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Abstract - Integral sliding mode approach is extended to high-order sliding modes, and allows 

choosing transient dynamics, or assigning a transient-time function of initial conditions. The 

resulting controller is robust and capable of controlling outputs of uncertain smooth SISO systems 

of a known permanent relative degree. The control smoothness can be deliberately increased. 

Index Terms -  high-order sliding mode, robustness, output feedback control, finite-time stability 

I.  Introduction 

 Sliding mode control copes with system uncertainty keeping a properly chosen constraint by 

means of high-frequency control switching. Featuring robustness and high accuracy [6, 23], the 

standard (first order) sliding-mode usage is however restricted due to the chattering effect [4, 9, 10, 

22 ] caused by the control switching, and the equality of the constraint relative degree to 1 [22,  24]. 

High-order sliding mode (HOSM) approach [2 - 4, 8, 13 - 21] suggests to treat the chattering 

effect using a time derivative of control as a new control, thus integrating the switching. Let σ = 0 

be the constraint to be kept, where σ is the output of an uncertain single-input-single-output (SISO) 

dynamic system. HOSMs are applicable with any relative degree r,  i.e. when the control u explicitly 

appears for the first time in the rth total time derivative σ(r), and )(r
u σ∂
∂  is separated from zero. The 

corresponding finite-time-convergent controllers (r-sliding controllers) [15 - 17] produce control 

being a bounded discontinuous function of σ and its derivatives σ& , σ&& , ...,   σ(r-1). The controllers are 

predefined for any r, and provide in finite time for keeping the equalities σ = σ&  =  ... = σ(r-1) = 0 (the 

r-sliding mode [14, 15]). The missing derivatives can be estimated by the robust exact finite-time-

convergent differentiators [11, 15, 20] generating output-feedback controllers [3, 15 - 17]. The 

approach provides also for higher accuracy with discrete sampling [14, 15 - 17]. 
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Some realization problems of r-sliding modes are caused by the complicated structure of the 

transient process, which is difficult to monitor with r > 2 [8, 13, 17]. Another specific problem 

concerns the above-mentioned control-smoothing procedure, when u(l) is treated as a new control. 

Due to the interaction of u and its derivatives during the convergence to the (r + l)-sliding mode σ = 

σ&  =  ... = σ(r+l-1) = 0, any (r + l)-sliding controller is only locally effective in some vicinity of the. 

mode. The global convergence is so far assured only for r = l = 1 [14].  

 The above issues can be resolved eliminating the transient process. The corresponding technique 

has a lot of applications [23, 24] with the traditional 1-sliding mode, and is known as integral 

sliding mode (ISM). The traditional ISM manifold has the codimension 1 and changes in time, 

containing the current state t, x(t), so as to coincide with the goal manifold σ = 0 at the moment 

when σ(t,x(t)) vanishes. The r-sliding ISM is of the codimension r and is better described by a 

trajectory in the space σ, σ& ,  ... , σ(r-1) terminating at the origin. We show that a transient dynamics 

with a predefined settling time function of initial conditions can be prescribed to HOSM in such a 

way, assuring global ISM stability and, respectively, global convergence to the r-sliding mode.  

 The semi-global convergence is provided by this procedure, when the control smoothness is 

raised, artificially increasing the relative degree. A drawback of the approach is some complexity of 

the HOSM implementation, which may be redundant in many practical cases, when the natural local 

convergence to HOSM is already sufficient [3]. Simulation confirms the approach feasibility. 

II. The problem statement and the integral r-sliding mode concept 

Consider a SISO dynamic system with the state x ∈ Rn, input u ∈ R, and output σ of the form 

    x&  = a(t,x) + b(t,x)u,     σ = σ(t, x) ∈ R,    u ∈ R,        (1) 

where a, b and σ are unknown smooth functions, n can be also uncertain. The task is to get σ ≡ 0. 

All differential equations are understood in the Filippov sense [7], which allows discontinuous 

dynamics. The system relative degree r is assumed to be constant and known, which causes [12] that 

   σ
(r) = h(t,x) + g(t,x)u,        (2) 
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where h(t,x) = σ
(r)|u=0, g(t,x) = u∂

∂ σ
(r) ≠ 0 are some unknown functions. It is supposed that  

  0 < Km ≤ u∂
∂ σ

(r) ≤ KM,      | σ(r)|u=0 | ≤ C                    (3) 

for some Km, KM, C > 0. Trajectories of (2) are assumed infinitely extendible in time for any 

Lebesgue-measurable bounded control u(t, x). Though formally not needed, it is probably required 

in practice that the system feature bounded-input-bounded-state property.  

