APLAYL - Aesthetic Page LAYout Language

Preliminary version

1. Formal definition of APLAYL.

Symbols of language:

+ - * / = != < <= > >= && || ->

 , " () [] a b c x y z //

Keywords:

				RULE PENALTY

Numbers:

			0.5 2 -3		 // etc., treated as float or natural

Special Names: functions, relations, operators

Functions of objects:

One argument (numeric value)

Left() Right() Top() Bottom() Width() Height() Area() Abs() AspRatio() Centre_X() Centre_Y() PageNum()

One argument (Boolean value)

IsFill() IsPage() IsPict() IsText()

No arguments (numeric value)

LeftMargin RightMargin TopMargin BottomMargin

PgLeft PgRight PgTop PgBottom Balance_X Balance_Y

ColorCentre_X ColorCentre_Y ColorCentre_2

Two arguments (numeric value)

ViewAgent_1(,) ViewAgent_2(,) ViewAgent_3(,)

Relations (Boolean value):

 _ LeftOf _ _ RightOf _ _ Above _ _ Below _ == !==

Inclusion operator (Boolean value):

In[, , ... ,]

 Names of constant objects of data base 		 //e.g. "Pict0", "Avnery5"

	Program						 //Rule file

//A program is an ASCII-file

//All lines (the body of the program) are macro-definitions or rules.

			program ::= [macro_definition | rule]

// At least one rule is obligatory.

	Any line is to be one of the following types:

		name expression			 // macro-definition

		name(variable,...,variable) expression // function macro-definition

		variable name variable : expression // relation macro-definition

where

		variable ::= [obj_ variable | numeric_id]

Here

		obj_variable ::= [x,y,z]

		numeric_id ::= [a,b,c]

	Each variable which is encountered in the right part of a function or relation macro definition has to appear also in its left part. Variables in the left part of any macro definition are to appear in the alphabetical order: a, b, c, x, y, z (anyone may be absent). Each numeric_id has to be substituted by some numeric value before any appearance of the corresponding function in any rule.	

		RULE formula PENALTY term // rule

//where term is an expression taking on numerical values, and

// formula is an expression taking on Boolean values

		RULE formula 			 // rule, fulfillment is obligatory

		PENALTY term 		 // rule with empty condition

Formula is one of (1)-(7):						

(1)			PageNum(obj_term)= <natural number>	// This formula is						 //true if the term value is included

						 // in the page with the given number

(2) 		variable In [obj_const,..., obj_const]

(3)			Is_Pict(obj_term) Is_Text(obj_term)

			Is_Page(obj_term) Is_Fill(obj_term)

// Functions PageNum and Is_Page are given here to mark a way for further

//development. Only one page is allowed in the current project.

(4)			numeric_term $ numeric_term

	where $ is one of the following

			=

	or

			!=

	or

			>

	or

			<

	or

			>=

	or

			<=

(5)			(formula)

(6)			!(formula)

(7)			formula @ formula

	where @ is

			&&					// conjunction

	or

			|| 			// disjunction

	or

			-> 			// implication

	or

		any relation internal or defined in a macro

				

Term is obj_term or numeric_term.

	obj_term is an object variable or an obj_const:

(8) 		object variable:

			x

		or

			y

		or

			z			// variable objects of the data base

		obj_const:

(9)			"OjectId"		// constant object from the data base

		numeric_term is one of (10)-(16):

(10)			const			// floating point or integer constants

(11)			page_layout_funct 	// ColorCentre_X or ColorCentre_Y 						// or ColorCentre_2 or

						// RightMargin, PgRight etc.			

(12)			obj_func(obj_term,...,obj_term) // e.g. Left(x),

	 					// Area("text0"), AspRatio(x)

						// PageNum(y) etc.

(13)			% numeric_term

		where	 % is

			+

		or

			-

(14)		math_funct(numeric_term) 	// we allow now only Abs(term)

 (15)		numeric_term % numeric_term

	where % is one of the following

			+

	or

			-

	or

			*

	or

			/

(16)			#(formula)		// #(formula) denotes the number

						// of admissible variable values

						// satisfying the formula

The admissible variable values for a current page layout are all objects appearing on the page.

