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Adjustment of high-order sliding-mode controllers
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SUMMARY

Long-lasting problems of high-order sliding-mode (HOSM) design are solved. Only local uncertainty
suppression was previously obtained in the case when the dynamic system uncertainties are unbounded.
This restriction is removed in this paper. A universal method is proposed for the proper controller parameter
adjustment based on the homogeneity approach. The method allows making the finite-time convergence
arbitrarily fast or slow. In addition, a HOSM regularization procedure is proposed diminishing chattering.
Computer simulation confirms the theoretical results. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Sliding modes remain among the most effective control tools under uncertainty conditions. The
idea is to react immediately to any deviation of the system from some properly chosen constraint
steering it back by a sufficiently energetic effort. Sliding mode is accurate and insensitive to
disturbances [1, 2]. The main drawback of the standard sliding modes is mostly related to the
so-called chattering effect [3, 4], and a lot of efforts were made to diminish it [5, 6].

Let the constraint be given by the equation �=s−w(t)=0, where s is some available output vari-
able of an uncertain single-input–single-output (SISO) dynamic system, and w(t) is an unknown-
in-advance smooth input to be tracked in real time. Then the standard sliding-mode controller
u=−k sign � may be considered as a universal controller applicable if the relative degree is
one, i.e. if �̇ explicitly depends on the control u and �̇′

u>0. Higher-order sliding mode (HOSM)
[7, 8] is applicable for controlling SISO uncertain systems with arbitrary relative degree r . The
corresponding finite-time-convergent controllers (r -sliding controllers) [7–10] require actually only
the knowledge of the system relative degree. The produced control is a discontinuous function
of the tracking deviation � and of its real-time-calculated successive derivatives �̇, �̈, . . . ,�(r−1).
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1658 A. LEVANT AND A. MICHAEL

The controllers provide also for higher accuracy with discrete sampling and, when properly used,
practically remove the chattering effect [11]. For this sake the control derivative is to be treated
as a new control [7, 12].

Although the second-order sliding-mode controllers are already widely used [10, 13–16], the
higher-order controllers are mostly theoretically studied [8, 9, 17, 18]. One of the main problems is
the parameter adjustment. Indeed, no algebraic criterion was published for the parameter assign-
ment, though it could be developed based on the constructive proofs [8, 9]. Such calculations
would be carried out separately for each relative degree and would produce highly conservative
conditions on the parameters. Thus, the authors consider such estimations practically useless. The
proposed solution was to find such parameters by simulation. Tested parameter sets were published
for the main practical cases r =2,3,4. Although theoretically already one set is sufficient for any
relative degree, in practice one needs to adjust these parameters, in order to hasten or slow down
the finite-time transient process. A simple algorithm is presented in this paper producing infinite
number of valid parameter sets from a given one. The convergence can be made arbitrarily fast
or slow. The corresponding formulas (Proposition 2) for parameter adjustment were developed by
Michael.

A long-lasting problem of HOSM application is the uncertainty boundedness restriction. While
with the second relative degree, in the presence of globally unbounded uncertainties, the problem
can be solved by a sophisticated time-variant parameter adjustment of the sub-optimal controller
[19], only the local convergence to the sliding mode is provided with higher relative degrees. It
is shown in this paper that the main known arbitrary-order sliding-mode controllers preserve their
convergence, when their constant magnitude gains are replaced by sufficiently large functions,
ensuring global treatment of unbounded uncertainties. A simple criterion is developed to check
(still by computer simulation) that the chosen parameter values indeed allow such implementation.

The result allows not only to increase the gain function, but also to reduce it when possible.
This logically leads to the idea of diminishing or even zeroing the control, when, �̇, �̈, . . . ,�(r−1)

become small, in order to avoid chattering. In the latter case the ideal accuracy is inevitably lost, but
approximate sliding mode persists. The corresponding regularization procedure and its accuracy
are studied.

Some results of this paper were presented at the IFAC Congress [20]. Computer simulation
demonstrates the applicability of the proposed schemes.

2. THE PROBLEM STATEMENT

Consider a smooth dynamic system with a smooth output function �. Let the system be closed by
some possibly dynamical discontinuous feedback and be understood in the Filippov sense [21].
Then, provided that successive total time derivatives �, �̇, . . . ,�(r−1) are continuous functions of
the closed-system state-space variables, and the set �=·· ·=�(r−1) =0 is a non-empty integral
set, the motion on the set is called r -sliding (r th-order sliding) mode [7, 8]. The standard sliding
mode used in the most variable structure systems is of the first order (� is continuous and �̇ is
discontinuous).