 The above problem statement is standard and is solved by known r-sliding controllers [15 - 17] 

     u = αΨr(σ, σ& , ...,  σ(r-1)),      (4) 

which actually solve the problem for the differential inclusion σ(r) 
∈ [−C, C] + [Km, KM]u instead of  

(2), (3). Here Ψr is a bounded discontinuous function. Only the control gain α > 0 needs to be 

adjusted for the concrete values of C, Km, KM, providing for the finite-time convergence of the 

inclusion trajectories to zero.  

 Suppose that it is needed to avoid the uncertainty of the transient process, and/or some transient 

time restrictions are present, transient-trajectory coordinates are to be bounded, etc. Let these 

requirements be fulfilled by a transient trajectory σ(t, x(t)) = ϕ(t), t0 ≤ t ≤ tf, so that  

  ϕ(t0) = σ(t0),   ϕ& (t0) = σ& (t0),   ...,   ϕ
(r-1)(t0) = σ(r-1)(t0),    ϕ(t)≡ 0    with t ≥ tf,  (5) 

where t0 and tf > t0 are respectively the initial and the final times. Alternatively, some dynamics  

  σ
(i) = z(i),   z(r) = V(t, x, z, z& , ..., z(r-1)),    z(i)(t0) = σ(i)(t0),    i = 0, ..., r - 1,   (6) 

can be required. Here and further, for the sake of brevity, σ(t) is written instead of σ(t, x(t)) 

whenever the ambiguity is avoided. 

Standard integral sliding mode. A stable polynomial µr-1 + d1 µ
r-2 + ... + dr-1  is chosen, and the 

auxiliary function Σ = σ(r-1) - ϕ(r-1) + d1 (σ
(r-2) - ϕ(r-2)) + ... + dr-1 (σ - ϕ) is introduced. Alternatively, 

Σ = σ(r-1) - z(r-1) + d1 (σ
(r-2) - z(r-2)) + ... + dr-1 (σ - z), if (6) is required. The problem is solved by 

means of the 1-sliding-mode control of the form u = -k(t, x) sign Σ. Theoretically, the equalities Σ = 

0 and σ(i) = ϕ(i) (or σ(i) = z(i)) are kept from the very beginning and forever. In practice, nevertheless, 
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any initial measurement error leads to asymptotic convergence only. The control magnitude depends 

on all derivatives of σ and is necessarily unbounded in spite of restrictions (3). The final accuracy is 

proportional to the sampling time interval [22, 14]. 

Integral r-sliding mode. Let ϕ
(r-1)(t) be a Lipschitz function, then almost everywhere it has a 

globally bounded derivative ϕ
(r)(t), and the new output Σ(t, x) = σ(t, x) - ϕ(t) satisfies conditions (2), 

(3) with some changed constants Km, KM, C > 0. Alternatively, Σ = σ - z is taken, if (6) is to be  

maintained with some globally bounded function V. Hence, Σ ≡ 0 can be kept in r-sliding mode by 

the bounded control u = αΨr(Σ, Σ& , ...,  Σ(r-1)). Due to the finite-time convergence, any small initial 

measurement error is practically immediately compensated. The accuracy |σ(i) - ϕ
(i)| ≤ γi τ

r-i is 

maintained, τ being the sampling time interval, i = 0, ..., r - 1 [14, 15 - 17]. 

 The missing derivatives of σ can be calculated on-line by means of the robust exact 

differentiators [15] with finite-time convergence. Since the only condition is the boundedness of 

σ
(r), the differentiator convergence is global with the bounded r-sliding control, providing for the 

global convergence to the r-sliding mode σ ≡ 0. Only local differentiator convergence takes place in 

the case of the standard integral-sliding-mode approach.  

 III. Application of high-order integral sliding modes 

Transient time assignment for r-sliding mode. Introduce few notions. Denote  

  σ
r = (σ, σ& , ..., σ(r-1)),   dκ σ

r = (κr
σ, κr-1

σ& , ..., κσ
(r-1)).       

The linear transformation dκ: Rr → Rr is called the homogeneity dilation [1]. A function f( σ
r ) is 

called r-sliding homogeneous [16] with the homogeneity degree (weight) m if the identity f(dκ σ
r ) = 

κ
mf( σ

r ) holds for any σ
r  and any positive κ. The controller (4) is r-sliding homogeneous, if the 

identity Ψr( σ
r ) = Ψr(dκ σ

r ) holds for all σ
r  and κ > 0, i.e. Ψr( σ

r ) in (4) is a homogeneous function of 

the weight 0 [16]. 