2. Conventions.

2.1. A variable is called a free variable of a term or a formula, if it appears at least once outside all subterms #(...). For each rule the free variables of the formula must include the penalty-term free variables, otherwise a compilation error is declared. For any rule the penalty is calculated as a sum of penalty-term values taken on for all admissible values of free variables while the formula is false. The admissible variable values for a current page layout are all objects appearing on the page.

2.2. The penalty for the absence of an object on the page is prescribed for each object of the data base. The defaults for these penalties may be zero or infinity. (Setting an absence penalty to infinity means that the presence of the object on the page is obligatory.) For any object being absent on the page all rules including it are excluded from the consideration and the absence penalty is added to the penalty sum.

2.3. “Pure penalty" rules, i.e. rules of the form

			PENALTY numeric_term

including quality control functions ColorCentre_X, ColorCentre_Y and ViewAgent are useful for building aesthetic rules. For example, the rule

			PENALTY ColorCentre_X + ColorCentre_Y

imposes penalty for color disbalance of the current page layout (in the current project only one page is admitted). Also empirical quality control functions may be used in the rules of that type. Another usable form of rule is

			RULE (PageNum(x)!=1) PENALTY f(x)

	 		RULE (PageNum(x)=1) PENALTY f(x)

which compels to pay for appearance of any lower quality object on the page or absence of important objects.

2.4. 	Any negative value of a penalty-term will cause a run-time error during the penalties evaluation process.

3. Compilation.

	At the start of the layout optimization two files are to be opened: a data base file and a rule file. The rule file is compiled by a recursive descent into a structure of operations and operands with vacant places for variables and for layout-dependent fields of objects (e.g. left("pict1")). All rule penalties are to be evaluated on any step of the layout optimization. The optimal layout has to minimize the penalty sum.

	The basic steps of the compilation.

	A. Macro-definitions may be used only below the line of their definition.

	B. Syntax analysis.

	C. Search in the data base for constant objects that appear in the rules.

		Object "..." not found - compilation error.

	D. Recursive descent.

4. 	On the language usage. We intend to restrict ourselves to multiply and divide only by numerical constants. The function #() is not to be used in the same arithmetical expression together with other object or page layout functions.

	This requirement is for optimization goal only. Special functions from ColorCentre and ViewAgent families and # counters are not to be used in obligatory rules (with empty PENALTY part). Also object variables x, y, z are not to be present in these rules.

 	Some other restrictions may also be imposed in future on the language in order to improve the optimization process.

5. Operator precedence: from top to bottom and from left to right. Following is the precedence order

		() 		 	function call		

		IN []			inclusion		

		+ 	 -		unary +, -		

		* 	/				

		+	-		

		...R...			relation evaluation		

		> < >= <= = !=			

		&& 					

		||					

		->					

�
/* 		APLAYL 	*/

/* - Aesthetic Page LAYout Language 	*/

/* BNF-Definition: 			*/

/* program ::= [macro_definition | rule] 	*/

/* macro_definition ::= [name expression | 	*/

/* name(variable,...,variable) expression | 		*/

/* variable name variable : expression] 		*/

/* rule ::= [RULE expression | 	*/

/* PENALTY expression | 		*/

/* RULE expression PENALTY expression] 	*/

/* expression ::= [primary_expression | 	*/

/* primary_expression operator expression] 	*/

/* operator ::= [name | * | / | + | - | 		*/

/* = | < | <= | > | >= | 			*/

/* -> | && | ||] 			*/

/* primary_expression ::= [variable | constant | name | set | 	*/

/* (expression) | 			*/

/* #(expression) | 			*/

/* operator expression | 		*/

/* name(expression,...,expression)] 		*/

/* variable ::= [obj_variable | numeric_id] 			*/

/* obj_variable ::= [x | y | z] 	*/

/* numeric_id ::= [a | b | c] 		*/

/* constant ::= [number | obj_const] 	*/

/* name ::= letter<string> 		*/

/* set::= [obj_const,...,obj_const] 	*/

/* obj_const ::= "ObjectId" 		*/

�PAGE �

�PAGE �1�

