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Abstract

It is shown that a general uncertain single-input—single-output regulation problem is solvable only by means of discontinuous control
laws, giving rise to the so-called high-order sliding modes. The homogeneity properties of the corresponding controllers yield a number
of practically important features. In particular, finite-time convergence is proved, and asymptotic accuracy is calculated in a very general
way in the presence of input noises, discrete measurements and switching delays. A robust homogeneous differentiator is included in
the control structure thus yielding robust output-feedback controllers with finite-time convergence. It is demonstrated that homogeneity
features significantly simplify the design and investigation of a new family of high-order sliding-mode controllers. Finally, simulation
results are presented.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction . . -
(Slotine & Li, 1991, the sliding-sector methodF(ruta

& Pan, 2000 is suitable to control disturbed linear
time-invariant systems. The sliding-mode-order approach
(Emelyanov, Korovin, & Levantovsky, 1986; Levant, 1993
considered in this paper is capable of removing both the
fchattering and the relative-degree restrictions preserving the
sliding-mode features and improving its accuracy.
Consider a smooth dynamic system with a smooth output
nction g, and let the system be closed by some possibly-
dynamical discontinuous feedback. Then, provided that suc-

Control under heavy uncertainty conditions is one of the
central topics of the modern control theory. The sliding-
mode control approachUgtkin, 1992; Zinober, 1994
Edwards & Spurgeon, 19%8o the problem is based on
keeping a properly chosen constraint exactly by means o
high-frequency control switching. Although very robust and
accurate, the approach also features certain drawbacks. Th?
standard sliding mode may be implemented only if the rel- u
ative degree of the constraint is 1, i.e. control has to appear

- i ivatives. & =1 inu-
explicitly already in the first total time derivative of the cessflve tptal t'Ti delrlvatlc\j/aa Oreeen @ are contlgltj d
constraint function. Also, high-frequency control switching ?hus untactlops_o t EC(CE% -_S)é)s_tem state-s?ace(;/arla .e;s an
may cause the so-called chattering effgetiqman, 2001, €seo=0=--=0 = U 1S non-emply and consists
locally of Filippov trajectoriesKilippov, 1988, the motion
2003. j 1 . .
ontheseb =6=---=0¢""Y =0 s calledr-sliding mode

High-gain control with saturation is used to over-
come the chattering effect approximating the sign func-
tion in a boundary layer around the switching manifold

(rth order sliding modg (Emelyanov et al., 1986_evant,
1993, 2003p Therth derivatives is mostly supposed to
be discontinuous or non-existent.
The standard sliding mode is of the first orde# (is
- discontinuous). Asymptotically stable higher-order sliding
* This paper was not_pre_sented at_any IFAC meeting. This paper was mgdes (HOSM) appear in many systems with traditional
recommended for publication in revised form by Associate Editor A. . .
Astolfi under the direction of Editor H.K. Khalil. sliding-mode control Kridman, 2001, 2003and are de-
*Tel.: +97236408812; fax: +972 36407543. liberately introduced in systems with dynamical sliding
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arbitrary-order sliding-mode controllers are still studied the rth total derivative ofs (Isidori, 1989. In that case the

theoretically [evant, 2001, 2003a; Floquet, Barbot, & outputs satisfies an equation of the form

Perruquetti, 2008 2-sliding controllers are already suc- 9

cessfully implemented for the solution of real problems o) = h(t, x) +glt,x)u, g= 6_G(r) # 0,

(Bartolini, Ferrara, & Punta, 20Q0®artolini, Pisano, Punta, “

& Usai, 2003 Ferrara & Giacomini, 2000; Levant, Pridor, /1 =0""lu=o. 2
Gitizadeh, Yaesh, & Ben-Asher, 200(ira-Ramirez,  Herehandgare unknown smooth functions. The uncertainty

