
Higher-order sliding modes, differentiation and output-feedback control

ARIE LEVANT{

Being a motion on a discontinuity set of a dynamic system, sliding mode is used to keep accurately a given constraint and
features theoretically-infinite-frequency switching. Standard sliding modes provide for finite-time convergence, precise
keeping of the constraint and robustness with respect to internal and external disturbances. Yet the relative degree of the
constraint has to be 1 and a dangerous chattering effect is possible. Higher-order sliding modes preserve or generalize the
main properties of the standard sliding mode and remove the above restrictions. r-Sliding mode realization provides for
up to the rth order of sliding precision with respect to the sampling interval compared with the first order of the standard
sliding mode. Such controllers require higher-order real-time derivatives of the outputs to be available. The lacking
information is achieved by means of proposed arbitrary-order robust exact differentiators with finite-time convergence.
These differentiators feature optimal asymptotics with respect to input noises and can be used for numerical differentia-
tion as well. The resulting controllers provide for the full output-feedback real-time control of any output variable of an
uncertain dynamic system, if its relative degree is known and constant. The theoretical results are confirmed by computer
simulation.

1. Introduction

Control under uncertainty condition is one of the

main topics of the modern control theory. In spite of

extensive and successful development of robust adaptive

control and backstepping technique (Landau et al. 1998,

Kokotovic and Arcak 2001) the sliding-mode control

approach stays probably the main choice when one

needs to deal with non-parametric uncertainties and

unmodelled dynamics. That approach is based on keep-

ing exactly a properly chosen constraint by means of

high-frequency control switching. It exploits the main

features of the sliding mode: its insensitivity to external

and internal disturbances, ultimate accuracy and finite-

time transient. However, the standard sliding-mode

usage is bounded by some restrictions. The constraint

being given by an equality of an output variable � to

zero, the standard sliding mode may be implemented

only if the relative degree of � is 1. In other words,

control has to appear explicitly already in the first

total derivative _��. Also, high frequency control switch-

ing leads to the so-called chattering effect which is exhib-

ited by high frequency vibration of the controlled plant

and can be dangerous in applications.

A number of methods were proposed to overcome

these difficulties. In particular, high-gain control with

saturation approximates the sign-function and

diminishes the chattering, while on-line estimation of

the so-called equivalent control (Utkin 1992) is used to

reduce the discontinuous-control component (Slotine

and Li 1991), the sliding-sector method (Furuta and

Pan 2000) is suitable to control disturbed linear time-

invariant systems. Yet, the sliding-mode order approach

(Levantovsky 1985, Levant 1993) seems to be the most

comprehensive, for it allows to remove all the above

restrictions, while preserving the main sliding-mode fea-

tures and improving its accuracy. Independently devel-

oped dynamical (Sira-Ramı́rez 1993, Rios-Bolı́var et al.

1997) and terminal (Man et al. 1994) sliding modes are

closely related to this approach.

Suppose that � � 0 is kept by a discontinuous

dynamic system. While successively differentiating �
along trajectories, a discontinuity will be encountered

sooner or later in the general case. Thus, sliding

modes � � 0 may be classified by the number r of the

first successive total derivative �ðrÞ which is not a con-

tinuous function of the state space variables or does not

exist due to some reason like trajectory non-uniqueness.

That number is called sliding order (Levant 1993,

Fridman and Levant 1996, Bartolini et al. 1999 a). The

standard sliding mode on which most variable structure

systems (VSS) are based is of the first order ( _�� is dis-

continuous). While the standard modes feature finite

time convergence, convergence to higher-order sliding

modes (HOSM) may be asymptotic as well. While the

standard sliding mode precision is proportional to the

time interval between the measurements or to the

switching delay, r-sliding mode realization may provide

for up to the rth order of sliding precision with respect

to the measurement interval (Levant 1993). Properly

used, HOSM totally removes the chattering effect.

Trivial cases of asymptotically stable HOSM are

often found in standard VSSs. For example there is an

asymptotically stable 2-sliding mode with respect to the

constraint x ¼ 0 at the origin x ¼ _xx = 0 (at one point

only) of a two-dimensional VSS keeping the constraint

xþ _xx ¼ 0 in a standard 1-sliding mode. Asymptotically

stable or unstable HOSMs inevitably appear in VSSs

International Journal of Control ISSN 0020–7179 print/ISSN 1366–5820 online # 2003 Taylor & Francis Ltd
http://www.tandf.co.uk/journals

DOI: 10.1080/0020717031000099029

INT. J. CONTROL, 2003, VOL. 76, NOS 9/10, 924–941

Received 15 May 2002. Accepted 2 September 2002.
{School of Mathematical Sciences, Tel-Aviv University,

Ramat-Aviv, 69978 Tel-Aviv, Israel. e-mail: levant@post.tau.
ac.il



with fast actuators (Fridman 1990, Fridman and Levant
1996, 2002). Stable HOSM leads in that case to sponta-
neous disappearance of the chattering effect.
Asymptotically stable or unstable sliding modes of any
order are well known (Emelyanov et al. 1986, Elmali
and Olgac 1992, Fridman and Levant 1996). Dynamic
sliding modes (Sira-Ramı́rez 1993, Spurgeon and Lu
1997) produce asymptotically stable higher-order sliding
modes and are to be specially mentioned here.

A family of finite-time convergent sliding mode con-
trollers is based on so-called ‘terminal sliding modes’
(Man et al. 1994, Wu et al. 1998). Having been indepen-
dently developed, the first version of these controllers is
close to the so-called ‘2-sliding algorithm with a pre-
scribed convergence law’ (Emelyanov et al. 1986,
Levant 1993). The latter version is intended actually to
provide for arbitrary-order sliding mode with finite-time
convergence. Unfortunately, the resulting closed-loop
systems have unbounded right-hand sides, which pre-
vents the very implementation of the Filippov theory.
Thus, such a mode cannot be considered as HOSM. The
corresponding control is formally bounded along each
transient trajectory, but takes on infinite values in any
vicinity of the steady state. In order to avoid infinite
control values all trajectories are to start from a pre-
scribed sector of the state space. The very definition
and the existence of the solution require some special
study here.

Arbitrary-order sliding controllers with finite-time
convergence were only recently demonstrated (Levant
1998 b, 2001 a). The proofs of these results are for the
first time published in the present paper. These control-
lers provide for full output control of uncertain single-
input–single-output (SISO) weakly-minimum-phase
dynamic systems with a known constant relative degree
r. The control influence is a discontinuous function of
the output and its r� 1 real-time-calculated successive
derivatives. The controller parameters may be chosen in
advance, so that only one parameter is to be adjusted in
order to control any system with a given relative degree.
No detailed mathematical model is needed. The system’s
relative degree being artificially increased, sliding con-
trol of arbitrary smoothness order can be achieved,
completely removing the chattering effect. Since many
mechanical systems have constant relative degree due,
actually, to the Newton law, the application area for
these controllers is very wide.

