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Quasi-Continuous High-Order Sliding-Mode Controllers

Arie Levant

Abstract—A universal finite-time-convergent controller is developed
capable to control the output of any uncertain single-input-single-output
system with a known permanent relative degree . The tracking error is
steered to zero by means of a control dependent only on _ . . .

and continuous everywhere except the set = _ = = = 0.
A robust output-feedback controller version provides for the tracking
accuracy proportional to the sampling noise magnitude.

Index Terms—Finite-time stability, high-order sliding mode, output feed-
back control, robustness.

I. INTRODUCTION

Sliding mode control remains one of the most robust and effective
tools to cope with heavy uncertainty conditions [22]. The main draw-
back of the standard sliding modes is mostly related to the so-called
chattering effect caused by the high-frequency control switching
[7], [8].

Let s be the output variable of an uncertain single-input–single-
output (SISO) dynamic system and w(t) be an unknown-in-advance
smooth input, both available in real time. The task is to establish
and keep � = s � w(t) = 0. The standard sliding-mode control
u = �k sign� is applicable if the relative degree is 1, i.e., if _�
explicitly depends on the control u, and _�0

u
> 0. Higher-order sliding

mode [13], [16] is applicable for controlling SISO uncertain systems
of arbitrary relative degrees [3], [6], [11], [14]–[16], [20]. The cor-
responding finite-time-convergent controllers (r-sliding controllers)
[13], [16] require actually only the knowledge of the system relative
degree r. The produced control is a discontinuous function of the
tracking error � and of its real-time-calculated successive derivatives
�; _�; ��; . . . ; �(r�1). The accuracy is improved in the presence of
switching delays, and the chattering effect is successfully treated,
provided the control derivative is used as a new control input [3], [13].
The discontinuity set of controllers [15], [16] is a stratified union of
manifolds with codimension varying in the range from 1 to r, which
causes certain transient chattering. To avoid the chattering one needs
to increase artificially the relative degree r, inevitably complicating
the controller implementation [15], [16]. The finite-time-stable exact
tracking is lost with alternative controllers developed in [2] and [21]
for r = 3 and r = 2, respectively.

A sliding-mode controller of a new type is proposed in this note,
being a feedback function of �; _�; ��; . . . ; �(r�1), continuous every-
where except the manifold defined by the equations

� = _� = �� = � � � = �(r�1) = 0 (1)

of the r-sliding mode. Themode � � 0 is established after a finite-time
transient. In the presence of errors in evaluation of the output � and its
derivatives, a motion in some vicinity of (1) takes place. Therefore,
control is practically a continuous function of time, for the trajectory
never hits the manifold (1) with r > 1. The controller design is based
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on the homogeneity reasoning [18], [19], and can be considered as a
demonstration of the principles [18].
Combining with the recently proposed robust exact finite-time-con-

vergent differentiator [16] an output-feedback controller is obtained
providing for exact tracking � � 0 if the measurements of the tracking
error � are exact, and for � proportional to the maximal measurement
error otherwise. Its transient features are much better than those of the
known r-sliding controllers [15], [16] (Section VI). Simulation demon-
strates the practical applicability of the new controller.

II. PRELIMINARIES AND THE PROBLEM STATEMENT

Consider a smooth dynamic systemwith a smooth output function �,
and let the system be closed by some possibly-dynamical discontinuous
feedback and be understood in the Filippov sense [5]. Then, provided
that successive total time derivatives �; _�; . . . ; �(r�1) are continuous
functions of the closed-system state-space variables, and the set (1) is
a nonempty integral set, the motion (1) is called r-sliding (rth-order
sliding) mode [13], [3], [16]. The standard sliding mode used in the
most variable structure systems is of the first-order (� is continuous,
and _� is discontinuous).
Consider a dynamic system of the form

_x = a(t; x) + b(t; x)u � = �(t; x): (2)

Here,x 2 RRRn; a; b and� : RRRn+1 ! RRR are unknown smooth functions,
u 2 RRR; n is also uncertain. The task is to provide in finite time for exact
keeping of � � 0.
The relative degree r of the system is assumed to be constant and

known. In other words [10], the control explicitly appears first time in
the rth total time derivative of � and