20020rlov, Aguilar, & Cadiou, 2003 Spurgeon, Goh, &  prevents immediate reduction of (1) to the standard form
Jones, 2008hkolnikov & Shtessel, 2003hkolnikov, Sht (2). Suppose that the inequalities

essel,Lianos, & Thies, 200@htessel & Shkolnikov, 2003

The construction ofr-sliding controllers,r >3, is ex- 0<Km<ia(r)<KM, 10" =0l < C (3)
tremely difficult due to the high dimension of the prob- Ou
lem. Thus, only one family of such controllerke{ant, hold for someKn, Kyv, C > 0. Note that (3) is formulated
2000 was known until recentlyLevant, 2003 Almost in input—output terms. These conditions are satisfied at least
all known HOSM controllers possess specific homogeneity |ocally for any smooth system (1) having a well-defined
properties. The corresponding homogeneity-sfiding con- relative degree at a given point with=--. = ¢~ =

trollers is called in the paper thth-order sliding homogene- 0. Assume that (3) holds globally. Then (2), (3) imply the
ity. This paper proposes the homogeneity-based approach tajifferential inclusion

the construction of new finite-time convergent HOSM con- ")

trollers. The homogeneity makes the convergence proofs of = € [=C. C1+ [Km, Km]u. )

the HOSM controllers standard and provides for the high-  The problem is solved in two steps. First, a bounded feed-
est possible asymptotic accuracy in the presence of mea+ack control

surement noises, delays and discrete measuremeavart, ) (r—1)

1993. An output-feedback controller with the same asymp- % = ¢(0,0,..., 0 ), ()
totical features is obtained, when a recently developed ro-is constructed such that all trajectories of (4), (5) converge
bust exact homogeneous differentiator of the order 1 in finite time to the origing = ¢ = --- = ¢"~Y = 0 of
(Levant, 1998, 2003as included as a standard part of the  {he r-gliding phase space, , ..., o 1. At the next step

homogeneous-sliding controller. - the lacking derivatives are real-time evaluated, producing
It is shown in this paper that the finite-time stability and 5n output-feedback controller. The functignis assumed
the asymptotic accuracy are robust with respect to any smallyg e a Borel-measurable function, which provides for the
homogeneous controller perturbations. In particular, this al- Lebesgue measurability of composite functions to be ob-
lows the standard controllertgvant, 2001, 2003ao be  tained further. Actually all functions used in the sliding-
easily regularized, drastically improving their performance. mode control theory satisfy this restriction. In particular,
Computer simulation results are presented illustrating the gny superposition of piecewise continuous functions is Borel
main results of the paper. measurable.
Note that the functionp has to be discontinuous
at the origin. Indeed, otherwise is close to the con-

2. Statement of the problem stant ¢(0,0,...,0) in a small vicinity of the origin,
and, takingc € [-C,C] and k € [Kmn, Km] so that
Consider a dynamic system of the form ¢+ kp(0,0,...,0) # 0, achieve that (5) cannot stabilize
the dynamic system) =c¢+ku. Thus,s"” is to be discon-
x=a(t,x)+ b, x)u, o=a(t,x), (1) tinuous when calculated with respect to the original system

. ) (1), (5), which means that thesliding modes = 0 is to
wherex € R",u € Ris control,c € Ris ameasured output, e established. All known-sliding controllers Bartolini,
smooth functions:, b, ¢ are assumed unknown, the dimen- Ferrara, & Usai, 1998Bartolini et al., 2003Levant, 1993,
sion n can also be uncertain. On the contrary, the relative 2002, 2003ajpmay be considered as controllers for (4)
degree (Isidori, 1989 of the system is constant and known. steerings, ¢, ..., oY to 0 in finite time. Inclusion (4)
The solutions are understood in the Filippov sefskppov, does not “remember” the original system (1). Thus, such
1988 also see below), and system trajectories are Supposettontrollers are obviously robust with respect to any pertur-

to be infinitely extendible in time for any bounded Lebesgue- pations preserving the system relative degree and (3).
measurable input. Although it is formally not needed, the

weakly minimum-phase property is often required in prac-
tice. The task is to make the outpamtvanish in finite time 3. Homogeneous differential inclusions
and to keepr = 0.
In a simplified way, the constancy of the relative degree A differential inclusiont € F(x) is further called &ilip-
r means that for the first time appears explicitly only in pov differential inclusiorif the vector se¥ (x) is non-empty,
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closed, convex, locally bounded and upper-semicontinuous A setD is calleddilation retractableif d,,D c D for any

(Filippov, 1989. The latter condition means that the max-
imal distance of the points oF (x) from the setF(y)

vanishes whemx — y. Solutions are defined as absolutely
continuous functions of time satisfying the inclusion almost

K<1.

3°. Ahomogeneous differential inclusiane F(x) (equa-
tion x = f(x)) is further calledcontractiveif there are 2
compact set®1, Do andT > 0 such thatD; lies in the inte-

everywhere. Such solutions always exist and have mostrior of D1 and contains the origir)1 is dilation-retractable,
of the well-known standard properties except uniquenessand all trajectories starting at the time 0 withih are lo-

(Filippov, 1988.
It is said that a differential equatioh = f(x) with a

calized inD» at the time moment.

locally-bounded Lebesgue-measurable right-hand side is un-Theorem 1. Letx € F(x) be a homogeneous Filippov in-

derstood in the Filippov sense, if it is replaced by a spe-

cial Filippov differential inclusionx € F(x). In the most
usual case, wherf is continuous almost everywhere, the
procedure is to také'(x) as the convex closure of the set
of all possible limit values of at a given poini, obtained
when its continuity pointy tends tox. In the general case
approximate continuitySaks, 196¥pointsy are taken (one
of the equivalent definitions blilippov, 198§. A solution

of x = f(x) is defined as a solution af € F(x). Values of

clusion with a negative homogeneous degrge Then prop-
erties1°, 2° and 3° are equivalent and the maximal settling
time is a continuous homogeneous function of the initial
conditions of the degree. p

Proof. Obviously, both * and 2 imply 3°, and  im-
plies 2. Prove that 3 implies 1. There is such a number
O<x<1thatDy C d.D1 C D;. Indeed, this follows from
the continuity of the distance betwe#? and the boundary

f on any set of the measure 0 do not influence the Filippov Of die D1 with respect tox in the Hausdorff metrics. Thus,

solutions. Note that with continuotishe standard definition
is obtained.
A similar procedure is applied to the differential inclusion

(4), (5). To this end the above Filippov procedure is applied

to the functionp and the obtained Filippov set is substi-
tuted foru in (5), producing a Filippov inclusion to replace
(4), (5). Any solution of (4), (5) is defined as a solution of
the built Filippov inclusion. Every time when a differential

trajectories starting i1 enterW,=d,. D1 intimeT. Denote
W; = dlDy, j € Z, Wo= Dy, and achieve that trajectories
starting inW; finish in W; 1 in the timex/”T, and

S DW_1DWoD WD, UW; =R",NW; ={0},

whereO is the origin. Hence, any trajectory starting W,
converges in finite time to the origin, the convergence time
being estimated by the expressiaf’T (1 + «? + k2P +

inclusion is considered in this paper, an appropriate Filip- ---) = /7T /(1 — kP).
pov inclusion replaces it, and the corresponding procedure For anyR > 0 there is suclu <1 that any trajectory start-

is clarified.

A function f : R* — R (respectively, a vector-set field
F(x) ¢ R", x € R", or a vector fieldf : R — R")
is calledhomogeneous of the degreee R with the di-
lation dye : (x1, x2, ..., x) = (K™x1, K™2x0, ..., K" x,)
(Bacciotti & Rosier, 200}, wheremy, . . ., m, are some pos-
itive numbersWeights, if for any x > 0 the identity f (x) =
k™1 f (dx) holds (respectivelyF' (x) = K‘qd,;lF(de), or
fx)= K_qu_lf(d;cx)). The non-zero homogeneity degree
g of a vector field can always be scaleddtd by an appro-
priate proportional change of the weights, ..., m,.

Note that the homogeneity of a vector figldx) (a vector-
set field F (x)) can equivalently be defined as the invariance
of the differential equationt = f(x) (differential inclusion
X € F(x)) with respect to the combined time-coordinate
transformationG, : (¢, x) — (k”t,dyx), p = —q.

1°. A differential inclusiont € F(x) (equationt = f(x))
is further calledglobally uniformly finite-time stablat O, if
it is Lyapunov stable and for ang > 0 existsT > 0, such
that any trajectory starting within the digk || < R stabilizes
at zero in the timd.