 Let the (r-1)-smooth function ϕ(t) satisfying (5) have the form 
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 ϕ = (t - tf)
r (c0 + c1(t - t0) + ...+ cr-1(t - t0)

r-1)    with t0 ≤ t ≤ tf,    ϕ = 0    with t > tf.   (7) 

Parameters ci are now to be found from the conditions (5) after tf is assigned. Obviously, any 

constant value of the transient time tf - t0 requires unacceptably large control values in order to steer 

the trajectory to the r-sliding mode σ
r  = 0 from far-distanced initial values, and leads to very low 

convergence rate if )( 0tσ
r  is close to zero. Thus, let tf - t0 be a continuous positive-definite r-sliding 

homogeneous function of the initial conditions )( 0tσ
r  of the degree 1, i.e. 

   tf - t0 = T( )( 0tσ
r ),      ∀κ > 0  T(dκ σ

r ) ≡ κ T( σ
r ).     (8) 

For example, the choice tf - t0 = T( )( 0tσ
r ) = λ (|σ(t0)|

 p/r+ |σ& (t0)|
 p/(r-1)+ ... + |σ(r-1)(t0)|

 p )1/p is valid, 

where p, λ > 0. As a result, the function ϕ turns out to be a function of  t - t0 and initial conditions 

)( 0tσ
r . 

Theorem 1. The  function ϕ(t - t0, )( 0tσ
r ) is uniquely determined by (5), (7), (8). Let (4) be any of 

finite-time convergent r-sliding homogeneous controllers [15 - 17], then with any sufficiently large 

α, independently of the initial conditions )( 0tσ
r , the controller 

 u = αΨr(Σ, Σ& , ...,  Σ(r-1)) ,    Σ(t, x) = 




σ+≥σ
σ+≤≤σ−ϕ−σ

))((           ),,(
))((   )),(,(),(

00

00000

tTttxt
tTttttttxt

r

rr

 (9) 

establishes the finite-time-stable r-sliding mode σ ≡ 0 with the transient time (8). The equality     

σ(t, x(t)) = ϕ(t - t0, )( 0tσ
r ) is kept during the transient process. 

 Here and further all proofs are omitted due to the lack of place and can be found in [18] and at 

the internet address http://www.tau.ac.il/~levant. It can be shown that the function ϕ(τ, σ
r ) is 

homogeneous in the sense ϕ(κτ, dκ σ
r ) ≡ κr

ϕ(τ, σ
r ), ∀κ > 0. The homogeneity and continuity result 

in the global boundedness of ))(,( 00 tttr

r

t
σ−ϕ

∂
∂ r , 0 ≤  t - t0 ≤ T( )( 0tσ

r ), which implies the Theorem. 

 Analytic calculations of the function ϕ and its successive time derivatives are easily performed in 

real time by computer at the moment t0, and used afterwards. The corresponding formulas are listed 

in the simulation Section for r = 4.  
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 Suppose that sampling noises are present, being bounded Lebesgue-measurable functions of time 

of any nature, and sampling is carried out with some sampling intervals. Due to (2), (3) the 

boundedness of the control (9) provides for the global convergence of (r - l - 1)th-order 

differentiator [15] applied to σ(l). The following robustness Theorem follows easily from [16].  

Theorem 2. Under the conditions of Theorem 1 let the sampling noise magnitudes of σ, σ& , ..., σ(l) 

not exceed β0ε, β1ε
(r-1)/r, …,  βkε

(r-l)/r
 respectively with some β0, …, βl > 0, and the rest of derivatives 

be estimated by means of an (r - l - 1)th order differentiator [15] with a proper parameter set. Let 

also sampling intervals not exceed τ = ε1/r > 0.  Then the inequalities |Σ| ≤ γ0τ
r= γ0ε, |Σ& | ≤ γ1τ

r-1 =      

γ1ε
(r-1)/r, …, |Σ(r-1)| ≤ γr-1τ = γr-1ε

1/r are established with some constants γ0, …, γr-1  independent of ε. 

 The case ε = 0 corresponds to the case of exact continuous measurements. That asymptotic 

accuracy cannot be improved with a constant sampling interval τ > 0 and |σ(r)| separated from 0 [14]. 

Note that the differentiator convergence can be made arbitrarily fast [15]. 