Consider a dynamic system of the form

ẋ=a(t, x)+b(t, x)u, �=�(t, x) (1)
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where x ∈Rn,u∈R,a,b and � :Rn+1→R are unknown smooth functions, n is also uncertain. The
relative degree r of the system is assumed to be constant and known, which means that the control
for the first time appears explicitly in the r th total time derivative of � [22]. The output � and its
r−1 successive derivatives are supposed to be measured in real time. It is easy to check that

�(r) =h(t, x)+g(t, x)u (2)

where h(t, x)=�(r)|u=0, g(t, x)=(�/�u)�(r) are some uncertain functions, g(t, x) �=0. The current
values of a locally bounded Lebesgue-measurable non-zero function �(t, x) are supposed to be
available, such that for any positive d , the inequality

�g(t, x)�(t, x)>d+|h(t, x)| (3)

holds with sufficiently large �. The task is to provide in finite time for the identity �≡0.
It is also assumed that, if � remains bounded, trajectories of (1) are infinitely extendible in time

for any Lebesgue-measurable control u(t, x) with bounded quotient u/�. Actually, the proposed
method works for much larger class of systems, and this assumption is needed only to avoid
finite-time escape. In practice the system is often required to be weakly minimum phase. Note
also that in practice actuator presence might prevent effectiveness of any global control due to
saturation effects.

The traditional assumption [8, 10] is that

0<Km� �
�u

�(r)�KM, |�(r)|u=0|�C (4)

holds for some Km,KM,C>0. It corresponds to �=1. The both problem statements (1)–(3) and
(1), (2), (4) are further considered.

The information availability requirements can be significantly reduced, if the differentiator [8]
was applied, producing exact robust estimations of the derivatives of �. In particular, in the second
problem setting (1), (4) the global output-feedback control would be produced [8, 18]. In the first
setting only semi-global solution would be obtained, since its application requires the boundedness
of �(r). Therefore, it was decided not to use the differentiator in that case in order to simplify the
presentation.

3. CONTROL MAGNITUDE ADJUSTMENT

Two known families of high-order sliding controllers are defined by recursive procedures. It is
taken below �1, . . . ,�r−1>0 and i=1, . . . ,r−1.

1. The following procedure defines the so-called nested r-sliding controller [8]. The controller
can be given an intuitive inexact explanation based on recursively nested standard sliding
modes. The proper explanation is more complicated [8], since no sliding mode is possible
on discontinuous surfaces, and a complicated motion arises around the control discontinuity
set. Let p be the least common multiple of 1,2, . . . ,r . Define functions

Ni,r = (|�|p/r +|�̇|p/(r−1)+·· ·+|�(i−1)|p/(r−i+1))(r−i)/p

�0,r = sign�, �i,r =sign(�(i)+�i Ni,r�i−1,r )
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2. Another procedure corresponds to the so-called quasi-continuous controller [9]. Denote
�0,r = �, N0,r =|�|, �0,r =�0,r/N0,r =sign �

�i,r = �(i)+�i N
(r−i)/(r−i+1)
i−1,r �i−1,r , Ni,r =|�(i)|+�i N

(r−i)/(r−i+1)
i−1,r , �i,r =�i,r/Ni,r

In the both cases the controller takes of the form

u=−��(t, x)�r−1,r (�, �̇, . . . ,�(r−1)) (5)

where �>0 and �≡1 in [8, 9]. Note that in the case of the quasi-continuous controller the
function �r−1,r can be redefined according to the continuity everywhere except the r -sliding
set �= �̇=·· ·=�(r−1) =0. Recall in this context that values of the control on any set of the
zero Lebesgue measure do not influence the solutions [21].

Theorem 1
Let �1, . . . ,�r−1,�>0 be chosen sufficiently large in the list order, then controller (5) provides for
the finite-time establishment of the identity �≡0 for any initial conditions. Moreover, any increase
of the gain function � does not interfere with the convergence.

The theorem proofs are listed in the next section. In other words, the finite-time stable r -sliding
mode �≡0 is established in the system (1), (5). Note that the theorem does not claim that all
parametric combinations providing for the finite-time convergence to the r -sliding mode allow
the arbitrary increase of � and �. The corresponding parameter combinations are further called
gain-function robust. The following theorem provides for some method of finding gain-function
robust parameter sets.