2°. A differential inclusiont € F(x) (equationt = f(x))
is further calledglobally uniformly asymptotically stablat
0, ifitis Lyapunov stable and forany > 0,¢ > 0,7 > 0 ex-
ists such that any trajectory starting within the diskl < R
enters the diskix| < ¢ in the timeT to stay there forever.

ing in d, D1 will not be able to leave the diskx||<R in

the timeu? T due to the local boundedness Bfx). That
proves the Lyapunov stability. Applying the inverse trans-
formation G -1 achieve that the trajectories startingin

are confined in some compably during the timeT. Sim-
ilarly, denotingD; = d. Do, achieve a sequence of embed-
ded sets retracting to the origi@. Thus, any trajectory
starting atO has to belong to all of these sets and cannot
leaveO.

The set of transient trajectories starting at a given point
is compact in theC-metrics Filippov, 1988. The maxi-
mal convergence timé of all solutions starting fronx is
some homogeneous functig®(x). It equals O at the ori-
gin. Its continuity at the origin follows from the homogene-
ity: the maximal convergence time tends to zero when a
disk d,.D of initial conditions retracts to the origin with
x — 0. Any solution starting close to comes in the time
©O(x) to a point close to the origin. The residual convergence
time is small due to the continuity of the functia®(x)
at the origin. O

Due to the continuous dependence of solutions of the
Filippov inclusionx € F(x) on its graphl” = {(x, y)|y €
F(x)} (Filippov, 1988, the contraction feature°3is ob-
viously robust with respect to perturbations causing small
changes of the graph in the Hausdorff metrics.
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Corollary 1. The global uniform finite-time stability of ho-  parameterrg. Let D; satisfy |x;| <a;. Now, applying the
mogeneous differential equatio(flippov inclusion3 with transformationéu with u = t/7¢9 and takingy;, = ai/rg""
negative homogeneous degree is robust with respect to ho-achieve the needed asymptotic bounds of the attracting set
mogeneous perturbations causing locally small changes offor anyt. [

the equation(inclusion) graph

Let ¥ € F(x) be a homogeneous Filippov differential 4. Homogeneity features of high-order sliding modes
inclusion. Consider the case of “noisy measurements’; of

with the magnitude” Suppose that feedback (5) imparts homogeneity proper-
ties to the closed-loop inclusion (4), (5). Due to the term
X € F(xa+[-L 1™, x + -1, 1)), >0. [—C, C], the right-hand side of (5) can only have the homo-

geneity degree O witl’ # 0. Indeed, with a positive degree
the right-hand side of (4), (5) approaches zero near the ori-
gin, which is not possible witld" # 0. With a negative de-
gree it is not bounded near the origin, which contradicts the
local boundedness ap. Thus, the homogeneity degree of
"~ is to be opposite to the degree of the whole system.
Scaling the system homogeneity degree-tb, achieve
that the homogeneity weights ofs, &, ...,c" D are 1,
r,r —1,...,1, respectively. This homogeneity is further
called ther-sliding homogeneityThe inclusion (4), (5) and
controller (5) are called-sliding homogeneous for any
x > 0 the combined time-coordinate transformation

x() € Fr(x(t +[—17,0])), O<t<oo, (6) Gy:(t,o,6,...,a" D)

Applying successively the closure of the right-hand-side
graph and the convex closure at each pajnbbtain some
new Filippov differential inclusion: € F;(x).

Theorem 2. Let x € F(x) be a globally uniformly finite-
time stable homogeneous Filippov inclusion with the homo-
geneity weights:, ..., m, and the degree-p <0, and let

7> 0. Suppose that a continuous functiofr) be defined for
anyt > — t? and satisfy some initial conditiong?) = (1),

t € [—77,0]. Then ifx(¢) is a solution of the disturbed
inclusion

r r—1. (r=1)
inequalities|x;| <y, are established in finite time with > (K1, 160, K776, . K0T Q)

some positive constangs independent of and ¢. preserves the closed-loop inclusion (4), (5).