�(r) = h(t; x) + g(t; x)u (3)

where h(t; x) = �(r)ju=0; g(t; x) = (@=@u)�(r) 6= 0. It is supposed
that for some Km; KM; C > 0

0 < Km �
@

@u
�(r) � KM j�(r)ju=0j � C (4)

which is always true at least locally. Trajectories of (2) are assumed in-
finitely extendible in time for any Lebesgue-measurable bounded con-
trol u(t; x).
Finite time stabilization of smooth systems at an equilibrium point

by means of continuous control is considered in [1]–[9]. In our case,
any continuous control u = U(�; _�; . . . ; �(r�1)) providing for � � 0,
would satisfy the equality U(0; 0; . . . ; 0) = �h(t; x)=g(t; x), when-
ever (1) holds. Since the problem uncertainty prevents it [18], the con-
trol has to be discontinuous at least on the set (1). Hence, the r-sliding
mode � = 0 is to be established. The controller which is designed in
this note, is r-sliding homogeneous [18], which means that the identity
U(�; _�; . . . ; �(r�1)) � U(�r�; �r�1 _�; . . . ; ��(r�1)) is kept for any
� > 0.

III. FEEDBACK DESIGN

As follows from (3) and (4)

�(r) 2 [�C;C] + [Km; KM]u: (5)

The closed differential inclusion is understood here in the Filippov
sense [5], which means that the right-hand vector set is enlarged in
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a special way [18], in order to satisfy certain convexity and semicon-
tinuity conditions. This inclusion does not “remember” anything on
system (2) except the constants r; C;Km; KM. Thus, the finite-time
stabilization of (5) at the origin solves the stated problem simultane-
ously for all systems (2) satisfying (4). Let i = 0; . . . ; r � 1. Denote

'0;r = � N0;r = j�j 	0;r = '0;r=N0;r = sign�

'i;r = �(i) + �iN
(r�i)=(r�i+1)
i�1;r 	i�1;r

Ni;r = j�(i)j + �iN
(r�i)=(r�i+1)
i�1;r 	i;r = 'i;r=Ni;r

where �1; . . . ; �r�1 are positive numbers, obviously 'i;r = �(i) +

�iN
�1=(r�i+1)
i�1;r 'i�1;r . Recall that according to the Filippov definition

values of the control on any set of the zero Lebesgue measure do not
influence the solutions. The following proposition is easily proved by
induction.

Proposition 1: Let i = 0; . . . ; r � 1. Ni;r is positive definite, i.e.,
Ni;r = 0 i�� = _� = � � � = �(i) = 0. The inequality j	i;rj �
1 holds whenever Ni;r > 0. The function 	i;r(�; _�; . . . ; �

(i�1)) is
continuous everywhere (i.e., it can be redefined by continuity) except
the point � = _� = � � � = �(i�1) = 0.

Theorem 1: Provided �1; . . . ; �r�1; � > 0 are chosen sufficiently
large in the list order, the controller

u = ��	r�1;r �; _�; . . . ; �(r�1) (6)

is r-sliding homogeneous and provides for the finite-time stability of
(5), (6). The finite-time stable r-sliding mode � � 0 is established in
the system (2), (6).

The proof is given in Section V. It follows from Proposition 1 that
control (6) is continuous everywhere except the r-sliding mode � =
_� = � � � = �(r�1) = 0. Any time the finite-time stability is mentioned
in this note it means that the maximal possible transient time is a locally
bounded function of initial conditions [18].

Each choice of parameters �1; . . . ; �r�1 determines a controller
family applicable to all systems (2) of the relative degree r. The
parameter � is chosen specifically for any fixed C;Km; KM, most
conveniently by computer simulation, avoiding redundantly large
estimations of C;Km; KM. Obviously, � is to be negative with
(@=@u)�(r) < 0. Following are controllers with r � 4 and simula-
tion-tested �i:

1) u = ��sign�;
2) u = ��( _� + j�j1=2sign�)=(j _�j + j�j1=2);
3) u = ��[�� + 2(j _�j + j�j2=3)�1=2( _� + j�j2=3sign�)]=[j��j +

2(j _�j + j�j2=3)1=2];
4) '3;4 = �� + 3[�� + (j _�j + 0:5j�j3=4)�1=3( _� +

0:5j�j3=4sign�)][j��j+ (j _�j+ 0:5j�j3=4)2=3]�1=2,
N3;4 = j��j + 3[j��j + (j _�j + 0:5j�j3=4)2=3]1=2;
u = ��'3;4=N3;4.

The control is a continuous function of time everywhere except the
r-sliding set (1). It may have infinite derivatives when certain surfaces
are crossed. All further theorems are standard consequences [18] of the
r-sliding homogeneity of controller (6) and Theorem 1.

Theorem 2: Let the control value be updated at themoments ti, with
ti+1�ti = � = const > 0; t 2 [ti; ti+1) (the discrete sampling case).
Then, controller (6) provides in finite time for keeping the inequalities
j�j < �0�

r; j _�j < �1�
r�1; . . . ; j�(r�1)j < �r�1� with some posi-

tive constants �0; �1; . . . ; �r�1.
That is the best possible accuracy attainable with discontinuous �(r)

[13]. The following result shows robustness of controller (6) with re-
spect to measurement errors.

Theorem 3: Let �(i) be measured with accuracy �i"
(r�i)=r for

some fixed �i > 0; i = 1; . . . ; r � 1. Then with some positive

constants �i the inequalities j�(i)j � �i"
(r�i)=r; i = 0; . . . ; r � 1,

are established in finite time for any " > 0.

IV. UNIVERSAL OUTPUT-FEEDBACK SISO CONTROLLER

Controller (5) requires the real-time exact calculation or direct mea-
surement of �; _�; . . . ; �(r�1). Equality (3) implies j�(r)j � C+�KM,
which allows the real-time robust (r � 1)th-order differentiation of
� [16]. Other differentiators [8] can be also used. Consider uncertain
system (2), (4). Combining controller (6) and the homogeneous differ-
entiator [16], [18] achieve

u = ��	r�1;r(z0; z1; . . . ; zr�1) (7)

_z0 = v0; v0 = ��rL
1=rjz0 � �j(r�1)=rsign(z0 � �) + z1 (8)

_zk = vk; vk = ��r�kL
1=(r�k)jzk

� vk�1j
(r�k�1)=(r�k)sign(zk � vk�1) + zk+1

k = 1; . . . ; r � 2 (9)

_zr�1 = ��1Lsign(zr�1 � vr�2) (10)

where the parameters of the differentiator (8)–(10) are chosen ac-
cording to the condition j�(r)j � L;L is to satisfy L C + �KM.
The sequence �i is chosen in advance [16]. Hence, in the case when
C and Km; KM are known, only one parameter � is really needed to
be tuned. Usually, both L and � are found by computer simulation.
The computer-tested values �1 = 1:1; �2 = 1:5; �3 = 2; �4 =

3; �5 = 5; �6 = 8 can be taken. Due to the recursive form of the
differentiator, these values are sufficient for up to the fifth-order differ-
entiation and r � 6. The lacking values need to be tuned in the unlikely
case of r > 6.

Theorem 4: Let � be measured with a Lebesgue-measurable noise
�; j�j � ". Then with properly chosen parameters of the controller
(7)–(10) the inequalities j�(i)j � �i"

(r�i)=r; i = 0; . . . ; r � 1, are
established in finite time for some positive �i.
With exact measurements (" = 0) the r-sliding mode � � 0 is

established in the closed system, globally attracting trajectories in finite
time.

Theorem 5: Let � > 0 be the constant sampling interval and the
noises be absent. Then inequalities j�(i)j � �i�

r�i; i = 0; . . . ; r� 1,
are established in finite time for some positive constants �i.