Any implementation of the above controllers
requires real-time robust estimation of the higher-
order total output derivatives. The popular high-gain
observers (Dabroom and Khalil 1997) would destroy
the exactness and finite-time-convergence features of
the proposed controllers. The first-order robust exact
differentiator (Levant 1998 a) can be used here, but its
successive application is cumbersome and not effective.

The problem is solved by recently presented arbitrary-
order robust exact finite-time-convergent differentiators
(Levant 1999, 2001 a,b). The proposed lth-order differ-
entiator allows real-time robust exact differentiation up
to the order l, provided the next ðl þ 1Þth input deriva-
tive is bounded. Its performance is proved to be asymp-
totically optimal in the presence of small Lebesgue-
measurable input noises. This paper is the first regular
publication of these differentiators and of the corre-
sponding proofs. Their features allow broad implemen-
tation in the non-linear feedback control theory due to
the separation principle (Atassi and Khalil 2000) trivi-
ality. They can be also successfully applied for numerical
differentiation.

The rth-order sliding controller combined with the
ðr� 1Þth-order differentiator produce an output-feed-
back universal controller for SISO processes with per-
manent relative degree (Levant 2002). Having been only
recently obtained, the corresponding results are only
briefly described in this paper, for the author intends
to devote a special paper to this subject. The features
of the proposed universal controllers and differentiators
are illustrated by computer simulation.

2. Preliminaries: higher-order sliding modes

Let us recall first that according to the definition by
Filippov (1988) any discontinuous differential equation
_xx ¼ vðxÞ, where x 2 R

n and v is a locally bounded
measurable vector function, is replaced by an equivalent
differential inclusion _xx 2 VðxÞ. In the simplest case,
when v is continuous almost everywhere, VðxÞ is the
convex closure of the set of all possible limits of vðyÞ
as y! x, while fyg are continuity points of v. Any sol-
ution of the equation is defined as an absolutely contin-
uous function xðtÞ, satisfying the differential inclusion
almost everywhere.

Consider a smooth dynamic system _xx ¼ vðxÞwith a
smooth output function �, and let the system be closed
by some possibly-dynamical discontinuous feedback
(figure 1). Then, provided that successive total time deri-
vatives �; _��; . . . ; �ðr�1Þ are continuous functions of the
closed-system state space variables, and the r-sliding
point set

� ¼ _�� ¼ €�� ¼ � � � ¼ �ðr�1Þ ¼ 0 ð1Þ

is non-empty and consists locally of Filippov trajec-
tories, the motion on set (1) is called r-sliding mode
(rth-order sliding mode, Levantovsky 1985, Levant
1993, Fridman and Levant 1996).

The additional condition of the Filippov velocity set
V containing more than one vector may be imposed in
order to exclude some trivial cases. It is natural to call
the sliding order r strict if �ðrÞ is discontinuous or does

Higher-order sliding modes 925



not exist in a vicinity of the r-sliding point set, but slid-
ing-mode orders are mostly considered strict by default.

Hence, r-sliding modes are determined by equalities
(1) which impose an r-dimensional condition on the
state of the dynamic system. The sliding order charac-
terizes the dynamics smoothness degree in some vicinity
of the sliding mode.

Suppose that �; _��; €��; . . . ; �ðr�1Þ are differentiable
functions of x and that

rank ½r�;r _��; . . . ;r�ðr�1Þ� ¼ r ð2Þ

Equality (2) together with the requirement for the cor-
responding derivatives of � to be differentiable functions
of x is referred to as r-sliding regularity condition. If
regularity condition (2) holds, then the r-sliding set is
a differentiable manifold and �; _��; . . . ; �ðr�1Þ may be sup-
plemented up to new local coordinates.

Proposition 1 (Fridman and Levant 1996): Let regu-
larity condition (2) be fulfilled and r-sliding manifold (1)
be non-empty. Then an r-sliding mode with respect to
the constraint function � exists if and only if the inter-
section of the Filippov vector-set field with the tangential
space to manifold (1) is not empty for any r-sliding
point.

Proof: The intersection of the Filippov set of admissi-
ble velocities with the tangential space to the sliding
manifold (1) induces a differential inclusion on this
manifold (figure 1). This inclusion satisfies all the Fi-
lippov conditions for solution existence. Therefore
manifold (1) is an integral one. &

A sliding mode is called stable if the corresponding
integral sliding set is stable. The above definitions are
easily extended to include non-autonomous differential

equations by introduction of the fictitious equation
_tt ¼ 1. All the considerations are literally translated to
the case of the closed-loop controlled system
_xx ¼ f ðt; x; uÞ; u ¼ Uðt; xÞ with discontinuous U and
smooth f ; �.

Real sliding: Up to this moment only ideal sliding
modes were considered which keep � � 0. In reality,
however, switching imperfections being present, ideal
sliding cannot be attained. The simplest switching
imperfection is discrete switching caused by discrete
measurements. It was proved (Levant 1993) that the
best possible sliding accuracy attainable with discrete
switching in �ðrÞ is given by the relation j�j � � r,
where � > 0 is the minimal switching time interval.
Moreover, the relations j�ðkÞj � � r�k; k ¼ 0; 1; . . . ; r are
satisfied at the same time ð�ð0Þ ¼ �Þ. Thus, in order to
achieve the rth order of sliding precision in discrete rea-
lization, the sliding mode order in the continuous-time
VSS has to be at least r. The standard sliding modes
provide for the first-order real sliding only. The second
order of real sliding was achieved by discrete switching
modifications of the 2-sliding algorithms (Levant 1993,
Bartolini et al. 1998) and by a special discrete switching
algorithm (Su et al. 1994). Real sliding of higher orders
is demonstrated in Fridman and Levant (1998) and
Levant (1998 b, 2001 a).

In practice the final sliding accuracy is always
achieved in finite time. When asymptotically stable
modes are considered, however, it is not observable at
any fixed moment, for the convergence time tends to
infinity with the rise in accuracy. In the known cases
the limit accuracy of the asymptotically stable modes
can be shown to be of the first order only (Slotine and
Li 1991). The above-mentioned highest precision is
probably obtained only with finite-time-convergence
sliding modes.

3. The problem statement and its solutions with low

relative degrees

Consider a dynamic system of the form

_xx ¼ aðt; xÞ þ bðt; xÞu; � ¼ �ðt; xÞ ð3Þ

where x 2 R
n, u 2 R, a, b and � are smooth unknown

functions, the dimension n is also unavailable. The rela-
tive degree r of the system is assumed to be constant and
known. The task is to fulfil the constraint �ðt; xÞ ¼ 0 in
finite time and to keep it exactly by some feedback.

Extend system (3) by introduction of a fictitious vari-
able xnþ1 ¼ t; _xxnþ1 ¼ 1. Denote ae ¼ ða; 1Þt; be ¼ ðb; 0Þt,
where the last component corresponds to xnþ1. The
equality of the relative degree to r means that the Lie
derivatives Lbe�, LbeLae�; . . . ;LbeL

r�2
ae

equal zero identi-
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cally in a vicinity of a given point and LbeL
r�1
ae

� is not
zero at the point (Isidori 1989).

In a simplified way the equality of the relative degree
to r means that u first appears explicitly only in the rth
total derivative of �. In that case regularity condition (2)
is satisfied (Isidori 1989) and ð@=@uÞ�ðrÞ 6¼ 0 at the given
point. The output � satisfies an equation of the form

�ðrÞ ¼ hðt; xÞ þ gðt; xÞu ð4Þ

It is easy to check that g ¼ LbeL
r�1
ae

� ¼ ð@=@uÞ�ðrÞ;
h ¼ Lrae�. Obviously, h is the rth total time derivative
of � calculated with u ¼ 0. In other words, unknown
functions h and g may be defined using only input–out-
put relations. The heavy uncertainty of the problem pre-
vents immediate reduction of (3) to any standard form
by means of standard approaches based on the knowl-
edge of a, b and �. Nevertheless, the very existence of
standard form (4) is important here.

Proposition 2 (Fridman and Levant 1996): Let system
(3) have relative degree r with respect to the output
function � at some r-sliding point ðt0; x0Þ. Let, also,
u ¼ Uðt; xÞ, the discontinuous function U taking on
values from sets ½K ;1Þ and ð�1;�K � on some sets of
non-zero measure in any vicinity of each r-sliding point
near point ðt0; x0Þ. Then this provides, with sufficiently
large K, for the existence of r-sliding mode in some vici-
nity of the point ðt0; x0Þ:

Proof: Proposition 2 is a straight-forward conse-
quence of Proposition 1 and equation (4). &

The trivial controller u ¼ �Ksign � satisfies
Proposition 2. Usually, however, such a mode is not
stable. The r-sliding mode motion is described by the
equivalent control method (Utkin 1992), on the other
hand, this dynamics coincides with the zero-dynamics
(Isidori 1989) of the corresponding systems.

The problem is to find a discontinuous feedback
u ¼ Uðt; xÞ causing the appearance of a finite-time con-
vergent r-sliding mode in (3). That new controller has to
generalize the standard 1-sliding relay controller
u ¼ �Ksign �. Hence, gðt; yÞ and hðt; yÞ in (4) are
assumed to be bounded, g > 0. Thus, it is required
that for some Km;KM;C > 0

0 < Km � @

@u
�ðrÞ � KM; j�ðrÞju¼0j � C ð5Þ

3.1. Solutions of the problem with relative degrees
r ¼ 1; 2

In case r ¼ 1 calculation shows that

_��ðt; x; uÞ ¼ � 0
t ðt; xÞ þ � 0

xðt; xÞaðt; xÞ þ � 0
xðt; xÞbðt; xÞu

and the problem is easily solved by the standard relay
controller u ¼ �	 sign �, with a > C=Km. Here
h ¼ _��ju¼0 ¼ � 0

t þ � 0
xa is globally bounded and

g ¼ ð@=@uÞ _�� ¼ � 0
xb. The first-order real-sliding accuracy

with respect to the sampling interval is ensured.
Let r ¼ 2. The following list includes only few most

known controllers. The so-called twisting controller
(Levantovsky 1985, Emelyanov et al. 1986, Levant
1993) and the convergence conditions are given by

u ¼ �ðr1sign �þ r2 sign _��Þ; r1 > r2 > 0; ð6Þ

ðr1 þ r2ÞKm � C > ðr1 � r2ÞKM þ C;

ðr1 � r2ÞKm > C

A particular case of the controller with prescribed con-
vergence law (Emelyanov et al. 1986, Levant 1993) is
given by

u ¼ �	 sign ð _��þ 
j�j1=2 sign �Þ; 	; 
 > 0; ð7Þ

	Km � C > 
2=2

Controller (7) is close to terminal sliding mode control-
lers (Man et al. 1994). The so-called sub-optimal con-
troller (Bartolini et al. 1998, 1999 a, b) is given by

u ¼ �r1 sign ð�� ��=2Þ þ r2 sign �
�; r1 > r2 > 0 ð8Þ

2½ðr1 þ r2ÞKm � C� > ðr1 � r2ÞKM þ C;

ðr1 � r2ÞKm > C ð9Þ

where �� is the current value of � detected at the closest
time when _�� was 0. The initial value of �� is 0. Any
computer implementation of this controller requires suc-
cessive measurements of _�� or � with some time step.
Usually the detection of the moments when _�� changes
its sign is performed. The control value u depends actu-
ally on the history of _�� and � measurements, i.e. on _��ð�Þ
and �ð�Þ.

Theorem 1 (Levant 1993, Bartolini et al. 1998): 2-slid-
ing controllers (6)–(8) provide for finite-time convergence
of any trajectory of (3) and (5) to 2-sliding mode � � 0.
The convergence time is a locally bounded function of
the initial conditions.

Let the measurements be carried out at times ti with
constant step � > 0, �i ¼ �ðti; xðtiÞÞ, ��i ¼ �i � �i�1,
t 2 ½ti; tiþ1Þ. Substituting �i for �, sign ��i for sign _��, and
sign (��i � 
� j�ij1=2 sign�i) for sign ( _��� 
j�j1=2 sign�)
achieve discrete-sampling versions of the controllers.

Theorem 2 (Levant 1993, Bartolini et al. 1998): Dis-
crete-sampling versions of controllers (6)–(8) provide for
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the establishment of the inequalities j�j < �0�
2; j _��j <

�1� for some positive �0; �1.

All listed controllers may be used also with relative
degree 1 in order to remove the chattering and improve
the sliding accuracy. Indeed, let u ¼ ’ð�ð�Þ; _��ð�ÞÞ be one
of controllers (6)–(8), depending possibly on the pre-
vious measurements as in (8), then under certain natural
conditions (Levant 1993, Bartolini et al. 1999 a) the con-
troller u ¼ �sign � can be replaced by the controller
_uu ¼ �uwith juj > 1; _uu ¼ ’ð�ð�Þ; _��ð�ÞÞ with juj � 1.

Consider the general case. Let u be defined from the
equality

d

dt
Pr�1

d

dt

� �
�

� �
¼ � sign Pr�1

dt

dt

� �
�

� �
;

where Pr�1ð
Þ ¼ 
ðr�1Þ þ 	1

ðr�2Þ þ � � � þ 	r�1 is a

stable polynomial, 	i 2 R. In the case r ¼ 1, P0 ¼ 1
achieve the standard 1-sliding mode. Let r > 1. The r-
sliding mode exists here at the origin and is asymptoti-
cally stable. There is also a 1-sliding mode on the mani-
fold Pr�1ðd=dtÞ� ¼ 0. Trajectories transfer in finite time
into the 1-sliding mode on the manifold Pr�1ðd=dtÞ� ¼ 0
and then exponentially converge to the r-sliding mode.
Dynamic-sliding-mode controllers (Sira-Ramı́rez 1993,
Spurgeon and Lu 1997) are based on such modes.
Unfortunately, due to the dependence on higher-order
derivatives of � the control is not bounded here even
with small �. Also the accuracy here is the same as of
the 1-sliding mode.

4. Building an arbitrary-order sliding controller

Let p be any positive number, p � r. Denote

N1;r ¼ j�jðr�1Þ=r

Ni;r ¼ ðj�jp=r þ j _��jp=ðr�1Þ þ � � � þ j�ði�1Þjp=ðr�iþ1ÞÞðr�iÞ=p;

i ¼ 1; . . . ; r� 1

Nr�1;r ¼ ðj�jp=r þ _��jðp=ðr�1Þ þ � � � þ j�ðr�2Þjp=2Þ1=p

0;r ¼ �

1;r ¼ _��þ �1N1;r sign ð�Þ

i;r ¼ �ðiÞ þ �iNi;r sign ði�1;rÞ; i ¼ 1; . . . ; r� 1

where �1; . . . ; �r�1 are positive numbers.

Theorem 3 (Levant 1998 a, 2001): Let system (3) have
relative degree r with respect to the output function �
and (5) be fulfilled. Suppose also that trajectories of sys-
tem (3) are infinitely extendible in time for any Lebes-

gue-measurable bounded control. Then with properly
chosen positive parameters �1; . . . ; �r�1, 	 the controller

u ¼ �	 sign ðr�1;rð�; _��; . . . ; �ðr�1ÞÞÞ ð10Þ

leads to the establishment of an r-sliding mode � � 0
attracting each trajectory in finite time. The convergence
time is a locally bounded function of initial conditions.

The proof of Theorem 3 is given in Appendix 1. It is
the first publication of the proof. The assumption on the
solution extension possibility means in practice that the
system be weakly minimum phase. The positive par-
ameters �1; . . . ; �r�1 are to be chosen sufficiently large
in the index order. They determine a controller family
applicable to all systems (3) of relative degree r satisfy-
ing (5) for some C, Km and KM. Parameter 	 > 0 is to be
chosen specifically for any fixed C, Km and KM. The
proposed controller may be generalized in many ways.
For example, coefficients of Ni;r may be any positive
numbers, equation (10) can be smoothed (Levant 1999).

Certainly, the number of choices of �i is infinite.
Here are a few examples with �i tested for r � 4, p
being the least common multiple of 1; 2; . . . ; r. The first
is the relay controller, the second coincides with (7).

1: u ¼ �	 sign �;

2: u ¼ �	 sign ð _��þ j�j1=2sign �Þ

3: u ¼ �	 ð€��þ 2ðj _��j3 þ j�2Þ1=6sign ð _��þ j�j2=3sign �ÞÞ

4: u ¼ �	 f����þ 3ð€��6 þ _��4 þ j�j3Þ1=12sign ½€��þ ð _��4

þ j�j3Þ1=6sign ð _��þ 0:5j�j3=4sign �Þ�g

5: u ¼ �	 sign ð�ð4Þ þ �4ðj�j12 þ j _��j15 þ j€��j20

þ j����j30Þ1=60sign ð����þ �3ðj�j12 þ j _��j15

þ j€��j20Þ1=30sign ð€��þ �2ðj�j12

þ j _��j15Þ1=20sign ð _��þ �1j�j4=5sign �ÞÞÞÞ

Obviously, parameter 	 is to be taken negative with
ð@=@uÞ�ðrÞ < 0. Controller (10) is certainly insensitive
to any disturbance which keeps the relative degree and
(5). No matching condition having been supposed, the
residual uncertainty reveals itself in the r-sliding motion
equations (in other words, in zero dynamics).

The idea of the controller is that a 1-sliding mode is
established on the smooth parts of the discontinuity set
G of (10) (figures 2, 3). That sliding mode is described by
the differential equation r�1;r ¼ 0 providing in its turn
for the existence of a 1-sliding mode r�2;r ¼ 0. But the
primary sliding mode disappears at the moment when
the secondary one is to appear. The resulting movement
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takes place in some vicinity of the cylindrical subset of G
satisfying r�2;r ¼ 0, transfers in finite time into some
vicinity of the subset satisfying r�3;r ¼ 0 and so on.
While the trajectory approaches the r-sliding set, set G
retracts to the origin in the coordinates �; _��; . . . ; �ðr�1Þ.

Controller (10) requires the availability of
�; _��; . . . ; �ðr�1Þ. That information demand may be low-
ered. Let the measurements be carried out at times ti
with constant step � > 0. Consider the controller

uðtÞ ¼ �	 sign ð��
ðr�2Þ
i þ �r�1�Nr�1;rð�i; _��i; . . . ; �

ðr�2Þ
i Þ

sign ðr�2;rð�i; _��i; . . . ; �
ðr�2Þ
i ÞÞÞ ð11Þ

where �
ðjÞ
i ¼ �ðjÞðti; xðtiÞÞ;��

ðr�2Þ
i ¼ �

ðr�2Þ
i � �

ðr�2Þ
i�1 ;

t 2 ½ti; tiþ1Þ.

Theorem 4 (Levant 1998 b, 2001 a): Under conditions
of Theorem 1 with discrete measurements both algo-
rithms (10) and (11) provide in finite time for fulfilment
of the inequalities

j�j < a0�
r; j _��j < a1�

r�1; . . . ; j�ðr�1Þj < ar�1�

for some positive constants a0; a1; . . . ; ar�1. The conver-
gence time is a locally bounded function of initial con-
ditions.

That is the best possible accuracy attainable with
discontinuous �ðrÞ separated from zero (Levant 1993).
The proof of Theorem 4 is given in Appendix 1.
Following are some remarks on the usage of the pro-
posed controllers.

Convergence time may be reduced increasing the
coefficients �j. Another way is to substitute 
�j�ð jÞ for
�ð jÞ, 
r	 for 	 and 
� for � in (10) and (11), 
 > 1,
causing convergence time to be diminished approxi-
mately by 
 times. As a result the coefficients of Ni;r

will differ from 1.
Local application of the controller. In practical appli-

cations condition (5) is often invalid globally, but still
holds in some restricted area of the state space contain-
ing the actual region of the system operation. In fact,
that is always true, if the constraint keeping problem is
well posed from the engineering point of view. The prac-
tical implementation of the controller is straight-for-
ward in that case and is based on the following simple
proposition proved in Appendix 1.

Proposition 3: Under the conditions of Theorem 3, for
any RM > 0 there exists such Rm, RM > Rm > 0, that
any trajectory starting in the disc of radius Rm which is
centred at the origin of the space �; _��; . . . ; �ðr�1Þ does
not leave the larger disc of the radius RM while conver-
ging to the origin. Moreover, RM � Rm and the conver-
gence time can be made arbitrarily small choosing
�1; . . . ; �r�1; 	, sufficiently large in the list order.