Note that the Filippov differential inclusion correspond-

Note that Theorem 2 covers the cases of retarded or dis-ing to the closed-loop inclusion (4), (5) is alsesliding
crete noisy measurements of all or some of the coordinateshomogeneous. Indeed, the convexity, the limiting process
and any mixed cases. In particular, infinitely extendible so- and the Lebesgue measurability are invariant with respect
lutions certainly exist in the case of noisy discrete measure-to the linear time-coordinate transformation (7). Recall that
ments of some variables or in the constant time-delay case.the values ofp on any zero-measure set do not affect the
corresponding Filippov inclusion.

Proof. The trajectories of the inclusiokn € F(x) which Transformation (7) transfers (4), (5) into

start from any diskDg centered at the origin converge in

L e . . . d" (K" o)

finite time to the origin, are confined in some larger disk, - e[-C,C]

and their convergence time is uniformly bounded. There- (dx1)

fore, with some small parametep the trajectories of (6) + [Km, Kmlo( o, kK" "26, ... ka" D).

which start fromDg gather in some small compact vicinity
W C Do of the origin in some finite timd. The trajecto-
ries starting at the origin stay at the origin in the original
system, thus also the trajectories of (6) starting witMdo
not leave some small vicinity of the origin during the time Such a homogeneous controller is inevitably discontinuous

Hence, (5) ig-sliding homogeneous iff

1

oK e, K76, ..., Ka(r’l)) = ¢(o,0,..., O'(r*l)). (8)

T. Let D1 be the set of the points of all these trajectories at the origin(0, ..., 0), unlesse is a constant function. It
during the time intervalO, T], W C D1 C Dg. Obviously, is also uniformly bounded, since it is locally bounded and
D is an attracting invariant set of (6). takes on all its values in any vicinity of the origin.

The transformatiorG, : (t, x, 1) — (KPt,d,x, KT) pre- A controller is calledr-sliding homogeneousn the
serves the inclusion (6) changing Let O<x <1, D1 C broader sens# (7) preserves the resulting trajectories of (4).

diDg C Do, then applyingG,-1 achieve that the trajecto- Thus, the sub-optimal 2-sliding controlleBgrtolini et al.,
ries starting fromD_1 =d,.-1Dg D Dg gather inDg with g 1998, 2003 is homogeneous, though it does not have the
changed tac17q. Sincetg < k110, the trajectories of (6)  feedback form (5). Almost all known-sliding controllers,
also satisfy the inclusion withg changed tac—1zg. Thus, r > 2, arer-sliding homogeneous. The only important excep-
the trajectories of (6) starting i®_; enter Dg and pro- tion is the terminal sliding mode controller= —a sign(¢ +
ceed intoD1. Successively applying thetransformat'(éprl po?), wherep = (2k + 1)/(2m + 1), o, f >0, k <m, and
achieve thaD; is a global attracting set with the disturbance k, m are natural numberdMan, Paplinski, & Wu, 1994
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Indeed, the identity signé + f(x°0)”) = sign(G + fo*) In the absence of measurement noises the convergence
requiresp = % ando > 0. time is bounded by a continuous function of the initial con-

Asymptotic features of the known high-order sliding ditions in the space, 4, ..., ", z0, z1, ..., z-—1 which
mode controllers levant, 1993, 2001, 2003aBartolini vanishes at the origin (Theorem 1).

et al., 2003 are easily obtained from Theorem 2. Any

sliding homogeneous controller can be complemented by anTheorem 4. Under the conditions of Theorem8 the
(r-1)th order differentiatorAtassi & Khalil, 2000Bartolini, discrete-measurement version of the control(8), (10)
Pisano, & Usai, 2000; Krupp, Shkolnikov, & Shtessel, provides in the absence of measurement noises for the in-
200Q Levant, 1998, 2003a; Kobayashi, Suzuki, & Furuta, equalities |a| <707, |6] <77 7%, ..., "D <91t for
2002Yu & Xu, 1996) producing an output-feedback con- someyg, 74, ..., 7,1 >0.