Theorem 2
Finite-time stability of the differential equations �(r−1)+�r−1N

1/2
r−2,r�r−2,r =0 and �(r−1)+

�r−1Nr−1,r�r−2,r =0 for the quasi-continuous and the nested controller, respectively, provides
for the gain-function robustness of the parameter combination �1, . . . ,�r−1>0. The number of
such parameter sets is infinite.

Some other HOSM controllers also satisfy Theorem 1. Such controllers and parameter combi-
nations are also called gain-function robust. The popular sub-optimal and twisting controllers are
not gain-function robust and require special efforts to deal with unbounded uncertainties [7, 19].

Consider another implementation of Theorem 1. In any practical application the operation
region is bounded. The standard application of the controller (5) corresponds to �=1, and the
gain � is chosen sufficiently large to cope with the uncertainty over the whole region. According
to Theorem 1, the control effort magnitude �(t, x(t)) can be chosen in real time, varying over
the region with respect to the changing uncertainty bounds. In particular, in the case of the
system stabilization at the point being ‘almost equilibrium’, the discontinuity can be significantly
diminished, also reducing the chattering. This approach can be complemented by decreasing or
even zeroing the control magnitude in a small vicinity of the r -sliding set �r =0, where �r =
(�, �̇, . . . ,�(r−1)). In such a case, for example, the control can be made globally continuous if the
quasi-continuous controller [9] is used.
Theorem 3
Let ��(�r ) be a locally bounded Lebesgue-measurable function, ��(�r )≡1 with ‖�r ‖��, and
�>0. Let the conditions of Theorem 1 be fulfilled, �1, . . . ,�r−1 be chosen with respect to Theorem 2
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and � be sufficiently large. Then with sufficiently small �, the controller

u=−��(t, x)��(�, . . . ,�(r−1))�r−1,r (�, . . . ,�(r−1)) (6)

provides for the finite-time convergence into the vicinity ‖�r ‖�� of the r -sliding mode.

This theorem is actually a HOSM analogue of the well-known first-order sliding-mode regular-
ization [5]. As usual the ideal accuracy is abandoned here for the sake of less chattering. Theorem 3
can be made more precise in the standard problem setting case [7–12], when �(t, x)≡1 is taken,
and ��(�r ) is r -sliding homogeneous.

Theorem 4
Let (4) hold, and �>0. Then with any k>0 and sufficiently large �>0, the controller

u=−��r−1,r (�, �̇, . . . ,�(r−1))min

[
1,

1

�
(|�|+|�̇|r/(r−1)+·· ·+|�(r−1)|r )k/r

]
(7)

provides for the global finite-time convergence into the vicinity |�(i)|�	i �
(r−i)/k, i=0, . . . ,r−1

of the r -sliding mode, where 	i are some positive constants depending only on the parameters of
the controller k,�, and the constants Km,KM and C from (4).

Note that any other positive-definite r -sliding homogeneous function [18, 23] of the weight k
can be used in the function ��(�r ). Using the standard homogeneity reasoning [18] the asymptotics
can be shown not to change, if the output � is measured with a noise of the maximal magnitude
proportional to �r/k , and the successive derivatives of � are estimated by the homogeneous (r−1)th-
order differentiator [8]. Theorem 4 also has a local analogue, which is true for any smooth system
(1) with the relative degree r . In such a case, � and the initial values are to be sufficiently small.

4. PROOFS OF THE THEOREMS

Proof of Theorem 1
The proofs are similar for the both controllers. The main idea is that with sufficiently large � any
system trajectory enters some specific region in finite time to stay in it. The region is described
by some homogeneous differential inequalities, which do not ‘remember’ anything on the original
process. These inequalities determine the further convergence.

Consider, for example, the quasi-continuous controller. The proof is based on a number of
lemmas and is a careful modification of the proof from [9], the modification being concentrated in
Lemma 3, which is new. Although the whole system satisfies specific homogeneous properties in
[9], the homogeneity features are revealed now only after the statement of Lemma 3 is fulfilled.

Lemma 1
Ni,r is positive definite, i=0, . . . ,r−1, i.e. Ni,r =0 iff �= �̇=·· ·=�(i) =0. The inequality
|�i,r |�1 holds whenever Ni,r>0. The function �i,r (�, �̇, . . . ,�(i−1)) is continuous everywhere
(i.e. it can be redefined by continuity) except the point �= �̇=·· ·=�(i−1) =0.