V. PROOF OF THEOREM 1

The proof is based on a few Lemmas. Only the main proof points
are listed below. Assign the weights (homogeneity degrees) r � i to
�(i); i = 0; . . . ; r � 1 and the weight 1 (minus system homogeneity
degree [1]) to t, which corresponds to the r-sliding homogeneity [15].

Lemma 1: The weight of Ni;r equals r � i; i = 0; . . . ; r � 1.
Each homogeneous locally-bounded function !(�; _�; . . . ; �(i)) of the
weight r � i satisfies the inequality j!j � cNi;r for some c > 0.
Indeed,Ni;r is a positive–definite locally bounded function (Propo-

sition 1), which implies that !=Ni;r is bounded on a unit sphere and,
therefore, everywhere.

Lemma 2: Let 1 � i � r � 2, then for any positive
�i; i; i+1 with sufficiently large �i+1 > 0 the inequality
j�(i+1) + �i+1N

(r�i�1)=(r�i)
i;r 	i;rj � i+1N

(r�i�1)=(r�i)
i;r pro-

vides for the finite-time establishment and keeping of the inequality
j�(i) + �iN

(r�i)=(r�i+1)
i�1;r 	i�1;rj � iN

(r�i)=(r�i+1)
i�1;r .

Proof: Consider the point set
(�) = f(�; _�; . . . ; �(i))jj	i;rj �
�g for some fixed � > 0; � < i=(3�i); � < 1=3. The inequality
j	i;rj � � implies j�(i)j � 2�iN

(r�i)=(r�i+1)
i�1;r and, therefore,


(�) � 
1(�), where 
1(�) is defined by the inequality

�(i) + �iN
(r�i)=(r�i+1)
i�1;r 	i�1;r � 3��iN

(r�i)=(r�i+1)
i�1;r :
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That is equivalent, in its turn, to �
�

� �(i) � �+, where ��; �+ are
homogeneous functions of �; _�; . . . ; �(i�1) of the weight r � i. Re-
stricting �

�

and �+ to the homogeneous sphere of the radius � = 1,
where �p = �p=r + _�p=(r�1); . . . + (�(i�1))p=(r�i+1); p = 2r!,
achieve some continuous on the sphere functions �1� and �1+. Func-
tions �1� and �1+ can be approximated on the sphere by some smooth
functions �2� and �2+ from beneath and from above, respectively.

Any function � defined on the homogeneous sphere � = 1 is
uniquely extended to the function� of the weightw > 0 defined in the
whole space �; _�; . . . ; �(i�1) by the formula �(�; _�; . . . ; �(i�1)) =
�w�(��r�; ��r+1 _�; . . . ; �(�r�i+1)�(i�1)), where the function �
is defined above. Thus, functions �2� and �2+ are extended by
homogeneity to the continuous homogeneous functions �

�

and �+

of �; _�; . . . ; �(i�1) of the weight r � i, smooth everywhere except 0,
so that 
(�) � 
2 = f(�; _� . . . ; �(i�1))j�

�

� �(i) � �+g.
Prove now that
2 is invariant and attracts the trajectories with large

�i+1. The “upper” boundary of 
2 is given by the equation �+ =
�(i) � �+ = 0. The inequality j	i;rj � � is assured outside of 
2.
Suppose that at the initial moment �+ > 0 and, therefore, 	i;r �.
Taking into account that _�+ is homogeneous of the weight r�i�1 and,
according to Lemma 1, j _�+j � �N

(r�i�1)=(r�i)
i;r , and j�+j � �1Ni;r

for some �; �1 > 0, achieve differentiating that with sufficiently large
�i+1

_�+ � (��i+1� + i+1)N
(r�i�1)=(r�i)
i;r � _�+

� (��i+1� + i+1 + �)N
(r�i�1)=(r�i)
i;r

� (��i+1� + i+1 + �) ��11 �+
(r�i�1)=(r�i)

:

Hence, �+ vanishes in finite time with �i+1 large enough. Thus, the
trajectory inevitably enters the region 
2 in finite time. Similarly, the
trajectory enters
2 if the initial value of �+ is negative and, therefore,
	i;r � ��. Obviously, 
2 is invariant.