troller. In order to preserve the demonstrated exactness,

finite-time stability and the corresponding asymptotic prop-  The asymptotic accuracy provided by Theorem 4 is the
erties, the natural way is to calculate. .., ¢~ in real best possible with discontinuow$” and discrete sampling
time by means of a robust finite-time convergent exut (Levant, 1993 A Theorem corresponding to the case of
mogeneoudifferentiator {evant, 2003a Its application discrete noisy sampling is also easily formulated based on
is possible due to the boundednessadf provided by Theorem 2. The results of this section are also valid for the
the boundedness of the feedback functiprin (5). The sub-optimal controllerBartolini et al., 1998, 2003

resulting dynamical feedback has the form

= ¢(z0, 21, - - - Zr-1), 9) 5. Example of homogeneity-based sliding-mode design
> = = - Ll/r —_ (r—l)/r Sl —_ . . . g
=ro. o 70 20 = dl 9nzo — o) + 21, Construction of new high-order sliding-mode controllers
1 =11, is difficult due to the high dimension of the problem. It can
v1 = —d LY D124 — 10l"=2/0=D sign(z1 — vo) + 22, be significantly simplified by the homogeneity reasoning
' ! [21 = vol gnz1 = vo) + 22 (Levant, 2002, 2003bIn particular, Corollary 1 allows new
controller structures to be produced transforming known ho-

Zr—2="0r-2, mogeneous controllers. Once a new controller is produced,
Vr—2 = — oL Y? |z, _o—v, 3|2 Sign(z,—o—vr_3)+ 21, its parameters are adjusted regardless of the controller pro-
. i totype. Letq be the least common multiple of 2, ..., r,
Zr-1=—Ar-1L SigN(z,—1 — vr-2), (10) andpy, ..., f,_, > 0. Define
where L > C + sup|¢|Km, and parameters; of differen- R P L R G (Y G AR NG
tiator (10) are adjusted in advance. A possible choice of the " "’ '
differentiator parameters with<6is4,_1=1.1,1,_»=1.5, ¢, =Signe, ¢, = sign(c®) + BiNir®i_1,),
Jr—3=3,2r_4=5,/_5=8, .,_g=12. Adjustment of the l _1 . 1’ '
parameters is described in detaillisvant (1998, 2003a) Y '

Taking the homogeneity weight — i for z;, i = Thenu=—agp,_; (0,6, ..., s" D) defines the standard
0,1,...,r—1, obtain a homogeneous differential inclusion r_sliding controller [_evant 2001, 2003alts r-sliding ho-

(4), (9) (10) of the degree 1. Due to the finite-time conver-  mogeneity is easily checked. Hefe can be chosen only
gence of the differentiatolgvant, 2003pthe correspond-  once for eactr, and the magnitude > 0 is adjusted with
ing Filippov inclusion is also globally uniformly finite-time  respect tcC, Km, K in order to stabilize (4) in finite time.

stable. Letr measurements be corrupted by a noise being ann particular, the following controller is obtained with=3:
unknown bounded Lebesgue-measurable function of time.

Then solutions of (1), (9), (10) are infinitely extendible in u = —asign(G + 2(161> + |o1®Y® sign(é + |o|%3 signe)).
time under the assumptions of Section 2, and the following (12)
Theorems are simple consequences of Theorem 2.

1/6 2/3

Let k > 0. Then the 3-sliding homogeneity of (11) follows

Theorem 3. Let controller (5) be r-sliding homogeneous from the identity

and finite-time stableand the parameters of the differen-  sign(xg+2(|x%¢|3+|x%|%)Y® sign(k®-+ x| Signicca))
tiator (10) be properly chosen with respect to the upper L .13 2.1/6 i 2/3
bound(oﬂg)o|. Thpen?n tfi/e absence of meagurement noiszg the Sign@ + 2(161° + |61%)*/° sign(& + |61/ signa)).
output-feedback controllef), (10) provides for the finite- The main drawback of these controllers is some trajec-
time convergence of each trajectory to the r-sliding mode tory chattering during the transient (see the simulation re-
=0, otherwise convergence to a set defined by the inequali- sults inFig. 1) caused by the complicated structure of the
ties|o| <70, |6] <7,0" /" ... 6"V <y ,6Y isen-  control discontinuity set. The output-feedback performance
sured where ¢ is the unknown measurement noise magni- with noisy measurements is also problematic (coefficients
tude andy, 74, - .., 7,_1 are some positive constants y; from Theorem 3 are relatively large).
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Old controller New controller o> 0 is to be adjusted with respect @ Ky, Kyv. Con-

y : y troller (12) belongs to the class of quasi-continupgiding
L A ﬂ u ﬁ controllers [evant, 2003bfeaturing continuity everywhere
[ \/ sy X 0
P %3 o, &,
18 {7
0

except the-sliding mode itself.