Implementation of r-sliding controller when the rela-
tive degree is less than r. Let the relative degree k of the
process be less than r. Introducing successive time deri-
vatives u; _uu; . . . ; uðr�k�1Þ as a new auxiliary variables and
uðr�kÞ as a new control, achieve a system with relative
degree r. Condition (5) is locally satisfied for the new
control. The standard r-sliding controller may be now
locally applied. The resulting control uðtÞ is an
ðr� k� 1Þ-smooth function of time with k < r� 1, a
Lipschitz function with k ¼ r� 1 and a bounded ‘infi-
nite-frequency switching’ function with k ¼ r. A global
controller was developed by Levant (1993) for
r ¼ 2; k ¼ 1.

Chattering removal. The same trick removes the
chattering effect. For example, substituting uðr�1Þ for u
in (10), receive a local r-sliding controller to be used
instead of the relay controller u ¼ � sign � and attain
the rth-order sliding precision with respect to � by
means of an (r� 2)-times differentiable control with a
Lipschitzian (r� 2)th time derivative. It has to be modi-
fied like in (Levant 1993) in order to provide for the
global boundedness of u and global convergence.

Controlling systems non-linear on control. Consider a
system _xx ¼ f ðt; x; uÞ non-linear on control. Let
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ð@=@uÞ�ðiÞðt; x; uÞ ¼ 0 for i ¼ 1; :::; r� 1; ð@=@uÞ�ðrÞðt;
x; uÞ > 0. It is easy to check that

�ðrþ1Þ ¼ Lrþ1
u �þ @

@u
�ðrÞ _uu;

Luð�Þ ¼
@

@t
ð�Þ þ @

@x
ð�Þf ðt; x; uÞ

The problem is now reduced to that considered above
with relative degree rþ 1 by introducing a new auxiliary
variable u and a new control v ¼ _uu.

Real-time control of output variables. The implemen-
tation of the above-listed r-sliding controllers requires
real-time observation of the successive derivatives _��,
€��; . . . ; �ðr�1Þ. In case system (3) is known and the full
state is available, these derivatives may be directly cal-
culated. In the real uncertainty case the derivatives are
still to be real-time evaluated in some way. Thus, one
would not theoretically need to know any model of the
controlled process, only the relative degree and three
constants from (5) were needed in order to adjust the
controller. Unfortunately, the problem of successive
real-time exact differentiation is usually considered as
practically insoluble. Nevertheless, as is shown in the
next section, the boundedness of �ðrÞ, which follows
from (4) and (5) allows robust exact estimation of _��,
€��; . . . ; �ðr�1Þ in real time.

5. Arbitrary-order exact robust differentiator

Real-time differentiation is an old and well-studied
problem. The main difficulty is the obvious differentia-
tion sensitivity to input noises. The popular high-gain
differentiators (Atassi and Khalil 2000) provide for an
exact derivative when their gains tend to infinity.
Unfortunately at the same time their sensitivity to
small high-frequency noises also infinitely grows. With
any finite gain values such a differentiator has also a
finite bandwidth. Thus, being not exact, it is, at the
same time, insensitive with respect to high-frequency
noises. Such insensitivity may be considered both as
advantage or disadvantage depending on the circum-
stances. Another drawback of the high-gain differentia-
tors is their peaking effect: the maximal output value
during the transient grows infinitely when the gains
tend to infinity.

The main problem of the differentiator feedback
application is the so-called separation problem. The
separation principle means that a controller and an
observer (differentiator) can be designed separately, so
that the combined observer-controller output feedback
preserve the main features of the controller with the full
state available. The separation principle was proved for
asymptotic continuous-feedback stabilization of auton-
omous systems with high-gain observers (Atassi and
Khalil 2000, Isidori et al. 2000). That important result

is realized in spite of the non-exactness of high-gain
observers with any fixed finite gain values. The qualita-
tive explanation is that the output derivatives of all
orders vanish during the continuous-feedback stabiliz-
ation. Thus, the frequency of the signal to be differen-
tiated also vanishes and the differentiator provides for
asymptotically exact derivatives. On the contrary, in the
case considered in the previous section �ðrÞ is chattering
with a finite magnitude and a frequency tending to infi-
nity while approaching the r-sliding mode. Thus, the
signal � is problematic for a high-gain differentiator.
Indeed, the closer to the r-sliding mode, the higher
gain is needed to produce a good derivative estimation
of �ðr�1Þ. Actually, the high-gain differentiator will dif-
ferentiate only the slowly changing average output com-
ponent. As a result, convergence into some vicinity of
the r-sliding mode could only be attained.

The sliding-mode differentiators (Golembo et al.
1976, Yu and Xu 1996) also do not provide for exact
differentiation with finite-time convergence due to the
output filtration. The differentiator by Bartolini et al.
(2000) is based on a 2-sliding-mode controller using
the real-time measured sign of the derivative to be cal-
culated. Therefore, the first finite difference of the differ-
entiator input is used with the sampling step
proportional to the square root of the maximal noise
magnitude. That is rather inconvenient and requires
possibly lacking information on the noise.

Exact derivatives may be calculated by successive
implementation of a robust exact first-order differentia-
tor (Levant 1998 a) with finite-time convergence. That
differentiator is based on 2-sliding mode and is proved
to feature the best possible asymptotics in the presence
of infinitesimal Lebesgue-measurable measurement
noises, if the second time derivative of the unknown
base signal is bounded. The accuracy of that differentia-
tor is proportional to "1=2, where " is the maximal meas-
urement-noise magnitude and is also assumed to be
unknown. Therefore, having been n times successively
implemented, that differentiator will provide for the nth-
order differentiation accuracy of the order of "ð2

�nÞ.
Thus, the differentiation accuracy deteriorates rapidly.
On the other hand, it is proved by Levant (1998 a) that
when the Lipschitz constant of the nth derivative of
the unknown clear-of-noise signal is bounded by
a given constant L, the best possible differentiation
accuracy of the ith derivative is proportional to
Li=ðnþ1Þ"ðnþ1�iÞ=ðnþ1Þ, i ¼ 0; 1; . . . ; n. Therefore, a special
differentiator is to be designed for each differentiation
order.

Let input signal f ðtÞ be a function defined on ½0;1Þ
consisting of a bounded Lebesgue-measurable noise
with unknown features and an unknown base signal
f0ðtÞ with the nth derivative having a known Lipschitz
constant L > 0. The problem is to find real-time robust
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estimations of _ff0ðtÞ; €ff0ðtÞ; . . . ; f
ðnÞ
0 ðtÞ being exact in the

absence of measurement noises.
Two similar recursive schemes of the differentiator

are proposed here. Let an ðn� 1Þth-order differentiator
Dn�1ðf ð�Þ;LÞ produce outputs Di

n�1; i ¼ 0; 1; . . . ; n� 1,
being estimations of f0; _ff0; €ff0; . . . ; f

ðn�1Þ
0 for any input

f ðtÞ with f ðn�1Þ0 having Lipschitz constant L > 0. Then
the nth-order differentiator has the outputs zi ¼ Di

n,
i ¼ 0; 1; . . . ; n, defined as

_zz0 ¼ v; v ¼ �
0jz0 � f ðtÞjn=ðnþ1Þsign ðz0 � f ðtÞÞ þ z1

z1 ¼ D0
n�1ðvð�Þ;LÞ; . . . ; zn ¼ Dn�1

n�1ðvð�Þ;LÞ

9=
;

