check that the 

auxiliary variables v0, …, vn-1 be calculated based on the values of z and f obtained at the last 

sampling time (no mixing!). At first L may be taken redundantly large, afterwards it can be 

gradually reduced during the simulation. The criterion for the good differentiation is that the output 

z0 is to track the smoothed input, which is checked looking at the graph.  

Important: integration by the Euler method!  
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