Raising the control smoothness degree.  Choose some integer k > r and consider u(k-r) as a new 

control. The new relative degree is k. The function ϕ(t - t0, )( 0tσ
r ), σ

r  = (σ, σ& ,  ..., σ(k-1)), satisfies 

 ϕ = σ(t0), ..., ϕ−

−

∂
∂

1

1

k

k

t
 = σ(k-1)(t0) at t = t0, ϕ = (t - tf)

k (c0 + c1(t - t0) + ...+ ck-1 (t - t0) 
k-1),   

 tf - t0 = T(σ(t0), σ& (t0),  ..., σ
(k-1)(t0)),    T(σ, σ& ,  ..., σ(k-1)) ≡ T(κr

σ, κr-1
σ& ,  ..., κσ

(k-1)) , 

where κ > 0 and T is continuous and positive definite. Let  the bounded feedback control be 

   u(k-r) = αΨk(Σ, Σ& , ...,  Σ(k-1)),       Σ =




σ+≥σ
σ+≤≤σ−ϕ−σ

))((           ),,(
))((   )),(,(),(

00

00000

tTttxt
tTttttttxt

r

rr

         (10) 

with arbitrary initial values u(t0), ..., u(k-r-1)(t0), where αΨk is one of the finite-time convergent         

r-sliding homogeneous controllers from [15 - 17]. 

Theorem 3. Let the initial conditions t0, x(t0), u(t0), ..., u(k-r-1)(t0) belong to some compact set in  

Rn+k-r+1. Then with sufficiently large α controller (10) establishes the k-sliding mode σ ≡ 0 with the 

transient time T( )( 0tσ
r ). The equality σ(t, x(t)) = ϕ(t) is kept during the transient process.  
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 The direct application of any k-sliding controller required the dominance of u(k-r)g(t, x) in σ(k)(t, x, 

u, ..., u(k-r)), containing also terms with lower derivatives of u. This interaction is now removed. 

Indeed, define the smooth function ueq(t, x) = - h(t, x)/g(t, x) from (2) and the condition σ(r) = 0. 

Functions u(t), ..., u(k-r-1)(t) track now the smooth function equ~ = ueq(t, x(t)) + 

))(),...,(,( 0
)1(

00 tttt k
t r

r −
∂
∂ σσ−ϕ /g(t,x(t)) and its total derivatives equ&~ , ..., )1(~ −−rk

equ  calculated with 

respect to (1) modified by the substitution u = ueq(t, x) (the corresponding zero-dynamics). 

IV. Simulation example 

 Consider a variable-length pendulum control problem. All motions are restricted to some vertical 

plane, friction is absent. A load of a known mass m moves along the pendulum rod (Fig. 1). Its 

distance from O equals R(t) and is not measured. An engine transmits a torque w, which is 

considered as control. The engine dynamics is neglected. The task is to track some function xc given 

in real time by the angular coordinate x of the rod. 

 The system is described by the equations   x&&  = - 2 
R
R& x& - g

R
1 sin x + 2

1
mR

w,      w&& =  u,   

where g = 9.81 is the gravitational constant, m = 1. Let R, R& , R&& , cx&  and cx&&  be bounded, R be 

separated from 0, σ = x - xc , σ&  = x&  - cx& be available. The initial conditions are x(0) = x& (0) = 0. 

The natural relative degree of the system is 2, but is artificially raised to 4, using w&&  = u as a new 

control, in order to smooth the control and to avoid unacceptable torque switching, which cannot be 

performed by the engine.  

 Let w(0) = w& (0) = 0. Since σ
(4)|u=0 linearly depends on x& , it is not uniformly bounded. 

Nevertheless, all assumptions are satisfied in any bounded region of the system coordinates, which 

provides for the semi-global application of the method. Following are the functions R and xc 

considered in the simulation: 

R = 1 + 0.25 sin 4t + 0.5 cos t,       xc = 0.5 sin 0.5t + 0.5 cos t . 

 The parameters of the controller were tuned during simulation, avoiding complicated calculations 
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and crude estimations leading to excessively large gains. In any case the controlled class still allows 

significant disturbances of considered functions R and xc.   