Choosing �
�

and �+ sufficiently close to �
�

and �+ on the ho-
mogeneous sphere and �i+1 large enough, achieve from Lemma 1 that

2 � 
1(i=(3�i)) and the statement of Lemma 2.

SinceN0;r = j�j; '0;r = �, Lemma 2 is replaced by the next simple
lemma with i = 0.

Lemma 3: The inequality j _�+�1j�j
(r�1)=rsign�j � 1j�j

(r�1g=r

provides with 0 � 1 < �1 for the establishment in finite time and
keeping of the identity � � 0.

The proof of the theorem is now finished by the similar to Lemma
2 proof that for any  > 0 with sufficiently large � the inequality
j�(r�1)+�r�1N

1=2
r�2;r	r�2;rj � N

1=2
r�2;r is established in finite time

and kept afterwards.

VI. SIMULATION EXAMPLE: CAR CONTROL

Consider a simple kinematic model of car control

_x = v cos' _y = v sin'

_' = v=l tan � _� = u

where x and y are Cartesian coordinates of the rear-axle middle point,
' is the orientation angle, v is the longitudinal velocity, l is the length
between the two axles and � is the steering angle (Fig. 1). The task is
to steer the car from a given initial position to the trajectory y = g(x),
where g(x) and y are assumed to be available in real time.

Define � = y � g(x). Let v = const = 10 m/s, l = 5 m, g(x) =
10 sin(0:05x) + 5; x = y = ' = � = 0 at t = 0. The relative
degree of the system is 3 and the 3-sliding controller [15], [16] solves
the problem, but its transient features some chattering (Fig. 2). Also

Fig. 1. Kinematic car model.

Fig. 2. 3-sliding car control [15].

3-sliding controllerN�3 can be applied here. It was taken � = 1; L =
400. The resulting output-feedback controller (8)–(10) is

u = �[z2 + 2(jz1j+ jz0j
2=3)�1=2(z1 + jz0j

2=3signz0)]=[jz2j

+ 2(jz1j+ jz0j
2=3)1=2]

_z0 = v0 v0 = �14:7361jz0 � �j2=3sign(z0 � �) + z1

_z1 = v1 v1 = �30jz1 � v0j
1=2sign(z1 � v0) + z2

_z2 = �440 sign(z2 � v1):

The controller parameter � is convenient to find by simulation [3],
[14]. The differentiator parameter L = 400 is taken deliberately large,
in order to provide for better performance in the presence of measure-
ment errors (L = 25 is also sufficient, but is much worse with sampling
noises). The control was applied only from t = 1, in order to provide
some time for the differentiator convergence.
The integration was carried out according to the Euler method (the

only reliable integration method with discontinuous dynamics), the
sampling step being equal to the integration step � = 10�4. In the
absence of noises the tracking accuracies j�j � 5:4 � 10�7; j _�j �
2:4 � 10�4; j��j � 0:042 were obtained. With � = 10�5 the accuracies
j�j � 5:6 � 10�10; j _�j � 1:4 � 10�5; j��j � 0:0042 were attained,
which mainly corresponds to the asymptotics stated in Theorem 5.
The car trajectory, 3-sliding tracking errors, steering angle � and its
derivative u are shown in Fig. 3(a)–(d), respectively. It is seen from
Fig. 3(c) that the control u remains continuous until the entrance into
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Fig. 3. New 3-sliding car control.

Fig. 4. Performance with the input noise magnitude 0.1 m.

the 3-sliding mode. The steering angle � remains rather smooth and is
quite feasible.

In the presence of output noise with the magnitude 0.01 m the
tracking accuracies j�j � 0:02; j _�j � 0:14; j��j � 1:3 were obtained.
With the measurement noise of the magnitude 0.1 the accuracies
changed to j�j � 0:20; j _�j � 0:62; j��j � 2:8 which corresponds to
the asymptotics stated by Theorem 4. The performance of the con-
troller with the measurement error magnitude 0.1 m is shown in Fig. 4.
It is seen from Fig. 4(c) that the control u is a continuous function
of t. The steering angle vibrations have the magnitude of about 7�

and the frequency 1, which is also quite feasible. The performance

does not change, when the frequency of the noise varies in the range
100–100 000. The advantages of the new controller are obvious (com-
pare Figs. 2 and 3). Simulation shows that the previous controller [15],
[16] is also much more sensitive to the parameter choice and noises.