ð12Þ
Here D0ðf ð�Þ;LÞ is a simple non-linear filter

D0 : _zz ¼ �
 sign ðz� f ðtÞÞ; 
 > L ð13Þ
Thus, the first-order differentiator coincides here

with the above-mentioned differentiator (Levant
1998 a) :

_zz0 ¼ v; v ¼ �
0jz0 � f ðtÞj1=2sign ðz0 � f ðtÞÞ þ z1

_zz1 ¼ �
1sign ðz1 � vÞ ¼ �
1sign ðz0 � f ðtÞÞ

9=
;

ð14Þ
Another recursive scheme is based on the differentia-

tor (14) as the basic one. Let ~DDn�1ðf ð�Þ;LÞ be such a new
ðn� 1Þth-order differentiator, n � 1; ~DD1ðf ð�Þ;LÞ coincid-
ing with the differentiator D1ðf ð�Þ;LÞ) given by (14).
Then the new scheme is defined as

_zz0 ¼ v

v ¼ �
0jz0 � f ðtÞjn=ðnþ1Þsign ðz0 � f ðtÞÞ þ w0 þ z1

_ww0 ¼ �	0jz0 � f ðtÞjðn�1Þ=ðnþ1Þsign ðz0 � f ðtÞÞ

z1 ¼ ~DD0
n�1ðvð�Þ;L; . . . ; zn ¼ ~DDn�1

n�1ðvð�Þ;LÞ

9>>>>>>>>=
>>>>>>>>;
ð15Þ

The resulting 2nd-order differentiator (Levant 1999) is

_zz0 ¼ v0; v0 ¼ �
0jz0 � f ðtÞj2=3sign ðz0 � f ðtÞÞ þ w0 þ z1

_ww0 ¼ �	0jz0 � f ðtÞj1=3sign ðz0 � f ðtÞÞ

_zz1 ¼ v1; v1 ¼ �
1jz1 � v0j1=2sign ðz1 � v0Þ þ w1

_ww1 ¼ �	1sign ðz1 � v0Þ; z2 ¼ w1

Similarly, a 2nd-order differentiator from each of
these sequences may be used as a base for a new
recursive scheme. An infinite number of differentiator
schemes may be constructed in this way. The only
requirement is that the resulting systems be homo-
geneous in a sense described further. While the author

has checked only the above two schemes (12), (13)
and (14), (15), the conjecture is that all such
schemes produce working differentiators, provided
suitable parameter choice. Differentiator (12) takes on
the form

_zz0 ¼ v0;

v0 ¼ �
0jz0 � f ðtÞjðn=ðnþ1Þsign ðz0 � f ðtÞÞ þ z1

_zz1 ¼ v1; v1 ¼ �
1jz1 � v0jðn�1Þ=nsign ðz1 � v0Þ þ z2

..

.

_zzn�1 ¼ vn�1;

vn�1 ¼ �
n�1jzn�1 � vn�2j1=2sign ðzn�1 � vn�2Þ þ zn

_zzn ¼ �
n sign ðzn � vn�1Þ

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

ð16Þ

Theorem 5: The parameters being properly chosen, the
following equalities are true in the absence of input
noises after a finite time of a transient process

z0 ¼ f0ðtÞ; zi ¼ vi�1 ¼ f
ðiÞ
0 ðtÞ; i ¼ 1; . . . ; n

Moreover, the corresponding solutions of the dynamic
systems are Lyapunov stable, i.e. finite-time stable
(Rosier 1992). The theorem means that the equalities
zi ¼ f

ðiÞ
0 ðtÞ are kept in 2-sliding mode, i ¼ 0; . . . ; n� 1.

Here and further all Theorems are proved in Appendix
2.

Theorem 6: Let the input noise satisfy the inequality
jf ðtÞ � f0ðtÞj � ". Then the following inequalities are
established in finite time for some positive constants �i,
�i depending exclusively on the parameters of the
differentiator

jzi � f
ðiÞ
0 ðtÞj � �i"

ðn�iþ1Þ=ðnþ1Þ; i ¼ 0; . . . ; n

jvi � f
ðiþ1Þ
0 ðtÞj � �i"

ðn�iÞ=ðnþ1Þ; i ¼ 0; . . . ; n� 1

Consider the discrete-sampling case, when z0ðtjÞ � f ðtjÞ
is substituted for z0 � f ðtÞ with tj � t < tjþ1; tjþ1 � tj ¼
� > 0.

Theorem 7: Let � > 0 be the constant input sampling
interval in the absence of noises. Then the following in-
equalities are established in finite time for some positive
constants �i, �i depending exclusively on the parameters
of the differentiator
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jzi � f
ðiÞ
0 ðtÞj � �i�

n�iþ1; i ¼ 0; . . . ; n

jvi � f
ðiþ1Þ
0 ðtÞj � �i�

n�i; i ¼ 0; . . . ; n� 1

In particular, the nth derivative error is proportional
to � . The latter theorem means that there are a number
of real sliding modes of different orders. Nevertheless,
nothing can be said on the derivatives of vi and of
_zzi, because they are not continuously differentiable
functions.

Homogeneity of the differentiators. The differentia-
tors are invariant with respect to the transformation

ðt; f ; zi; vi;wiÞ7!ð�t; �nþ1f ; �n�iþ1zi; �n�ivi; �n�iwiÞ

The parameters 	i, 
i are to be chosen recursively in
such a way that 	1; 
1; . . . ; 	n; 
n, 
n provide for the
convergence of the ðn� 1Þth-order differentiator with
the same Lipschitz constant L, and 	0, 
0 be sufficiently
large (	0 is chosen first). The best way is to choose them
by computer simulation. A choice of the 5th-order dif-
ferentiator parameters with L ¼ 1 is demonstrated in } 7.
Recall that it contains parameters of all lower-order
differentiators. Substituting f ðtÞ=L for f ðtÞ and taking
new coordinates z 0i ¼ Lzi, v

0
i ¼ Lvi, w

0
i ¼ Lwi achieve the

following proposition.

Proposition 4: Let parameters 	0i, 
0i; i ¼ 0; 1; . . . ; n,
of differentiators (12), (13) or (14), (15) provide for ex-
act nth-order differentiation with L ¼ 1. Then the para-
meters 	i ¼ 	0iL

2=ðn�iþ1Þ, 
i ¼ 
0iL
1=ðn�iþ1Þ are valid for

any L > 0 and provide for the accuracy
jzi � f

ðiÞ
0 ðtÞj � �iL

i=ðnþ1Þ"ðn�iþ1Þ=ðnþ1Þ for some �i � 1.