Assign the weights (homogeneity degrees) r−i to �(i), i=0, . . . ,r−1 and the weight 1 (minus
system homogeneity degree, [23]) to t , which corresponds to the r -sliding homogeneity [18].
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Lemma 2
The weight of Ni,r equals r−i, i=0, . . . ,r−1. Each homogeneous locally bounded function

(�, �̇, . . . ,�r−i ) of the weight r−i satisfies the inequality |
|�cNi,r for some c>0.

Lemma 3
For any �>0 and �r−1>0 with sufficiently large �>0 the inequality

|�(r−1)+�r−1N
1/2
r−2,r�r−2,r |��N 1/2

r−2,r (8)

is established in finite time and kept afterwards.

Proof
Consider the point set �(�)={(�, �̇, . . . ,�(r−1))||�r−1,r |��}∪{0} for some fixed �,0<�<�/4,
�<3/4. Assuming Nr−2,r>0 and |�(r−1)|�3�r−1N

1/2
r−2,r obtain that, since |�r−2,r |�1,

|�r−1,r |=|�(r−1)+�r−1N
1/2
r−2,r�r−2,r |/(|�(r−1)+�r−1N

1/2
r−2,r )�3/4

Thus, |�r−1,r |��, implies |�(r−1)|�3�r−1N
1/2
r−2,r . Simple calculations show now that�(�)⊂�1(�),

where �1(�) is defined by the inequality

|�(r−1)+�r−1N
1/2
r−2,r�r−2,r |�4��r−1N

1/2
r−2,r

In turn the inequality can be rewritten in the form 
−��(r−1)�
+, where 
−, 
+ are the
corresponding homogeneous functions of �, �̇, . . . ,�(r−2) of the weight 1. Approximate them
by globally smooth homogeneous functions. Restricting 
− and 
+ to the homogeneous sphere
�2p/r + �̇2p/(r−1)+·· ·+(�(r−2))2p =1, where p is the least multiple of 1,2, . . . ,r−1, achieve some
continuous on the sphere functions 
1− and 
1+. Functions 
1− and 
1+ can be approximated on
the sphere by some smooth functions 
2− and 
2+ from beneath and from above, respectively.
Functions 
2− and 
2+ are in their turn extended by homogeneity to the homogeneous functions
�− and �+ of �, �̇, . . . ,�(r−2) of the weight 1, smooth everywhere except 0, so that �(�)⊂�2=
{(�, �̇, . . . ,�(r−1))|�−��(r−1)��+} [9].

Thus, the inequality |�r−1,r |�� is assured outside of �2. Prove now that �2 is invariant
and attracts the trajectories with large �. The ‘upper’ boundary of �2 is given by the equation
�+ =�(r−1)−�+ =0. Suppose that at the initial moment �+>0 and, therefore, �r−1,r��. Recall
also that �<1. Taking into account that �̇+(�, �̇, . . . ,�(r−1)) is a locally bounded homogeneous
function of the zero weight, obtain |�̇+|�� for some �>0. By differentiating we achieve

�̇+ =h(t, x)−�g(t, x)�(t, x)�r−1,r −�̇+

Choosing �1 to be sufficiently large, so that �1 g(t, x)�(t, x)>�+1+|h|, and taking �=�1/�, we
obtain that �̇+�−1.

Hence, �+ vanishes in finite time with � large enough. Thus, the trajectory inevitably enters the
region �2 in finite time. Similarly, the trajectory enters �2 if the initial value of �− is negative
and, therefore, �r−1,r�−�. Obviously, �2 is invariant.

Choose �− and �+ sufficiently close to 
− and 
+ on the homogeneous sphere and �,
respectively, large enough to achieve from Lemma 2 that �2⊂�1(�/4�r−1) and the statement of
Lemma 3. �
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The fulfilment of the statement of Lemma 3 triggers a chain collapse as follows from the next
lemma.

Lemma 4
Let 1�i�r−2, then for any positive �i ,�i ,�i+1 with sufficiently large �i+1>0 the inequality

|�(i+1)+�i+1N
(r−i−1)/(r−i)
i,r �i,r |��i+1N

(r−i−1)/(r−i)
i,r

provides for the finite-time establishment and keeping of the inequality

|�(i)+�i N
(r−i)/(r−i+1)
i−1,r �i−1,r |��i N

(r−i)/(r−i+1)
i−1,r

The proof is similar to Lemma 3. The point set �(�)={(�, �̇, . . . ,�(i))||�i,r |��} is considered
for some fixed �>0,�<�i/4. The set �1(�)⊃�(�) is defined by the inequality

|�(i)+�i N
(r−i)/(r−i+1)
i−1,r �i−1,r |�4��i N

(r−i)/(r−i+1)
i−1,r

The further proof uses Lemma 2 to estimate �̇+. Since N0,r =|�|,�0,r =�, Lemma 4 is replaced
by the next simple lemma with i=0.

Lemma 5
The inequality |�̇+�1|�|(r−1)/r sign�|��1|�|(r−1)/r provides with 0��1<�1 for the establishment
in finite time and keeping the identity �≡0.

Thus, �1,�1 are assigned arbitrary values satisfying the conditions of Lemma 5. Now the
parameters �2,�2 are assigned with respect to Lemma 4, then comes the turn of �3,�3, etc. At the
last step the parameter � is assigned a proper value according to Lemma 3. After a finite transient
time, the trajectory belongs to the intersection of closed invariant regions, one of which is the
origin (Lemma 5).

This finishes the proof of the theorem in the case of the quasi-continuous controller. In the case
of the nested controller a homogeneous vicinity of the controller discontinuity set is shown to
attract the trajectories in finite time. The proof closely follows [8]. �

Proof of Theorem 2
Consider the quasi-continuous case. As follows from the previous proof and Lemma 3, the parame-
ters are chosen so as to provide for the finite-time stability of the r -sliding homogeneous differential
inclusion

�(r−1) ∈�[−N 1/2
r−2,r ,N

1/2
r−2,r ]−�r−1N

1/2
r−2,r�r−2,r

with sufficiently small �>0. Note that in order to satisfy the Filippov conditions it is enlarged at
the discontinuity points of �r−2,r in order to get certain convexity and semi-continuity properties
[18, 21]. The needed Filippov differential equation is obtained with �=0. The proof of Theorem 1
shows how to choose the parameters to provide for the finite-time stability of the equation. As
follows from [18] the finite-time stability of a homogeneous differential inclusion with a negative
homogeneity degree is always robust with respect to small homogeneous perturbations; therefore,
the finite-time stability of the homogeneous differential equation obtained with �=0 causes the
finite-time stability of the inclusion with any sufficiently small �. The case of the nested controller
is similarly considered. �
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Proof of Theorem 3
Let the parameters be chosen as in the proof of Theorem 1, which in particular means that inequality
(8) is established with some �>0, corresponding to a finite-time stable differential inclusion. The
theorem follows from the following lemmas:

Lemma 6
The trajectories of (1), (5) satisfying |�(r−1)+�r−1N

1/2
r−2,r�r−2,r |��N 1/2

r−2,r at the initial moment
and starting in a small vicinity of �r−1=0 do not leave another small vicinity of �r−1=0.

The lemma immediately follows from the invariance of the region (8) (Lemma 3) and the
finite-time stability of the r -sliding homogeneous differential inclusion corresponding to (8) [18].
Lemma 7
Projections of trajectories of (1), (5) starting in the vicinity ‖�r ‖�� of �r =0 of the space �r ,
do not leave some another vicinity �� of �r =0 small with small �.

In fact, the projection trajectories starting in a compact region uniformly converge to �r =0.

Proof
As follows from the proof of Lemma 3, the time of the transient of the trajectories to the
region (8) uniformly tends to zero with �→0. Denote by �(r−1)(0) the initial value of �(r−1),
and consider the cases possible at the initial moment. The case �(r−1)(0)+�r−1N

1/2
r−2,r�r−2,r =

0 is to be excluded, since then the point already satisfies (8). The remaining cases are
�(r−1)(0)>−�r−1N

1/2
r−2,r�r−2,r�0,−�r−1N

1/2
r−2,r�r−2,r >�(r−1)(0)�0, and symmetrical cases

with �(r−1)(0)�0. During the transient into the region (8) the coordinate �(r−1) changes
monotonously. Therefore, the inequality

|�(r−1)|�max{|�(r−1)(0)|,�r−1N
1/2
r−2,r (�r )}

holds during the transient, which means that the trajectory does not leave some (small) vicinity
of �r =0. From the moment when (8) holds, the trajectories are confined to a small vicinity of
�r =0 due to Lemma 6. �

Choose sufficiently small �, so that �� ⊂{�r ,‖�r ‖��}. Outside of ‖�r ‖�� the trajectories of
(1), (6) satisfy (1), (5). Thus, any trajectory of (1), (6) sooner or later enters ‖�r ‖��. From that
time on it never leaves �� due to Lemma 7. �

Proof of Theorem 4
The trajectories of (1), (7) satisfy the differential inclusion

�(r) ∈[−C,C]+[Km,KM]u, u∈
{

−��r−1,r (�r ), (|�|+|�̇|r/(r−1)+·· ·+|�(r−1)|r )k/r >�

[−�,�], (|�|+|�̇|r/(r−1)+·· ·+|�(r−1)|r )k/r��

which is invariant with respect to the time-coordinate-parameter transformation

(t,�, �̇, . . . ,�(r−1),�) �→(�t,�r�,�r−1�̇, . . . ,��(r−1),�k�)
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Similarly to the proof of Theorem 3, obtain that with some � the trajectories concentrate in a bounded
region. The theorem follows now in a standard way from the homogeneity reasoning [18]. �

5. ADJUSTMENT OF THE PARAMETERS

Consider the problem (1), (4). Then the equality (3) implies the differential inclusion

�(r) ∈[−C,C]+[Km,KM]u (9)

The problem is now solved building a bounded feedback control of the form

u=��(�, �̇, . . . ,�(r−1)) (10)

which provides for the finite-time stability of the closed inclusion (9), (10).
The solutions of (9), (10) are understood as solutions of a some-what larger Filippov differential

inclusion [18, 21], in order to provide for the solution existence and other convenient solution
properties. Inclusion (9), (10) and the controller (10) are called r -sliding homogeneous, if for any
�>0 the combined time-coordinate transformation

G� :(t,�r )(�t,d��r ) (11)

where �r =(�, �̇, . . . ,�(r−1)),d��r =(�r�,�r−1�̇, . . . ,��(r−1)) preserve the closed-loop inclusion
(9), (10) and its solutions [18]. It is easy to check that (10) is r -sliding homogeneous if

�(�r�,�r−1�̇, . . . ,��(r−1))=�(�, �̇, . . . ,�(r−1)) (12)

Note that any changes of the controller on zero-measure sets do not influence the corresponding
Filippov inclusion and its solution, also preserving the homogeneity.

Almost all known HOSM controllers are r -sliding homogeneous and satisfy (12). Note that
though the sub-optimal controller [10, 12] does not exactly satisfy the described feedback form
(10), its trajectories are invariant with respect to (11) with r =2 and it can be considered as
two-sliding homogeneous in the broad sense.

Denote by Tmax(s1,s2, . . . ,sr ) and Tmin(s1, s2, . . . ,sr ) the maximal and the minimal convergence
times to the origin �r =0 of the solutions of (9), (10) with initial conditions �(0)=s1, �̇(0)=
s2, . . . ,�(r−1)(0)=sr . These functions are well defined [21]. If (10) is r -sliding homogeneous, they
are also continuous and homogeneous with the homogeneity degree 1 [18].

Let �>0. Consider the differential inclusion

�(r) ∈�r [−C,C]+[Km,KM]u (13)

and the controller

u=�r��(�, �̇/�, . . . ,�(r−1)/�r−1) (14)

Denote by �R and �̄R , the sets |�|1/r +|�̇|1/(r−1)+·· ·+|�(r−1)|�R and |�|1/r +·· ·+|�(r−1)|�R,
and let T̃max(�r ) and T̃min(�r ) be the convergence-time functions for controller (14).
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Proposition 1
Let the differential inclusion (9), (10) be finite-time stable and r -sliding homogeneous, then also
the inclusion (13), (14) is finite-time stable and

max{T̃max(�r )|�r ∈�R} � 1

�
max {Tmax(�r )|�r ∈�R} (15)

min {T̃min(�r )|�r ∈ �̄R} � 1

�
min {Tmin(�r )|�r ∈ �̄R} (16)

hold with �>1 and �<1, respectively.

Proof
Apply the time transformation t=��. Then d/dt=(1/�)d/d� and in the new time the closed-loop
inclusion takes the form (13), (14). Obviously,

Tmax(�, �̇, . . . ,�(r−1)) = �T̃max(�, �̇/�, . . . ,�(r−1)/�r−1)

Tmin(�, �̇, . . . ,�(r−1)) = �T̃min(�, �̇/�, . . . ,�(r−1)/�r−1)

The proposition follows now from the fact that with �>1 the point (�, �̇/�, . . . ,�(r−1)/�r−1)

belongs to �R , whereas with �<1 it belongs to �̄R . Owing to the homogeneity, the minimum of
Tmin in �̄R exists and takes place on the set |�|1/r+‖1/(r−1) +·· ·+|�(r−1)|= R. �

Note that with �>1 inequality (15) holds also for the inclusion (9), (14), which means that
controller (14) provides for the convergence acceleration. In the case, when C=0, pure acceleration
or slow down of the convergence takes place.

Obviously, if (10) is a gain-function robust r -sliding homogeneous controller, then also (14)
is gain-function robust and r -sliding homogeneous. In the special case of the quasi-continuous
controller, Equation (14) has the same form as the original controller (10). The following proposition
lists the corresponding parameter transformation.

Proposition 2
The above-defined quasi-continuous controller preserves its form after the transformation (14) with
r>1. Its new parameters take on the values

�̃1=��1, �̃2=�r/(r−1)�2, . . . , �̃r−1=�r/2�r−1, �̃=�r�

Note that since this controller is gain-function robust, each � produces a new valid combination
of �i effective for any SISO system with the given relative degree r , provided a sufficiently
large gain function is taken. Following are the resulting quasi-continuous controllers with r�4,
simulation-tested �i and a general gain function �:

1. u=−��sign�,
2. u=−��(�̇+�|�|1/2sign�)/(|�̇|+�|�|1/2),
3. u=−��[�̈+2�3/2(|�̇|+�|�|2/3)−1/2(�̇+�|�|2/3sign�)]/[|�̈|+2�3/2(|�̇|+�|�|2/3)1/2],
4. �3,4=�+3�2[�̈+�4/3(|�̇|+0.5�|�|3/4)−1/3(�̇+0.5�|�|3/4 sign�)][|�̈|+�4/3(|�̇|+

0.5�|�|3/4)2/3]−1/2, N3,4=|�|+3�2[|�̈|+�4/3(|�̇|+0.5�|�|3/4)2/3]1/2,u=−���3,4/N3,4.

As follows from Proposition 2 one needs a valid basic set of parameters to produce sets featuring
different convergence rate changing �. The larger the �, the faster the convergence. New valid
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basic sets can be found by simulation based on Theorem 2. While Theorem 2 and the proof of
Theorem 1 allow developing some algebraic criteria for the parameter set choice, it should be done
separately for each r , and seems practical only with r�3.

6. SIMULATION EXAMPLE

6.1. Gain and parameter adjustment

Consider a model example of an ‘exploding’ process

···
x1 = cos 10t (ex2 +x21 sin ẋ1)+(2+sin t)(x22 +1)u

ẋ2 = x1−x2+cos t

where x1 is the output. Obviously, x2 remains bounded, provided x1 is bounded. The task is to
track the function

x1c=0.08sin t+0.12cos 0.3t

Respectively, �= x1−x1c is taken. Global control is not available here in the standard HOSM
framework. The nested three-sliding controller (5) takes the form

u=−��sign(�̈+2(|�̇|3+|�|2)1/6sign(�̇+|�|2/3sign�)

where � is the gain function to be specified further. In addition, the three-sliding quasi-continuous
controller was applied listed in Section 4. The initial conditions x1=6, ẋ1=1, ẍ1=15, x2=10
were taken at t=0. The gain functions

�=(ex2 +x21)/(x
2
2 +1)+1 (17)

and

�=ex2 +x21 +1 (18)

were considered. In all the cases �=5 is taken. The integration was carried out according to
the Euler method (the only reliable integration method with discontinuous dynamics) with the
integration step 10−5.

Both considered controllers were applied with both listed gain functions. With the smaller gain
function (17) the controllers demonstrate their standard transient features (Figures 1 and 2, �=1).
With the redundantly large gain function (18) some large but quickly decreasing chattering of
the control and �̈ arises. One cannot distinguish between the joint graphs of �, �̇, �̈ for the both
controllers in the latter case. It is interesting to mark that the graphs of � and �̇ do not significantly
change with the change of the gain function. In addition, the transient time does not differ much
(Figure 1). This is explained by the common dynamics in the ‘configuration’ space �, �̇ (see the
proof of Theorem 1).

It is seen in Figure 2 that the control magnitude drops instantly from very large values. After the
sliding mode is established, i.e. the trajectory approaches the control discontinuity set �= �̇= �̈=0,
the character sliding-mode control chattering arises with the magnitude ��(t, x(t)).
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Figure 1. Nested three-sliding controller with different gain functions.

In all the cases almost the same sliding accuracy is obtained |�|�2×10−12, |�̇|�3×10−8, |�̈|�
1×10−3 for the nested controller, and |�|�6×10−13, |�̇|�2×10−8, |�̈|�8×10−4 for the quasi-
continuous controller with �=1. After the integration step was changed to 10−6, the accuracy of
the nested controller changed to |�|�2×10−15, |�̇|�4×10−10, |�̈|�1×10−4, which corresponds
to the classical 3-sliding accuracy.