VII. CONCLUSION

A new arbitrary-order sliding mode controller is proposed. It is ac-
tually only the second known family of such controllers. It is also a
sliding-mode SISO controller of a new type, for it provides for the fi-
nite-time stable sliding motion on the zero-dynamics manifold of high
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relative degree by means of control continuous everywhere except this
manifold. As a result, the chattering effect is significantly reduced.

The real-time exact differentiator [16] of the appropriate order is
combined with the proposed controller providing for the full SISO con-
trol based on the input measurements only, when the only information
on the controlled uncertain process is actually its relative degree. Both
the proposed controller and its output-feedback version are very robust
with respect to measurement noises. Only boundedness of the noise
is needed, no frequency considerations are relevant. The simulation
shows that it is probably the first practically applicable output-feed-
back r-sliding controller with r > 2.
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Global Compensation of Unknown Sinusoidal Disturbances
for a Class of Nonlinear Nonminimum Phase Systems

Riccardo Marino and Giovanni L. Santosuosso

Abstract—A class of output feedback stabilizable nonlinear systems
with known output dependent nonlinearities and affected by unknown si-
nusoidal disturbances is considered: Nonminimum phase systems are also
allowed. The problem of designing a global output feedback compensator
which drives the state of the system exponentially to zero is solved when
the disturbance consists of a known number of biased sinusoids with any
unknown bias, magnitudes, phases, and frequencies.

Index Terms—Adaptive estimation, nonlinear systems, output feedback,
regulators.

I. INTRODUCTION AND PROBLEM STATEMENT

Over the last decades, the problem of adaptive compensation of si-
nusoidal disturbances has attracted a considerable attention. If the fre-
quencies of the disturbances are known, an early approach is based on
the internal model principle [7]: The disturbances are viewed as out-
puts of known exosystems and may be rejected by incorporating the
exosystem in the feedback path of the closed loop. The disturbance
rejection in the case of a single sinusoidal disturbance with unknown
frequency has been studied for stable linear systems in [1] and [17]
and for minimum phase linear systems in [18] and [19]. Two schemes
(a direct one and an indirect one) are presented and analyzed in [1]:
While the direct scheme is local, the indirect one allows for larger ini-
tial conditions in the frequency estimate; on the other hand only the
direct scheme guarantees exact disturbance compensation. If a positive
lower bound for the frequency is known, a compensation schemewhich
allows for any initial frequency estimate greater than the given bound
is presented in [17]. In [18], output tracking with multiple sinusoidal
disturbance rejection is achieved for linear minimum phase systems
and in [19] an adaptive extension is presented when the system param-
eters are unknown. As far as nonlinear systems are concerned, several
results are available under the minimum phase assumption (MP): The
semiglobal output regulation problem is addressed in [24] for systems
with unknown parameters in the exosystem; in [21], a global robust
state feedback control scheme is presented for systems affected by both
structured unknown disturbances and an unknown noise, following ear-
lier work in [20]. The global output tracking problem is studied in [2]
for uncertain cascaded systems in lower triangular form coupled with
a neutrally stable exosystem, while the output regulation problem is
addressed in [27] for a class of large-scale nonlinear interconnected
systems perturbed by a neutrally stable exosystem via a decentralized
error feedback controller. Recently, global output feedback regulators
for the same class of nonlinear systems considered in this note under the
MP assumption have been proposed in [6] (an adaptive version of this
strategy is presented in [5]) following [4] and [3]; semiglobal output
feedback regulators have been described in [25]. Preliminary results
on the semiglobal regulation of nonminimum phase (NMP) systems
are given in [26] and [12], for classes of NMP systems which are more
general than those considered in this note, under the assumption of si-
nusoidal disturbances with known frequency.
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