The separation principle is trivially fulfilled for the
proposed differentiator. Indeed, the differentiator
being exact, the only requirements for its implementa-
tion are the boundedness of some higher-order deriva-
tive of its input and the impossibility of the finite-time
escape during the differentiator transient. Hence, the
differentiator may be used in almost any feedback.
Mark that the differentiator transient may be made arbi-
trarily short by means of the parameter transformation
from Proposition 4, and the differentiator does not fea-
ture peaking effect (see the proof of Theorem 5 in the
Appendices).

Remarks: It is easy to see that the kth-order differen-
tiator provides for a much better accuracy of the lth
derivative, l < k, than the lth-order differentiator (The-
orem 6). A similar idea is realized to improve the first
derivative by Krupp et al. (2001). It is easy to check
that after exclusion of the variables vi differentiator
(16) may be rewritten in the non-recursive form

_zz0 ¼ ��0jz0 � f ðtÞjn=ðnþ1Þsign ðz0 � f ðtÞÞ þ z1

_zzi ¼ ��ijz0 � f ðtÞjðn�iÞ=ðnþ1Þsign ðz0 � f ðtÞÞ þ ziþ1;

i ¼ 1; . . . ; n� 1

_zzn ¼ ��n sign ðz0 � f ðtÞÞ

for some positive �i calculated on the basis of 
0 . . . ; 
n.

6. Universal output-feedback SISO controller

The results of this section have been just recently
obtained (Levant 2002), and the author supposes to
describe them in a special paper. Thus, only a brief
description is provided. Consider uncertain system (3),
(5). Combining controller (10) and differentiator (16)
achieve a combined single-input–single-output (SISO)
controller

u ¼ �	 sign ðr�1;rðz0; z1; . . . ; zr�1ÞÞ

_zz0 ¼ v0; v0 ¼ �
0;0L
1=rjz0 � �jðr�1Þ=r sign ðz0 � �Þ þ z1

_zz1 ¼ v1;

v1 ¼ �
0;1L
1=ðr�1Þjz1 � v0jðr�2Þ=ðr�1Þ sign ðz1 � v0Þ þ z2

..

.

_zzr�2 ¼ vr�2;

vr�2 ¼ �
0;r�2L
1=2jzr�2 � vr�3j1=2 sign ðzr�2 � vr�3Þ þ zr�1

_zzr�1 ¼ �
0;r�1L sign ðzr�1 � vr�2Þ

where parameters 
i ¼ 
0;iL
1=ðr�IÞ of the differentiator

are chosen according to the condition
j�ðrÞj � L;L � C þ 	KM. In their turn, parameters 
0i
are chosen in advance for L ¼ 1 (Proposition 4). Thus,
parameters of controller (10) are chosen separately of
the differentiator. In case when C and KM are known,
only one parameter 	 is really needed to be tuned, other-
wise both L and 	 might be found in computer simula-
tion. Theorems 3 and 4 hold also for the combined
output-feedback controller. In particular, under the con-
ditions of Theorem 3 the combined controller provides
for the global convergence to the r-sliding mode � � 0
with the transient time being a locally bounded function
of the initial conditions.

On the other hand, let the initial conditions of the
differentiator belong to some compact set. Then for any
two embedded discs centred at the origin of the space
�; _��; . . . ; �ðr�1Þ the parameters of the combined control-
ler can be chosen in such a way that all trajectories
starting in the smaller disc do not leave the larger disc
during their finite-time convergence to the origin. The
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convergence time can be made arbitrarily small. That
allows for the local controller application.

With discrete measurements, in the absence of input
noises, the controller provides for the rth-order real slid-
ing sup j�j � � r, where � is the sampling interval.
Therefore, the differentiator does not spoil the r-sliding
asymptotics if the input noises are absent. It is also
proved that the resulting controller is robust and pro-
vides for the accuracy proportional to the maximal error
of the input measurement (the input noise magnitude).
Note once more that the proposed controller does not
require detailed mathematical model of the process to be
known.

7. Simulation examples

7.1. Numeric differentiation

Following are equations of the 5th-order differentia-
tor with simulation-tested coefficients for L ¼ 1

_zz0 ¼ v0; v0 ¼ �12jz0 � f ðtÞj5=6sign ðz0 � f ðtÞÞ þ z1 ð17Þ

_zz1 ¼ v1; v1 ¼ �8jz1 � v0j4=5 sign ðz1 � v0Þ þ z2 ð18Þ

_zz2 ¼ v2; v2 ¼ �5jz2 � v1j3=4 sign ðz2 � v1Þ þ z3 ð19Þ

_zz3 ¼ v3; v3 ¼ �3jz3 � v2j2=3 sign ðz3 � v2Þ þ z4 ð20Þ

_zz4 ¼ v4; v4 ¼ �1:5jz4 � v3j1=2 sign ðz4 � v3Þ þ z5 ð21Þ

_zz5 ¼ �1:1 sign ðz5 � v4Þ ð22Þ

The differentiator parameters can be easily changed, for
it is not very sensitive to their values. The tradeoff is as
follows: the larger the parameters, the faster the conver-
gence and the higher sensitivity to input noises and the
sampling step.

As mentioned, differentiator (17)–(22) also contains
differentiators of the lower orders. For example, accord-
ing to Proposition 4, the second-order differentiator for
the input f with |

���
f j � L takes on the form

_zz0 ¼ v0; v0 ¼ �3L1=3jz0 � f j2=3 sign ðz0 � f Þ þ z1

_zz1 ¼ v1; v1 ¼ �1:5L1=2jz1 � v0j1=2 sign ðz1 � v0Þ þ z2

_zz2 ¼ �1:1L sign ðz2 � v1Þ

Differentiator (17)–(22) and its 3rd-order sub-differen-
tiator (19)–(22) (differentiating here the internal variable
v1) were used for simulation. Initial values of the differ-
entiator state were taken zero with exception for the
initial estimation z0 of f , which is taken equal to the
initial measured value of f. The base input signal

f0ðtÞ ¼ 0:5 sin 0:5tþ 0:5 cos t ð23Þ
was taken for the differentiator testing. Derivatives of
f0ðtÞ do not exceed 1 in absolute value.

Third-order differentiator. The measurement step

� ¼ 10�3 was taken, noises are absent. The attained

accuracies are 5:8� 10�12, 1:4� 10�8, 1:0� 10�5 and

0.0031 for the signal tracking, the first, second and

third derivatives respectively. The derivative tracking

deviations changed to 8:3� 10�16, 1:8� 10�11,
1:2� 10�7 and 0.00036 respectively after � was reduced

to 10�4. That corresponds to Theorem 7.

Fifth-order differentiator. The attained accuracies are

1:1� 10�16, 1:29� 10�12, 7:87� 10�10, 5:3� 10�7,
2:0� 10�4 and 0.014 for tracking the signal, the first,

second, third, fourth and fifth derivatives respectively

with � ¼ 10�4 (figure 4(a)). There is no significant

improvement with further reduction of � . The author

wanted to demonstrate the 10th-order differentiation,

but found that differentiation of the order exceeding 5

is unlikely to be performed with the standard software.