 The transient dynamics is chosen according to (5), (7), (8) as follows: 

ϕ(t) = (t - tf)
4(c0 + c1(t - t0) + c2(t - t0)

2 + c3(t - t0)
3), T = tf - t0= λ(|s0(t0)|

3+s1(t0)
4+| s2(t0)|

6+s3(t0)
12)1/12, 

 c0 = s(t0) T
 -4,       c1 = s1(t0) T

 -4+ 4 s(t0) T
 -5,      c2 = [s2(t0) T

 -4+ 8 s1(t0) T
 -5 + 20 s(t0) T

 -6] /2,  

   c3 = [s3(t0)T
 -4+12 s2(t0)T

 -5 + 60 s1(t0) T
 -6+ 120 s(t0)T

 -7] /6. 

Here s0, s1 are some noisy measured values of σ and σ& , while s2, s3 are the outputs of the 2nd-order 

differentiator estimating σ&& , σ&&&  respectively. The transient time parameter λ takes on values 2 and 6. 

Parameters of the function ϕ are calculated at the moment t0 = 1 providing sufficient time for the 

differentiator convergence. Function ϕ and its derivatives are calculated further analytically. The 

output-feedback controller takes now the form 

  ξ(t) = 




∈ϕ
∉

],[   with)(
],[       with0

0

0

f

f

tttt
ttt

;   u = 




≥ξ−ξ−ξ−ξ−Ψ
<

032104

0

   with),,,(70
       with0

ttssss
tt

&&&&&&  , 

where the function Ψ4 is defined a few lines below. The second-order differentiator [16] 

  y&  = v1,  v1 = - 2 L1/3 | y - s1|
 2/3  sign(y - s1) + s2,      

  2s&  = v2,  v2 = - 1.5 L1/2 | s2 - v1|
 1/2  sign(s2 - v1) + s3,   

  3s& = - 1.1 L sign(s3 - v2).  

supplies estimates of σ&& , σ&&& . Here L = 300 (L > sup|σ(4)| is required), y is an additional auxiliary 

variable approximating σ& ,  y(0) = s2(0) = s3(0) = 0. 

 Denote zi = si - ξ
(i), i = 0, 1, 2, 3. The 4-sliding homogeneous quasi-continuous controller [18] 

Ψ4 = - {z3 + 3[|z2| + (|z1| + 0.5|z0|
3/4)-1/3 |z1 + 0.5 |z0|

3/4sign z0| ] [|z2| +(| z1| + 0.5|z0|
3/4)2/3] -1/2}/ 

         {| z3| + 3[|z2| + (|z1| + 0.5 |z0|
3/4)2/3] 1/2}. 

was applied. Ψ4 is continuous everywhere except the set z0 = z1 = z2 = z3 = 0, |Ψ4| ≤ 1  [18]. 



 9 

 

Fig. 1: 4-sliding pendulum control and transient adjustment 

 The integration was carried out according to the Euler method (the only reliable method with 

discontinuous dynamics). The 4-sliding deviations for λ = 2, 6, the tracking performance, the 

differentiator convergence in the absence of output noises with λ = 2, and the torques for λ = 2, 6 

are shown in Fig. 1. The accuracies |σ| ≤ 8.4⋅10-15, |σ& | ≤  2.7⋅10-11, |σ&& | ≤ 2.0⋅10-7, |σ&&& | ≤  0.0036 were 

obtained with the sampling step τ = 10-5. It is seen that the accurate differentiation is ensured 

already with t = 0.15. Larger λ correspond to smaller torque magnitude during the transient. 

 Check now the robustness of the method. The accuracies changed to |σ| ≤ 4.4⋅10-4, |σ& | ≤ 2.8⋅10-3, 

|σ&& | ≤  0.054, |σ&&& | ≤ 1.7 with τ = 0.005 (Fig. 2). The tracking accuracy |σ| ≤ 0.013 was obtained with  

τ = 10-5 in the presence of non-smooth non-centered noises with the same magnitude ε = 0.01, the 
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accuracy |σ| ≤ 0.052 was obtained with τ = 0.005, ε = 0.01 (Fig. 2). The graph of the torque w(t) 

shows that, while noises and discrete sampling lead to the loss of accuracy, no significant chattering 

is observed. The results practically do not depend on the noise frequencies. 

 

Fig. 2: Performance with various values of the noise amplitude ε and sampling step τ  

V. Conclusions 

 The integral sliding mode approach allows prescribing any needed dynamics to high-order 

sliding-mode transient. In particular, any continuous positive-definite r-sliding-homogeneous 

function of the weight 1 of initial values of the output and its derivatives can be realized as a 

transient-time function. A robust global output-feedback controller is obtained, when combined 

with robust exact differentiator [15]. The same approach solves the long-lasting problem of the 

control interaction during the procedure of raising the control smoothness degree. 
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