Of course, Theorems 3, 4 are also valid here. The discrete-
sampling and output-feedback versions of (12) are naturally
constructedl(evant, 2003p If (3) does not hold globally, the
local controller application is justified as ibévant, 2003n
Following is the list of the new-sliding homogeneous con-
trollers with simulation-checkefl;, ..., f,_1, €1, ..., &—1
andr <4:

=

1. u = —asigne = —asat(a/|a|, 0.2),
2. u=—osal(s + |o|¥?signe) /(16|12 + |a))¥?, 0.2],
3. Na=(|o|? + |6]% + 5(®)Y°,

® u= —asaf[s +2(6]> + |a|*)V/®
M ]\ /\ x sal((¢ + |o]?/3signa) /N3, 0.2)]/N3, 0.2},
i : . .. “ee
w7 4. Na=(olP+ 161" +151°+ | & "HY,

u= —oasa(d +3% + 6* + |0 Y12

x saf(g + (6* + |a|3)Y/®
u x sal(¢ + 0.5|¢1>*signo)/
Ny, 0.2))/Na, 0.2])/Ng, 0.2}.

V4
VI

05

sectionSimulation results Consider a simple kinematical
model of car control

05

Fig. 1. Comparison of two controllers. X = v COSQ,
y=vsing,
Recall thatg is the least common multiple of 2, . .., r,
and define the homogeneous norm and the saturation func-, — * tano
: 4 '
tion [
N, =N,, = (|6|(1/r + |d-|f1/(r*1) 4o |O-(r*l)|(1)1/f1, 0= u,
saf(z, £) = min[1, max(—1, z/¢)]. wherex andy are Cartesian coordinates of the rear-axle
Leti=1,...,r — 1. The new construction is as follows: middle point,¢ is the orientation angle, is the longitudinal

_ o i velocity, | is the length between the two axles ahds the
Vo, =signa,  y;, =salla™ + fiNiyhi_1, /N &) steering angleRig. 2a). The task is to steer the car from a
given initial position to the trajectory=g(x), while x, g(x)
andy are assumed to be measured in real time.
Note that the actual control here fsand 0 = u is used

Obviously ;. turns into ¢; ., with &; — 0, & >0;
[V -1<1,y;, is homogeneous of the weight 0 and contin-

= ... — =D — . . . L
ious ei\éez;y;vn:lzlrlehsr);c(fp;rregug erturgatio fO. TVCILtﬁ '’ as a new control in order to avoid discontinuitiesfofThe
sr;{all’lra g p oLy, parameters=5m,v=10m/s, and the initial conditions=
.

y=¢@=0=0 are taken. The functiog(x)=10 sin(0.05x) +5
was taken for the simulation.
u=—ap, 1,(0,6 ....07) (12) Defines =y — g(x). The relative degree equals 3 and

' (3) holds locally. The controller parametexsand L are
ensures the finite-time convergence to thgliding mode found by simulation. Apply the standard controller (11) with
o = 0 with properly chosemn, f; and smallg;. It can be o =20, and the new output-feedback controller no. 3 from
shown thafs; ande; can be chosen once for eagland only the list withaz=0.5 and the differentiator paramete=400

According to Corollary 1, the controller
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dardizing the proofs of the features of homogeneous high-
order sliding mode controllers. The correspondirgiding
homogeneity notion is introduced. It is proved that the uni-
form global finite-time stability is robust with respect to
small homogeneous perturbations, if the homogeneity de-
gree is negative. That fact is shown to be useful for the
high-order sliding-mode controller design. A new output-
feedback SIS®-sliding controller is proposed~=1, 2, . . .,
featuring control continuous everywhere exceptrtséding
mode itself.

No exact model of the process is needed. The only re-
quirements are that the relative degree of the controlled un-
certain process be known and the boundedness restrictions
(3) hold. Local validity of (3) provides for the local appli-
cability of controllers.
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