The parametric adjustment is demonstrated for the quasi-continuous controller (Figure 2). It is
seen that with �=0.5 the transient is two times longer, whereas with �=2 it is two times shorter.
In the latter case, with respect to (14); hence, � was changed to the value 23×5=40.

6.2. Regularization procedure

Consider the kinematical car model (Figure 3(a))

ẋ=v cos �, ẏ=v sin �, �̇= v

l
tan 
, 
̇=u

Here, x and y are Cartesian coordinates of the rear-axle middle point, � is the orientation angle, v
is the longitudinal velocity, l is the length between the two axles and 
 is the steering angle, u is
the control. The task is to steer the car from a given initial position to the trajectory y=g(x), while
g(x) and y are measured in real time. Define �= y−g(x). Let v=const=10m/s, l=5m,g(x)=
10sin(0.05x)+5, x= y=�=
=0 at t=0.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2009; 19:1657–1672
DOI: 10.1002/rnc



ADJUSTMENT OF HIGH-ORDER SLIDING-MODE CONTROLLERS 1669

Figure 2. Adjustment of the quasi-continuous controller with �=(ex2 +x21 )/(x
2
2 +1)+1.

It is well known that human driving skills do not depend significantly on the concrete car
parameters. The HOSM approach demonstrates the same features. The relative degree of the system
is three. Apply the 3-sliding quasi-continuous controller

u = −0.5�[�̈+2(|�̇|+|�|2/3)−1/2(�̇+|�|2/3sign�)]/[|�̈|+2(|�̇|)+|�|2/3)1/2]
� =min[1, (|�|+|�̇|+|�̈|)2]
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Figure 3. Regularization of three-sliding quasi-continuous car control: (a) car; (b) car trajectory;
(c) steering-angle derivative; and (d) steering angle.

Only the control gain is to be chosen here and is taken as 0.5. The resulting controller is
continuous, since �(0)=0, but exactly keeping �=0 is lost. The values of �, �̇, �̈ were replaced by
their estimations obtained by the differentiator [8], taken exactly as in [9]. The control was applied
from the moment t=1. The resulting performance is shown in Figure 3. Obviously, the chattering
was removed. The accuracies |�|�0.21, |�̇|�0.32, |�̈|�0.97 were obtained. The performance did
not change, when noises were introduced in the measurements of � not exceeding 0.1m in the
absolute value. Frequency properties of the noises did not show any significance.

7. CONCLUSIONS

This paper is summarized as follows. The controller parameters can be easily adjusted providing
for the desired convergence rate. The discontinuity magnitude can change with respect to the
uncertainty bounds, and it can even vanish in a small vicinity of the goal mode without significant
accuracy loss.

Both main types of HOSM controllers allow functional magnitude gains of very general form
(Theorem 1). The convergence rate is not much influenced by the functional gain. It is defined
mostly by other controller parameters, which can be adjusted providing for the faster or slower
convergence (Propositions 1, 2). Thus, having one valid parameter set, one obtains a whole family
of parameter sets with different convergence rates. The main method of building such basic
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parameters’ sets remains the computer simulation. It is sufficient to carry out such simulation for
the lower-order differential equation not containing uncertainty (Theorem 2).

A list of quasi-continuous controllers is presented in Section 4 with relative degrees less or equal
to four, and simulation-tested combinations of parameters, which are valid with any sufficiently
large gain function. Since in the most practically important problems of output regulation, the
relative degree r does not exceed four, this list constitutes a base for easy application of HOSM
controllers.

It is known that the chattering effect can be diminished, provided the relative degree is artificially
increased, causing smooth control to be obtained [7–19]. Unfortunately, more information or
higher-order differentiation is needed in that case, inevitably increasing the system sensitivity with
respect to the measurement noises. A regularization procedure is proposed in this paper generalizing
the traditional procedure [8] to the HOSM. It removes the control discontinuity in a small vicinity
of the set with zero successive output derivatives. That procedure reduces the chattering, while
still preserving good accuracy (Theorems 3 and 4).

High-order real-time exact differentiators [8] are known to provide for the output-feedback
control of the SISO systems with bounded uncertainties. Unfortunately, their application needs
the boundedness of �(r), which is true only locally or within the problem setting (1), (4). A
differentiator with a known functional bound of �(r) was recently reported [24] and can probably
be implemented here.
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