Further calculations are to be carried out with precision

higher than the standard long double precision (128 bits

per number).
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Sensitivity to noises. The main problem of the differ-
entiation is certainly its well-known sensitivity to noises.
As we have seen, even small computer calculation errors
appear to be a considerable noise in the calculation of
the fifth derivative. Recall that, when the nth derivative
has the Lipschitz constant 1 and the noise magnitude is
", the best possible accuracy of the ith-order differen-
tiation, i � n, is kði; nÞ"ðn�iþ1Þ=ðnþ1Þ (Levant 1998 a),
where kði; nÞ > 1 is a constant independent on the differ-
entiation realization. That is a minimax (worst case)
evaluation. Since differentiator (17)–(22) assumes this
Lipschitz input condition, it satisfies this accuracy
restriction as well (see also Theorems 6 and 7). In par-
ticular, with the noise magnitude " ¼ 10�6 the maximal
5th derivative error exceeds "1=6 ¼ 0:1. For comparison,
if the successive first-order differentiation were used, the
respective maximal error would be at least "ð2�5Þ ¼ 0:649
and some additional conditions on the input signal
would be required. Taking 10% as a border, achieve
that the direct successive differentiation does not give
reliable results starting with the order 3, while the pro-
posed differentiator may be used up to the order 5.

With the noise magnitude 0.01 and the noise fre-
quency about 1000 the 5th-order differentiator produces
estimation errors 0.000 42, 0.0088, 0.076, 0.20, 0.34 and
0.52 for signal (23) and its five derivatives respectively
(figure 4(b)). The differentiator performance does not
significantly depend on the noise frequency. The author
found that the second differentiation scheme (15) pro-
vides for slightly better accuracies.

7.2. Output-feedback control simulation

Consider a simple kinematic model of car control
(Murray and Sastry 1993)

_xx ¼ v cos’; _yy ¼ v sin’

_’’ ¼ ðv=lÞ tan �

_�� ¼ u

where x and y are Cartesian coordinates of the rear-axle
middle point, ’ is the orientation angle, v is the long-
itudinal velocity, l is the length between the two axles
and � is the steering angle (figure 5). The task is to steer
the car from a given initial position to the trajectory
y ¼ gðxÞ, while x; gðxÞ and y are assumed to be meas-
ured in real time. Note that the actual control here is �
and _�� ¼ u is used as a new control in order to avoid
discontinuities of �. Any practical implementation of
the developed here controller would require some real-
time coordinate transformation with � approaching
��=2. Define

� ¼ y� gðxÞ ð24Þ

Let v ¼ const ¼ 10m/s, l ¼ 5m, gðxÞ ¼ 10 sin ð0:05xÞþ
5, x ¼ y ¼ ’ ¼ � ¼ 0 at t ¼ 0. The relative degree of
the system is 3 and the listed 3-sliding controller may
be applied here. The resulting steering angle dependence
on time is not sufficiently smooth (Levant 2001 b),
therefore the relative degree is artificially increased up
to 4, _uu having been considered as a new control. The 4-
sliding controller from the list in } 3 is applied now,
	 ¼ 20 is taken. The following 3rd order differentiator
was implemented:

_zz0 ¼ v0; v0 ¼ �25jz0 � �j3=4 sign ðz0 � �Þ þ z1 ð25Þ

_zz1 ¼ v1; v1 ¼ �25jz1 � v0j2=3 sign ðz1 � v0Þ þ z2 ð26Þ

_zz2 ¼ v2; v2 ¼ �33jz2 � v1j1=2 sign ðz2 � v1Þ þ z3 ð27Þ

_zz3 ¼ �500 sign ðz3 � v2Þ ð28Þ

The coefficient in (28) is large due to the large values of
�ð4Þ, other coefficients were taken according to
Proposition 4 and (17)–(22). During the first half-second
the control is not applied in order to allow the conver-
gence of the differentiator. Substituting z0, z1, z2 and z3
for �, _��, €�� and ���� respectively, obtain the following 4-
sliding controller

u ¼ 0; 0 � t < 0:5

u ¼ �20 sign fz3 þ 3ðz62 þ z41 þ jz0j3Þ1=12 sign ½z2

þ ðz41 þ jz0j3Þ1=6 sign ðz1 þ 0:5jz0j3=4 sign z0Þ�g

t � 0:5

The trajectory and function y ¼ gðxÞ with the
sampling step � ¼ 10�4 are shown in figure 6(a). The
integration was carried out according to the Euler
method, the only method reliable with sliding-mode
simulation. Graphs of �, _��, €��, ���� are shown in figure
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6(b). The differentiator performance within the first 1.5 s
is demonstrated in figure 6(c). The steering angle graph
(actual control) is presented in figure 6(d). The sliding
accuracies j�j � 9:3� 10�8, j _��j � 7:8� 10�5,
j€��j � 6:6� 10�4, j����j � 0:43 were attained with the
sampling time � ¼ 10�4.

8. Conclusions and discussion of the obtained results

Arbitrary-order real-time exact differentiation
together with the arbitrary-order sliding controllers pro-
vide for full SISO control based on the input measure-
ments only, when the only information on the controlled
uncertain weakly-minimum-phase process is actually its
relative degree.

A family of r-sliding controllers with finite time con-
vergence is presented for any natural number r, provid-
ing for the full real-time control of the output variable if
the relative degree r of the dynamic system is constant
and known. Whereas 1- and 2-sliding modes were used
mainly to keep auxiliary constraints, arbitrary-order
sliding controllers may be considered as general-purpose
controllers. In case the mathematical model of the
system is known and the full state is available, the
real-time derivatives of the output variable are directly
calculated, and the controller implementation is

straightforward and does not require reduction of the

dynamic system to any specific form. If boundedness

restrictions (5) are globally satisfied, the control is also

global and the input is globally bounded. Otherwise the

controller is still locally applicable.

In the uncertainty case a detailed mathematical

model of the process is not needed. Necessary time deri-

vatives of the output can be obtained by means of the

proposed robust exact differentiator with finite-time

convergence. The proposed differentiator allows real-

time robust exact differentiation up to any given order

l, provided the next ðl þ 1Þth derivative is bounded by a

known constant. These features allow wide application

of the differentiator in non-linear control theory.

Indeed, after finite time transient in the absence of

input noises its outputs can be considered as exact direct

measurements of the derivatives. Therefore, the separa-

tion principle is trivially true for almost any feedback.

At the same time, in the presence of measurement noises

the differentiation accuracy inevitably deteriorates

rapidly with the growth of the differentiation order

(Levant 1998 a), and direct observation of the deriva-

tives is preferable. The exact derivative estimation does

not require tending some parameters to infinity or to

zero. Even when treating noisy signals, the differentiator
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performance only improves with the sampling step
reduction.

The resulting controller provides for extremely high
tracking accuracy in the absence of noises. The sliding
accuracy is proportional to � r, � being a sampling period
and r being the relative degree. That is the best possible
accuracy with discontinuous rth derivative of the output
(Levant 1993). It may be further improved increasing
the relative degree artificially, which produces arbitrarily
smooth control and removes also the chattering effect.

The proposed controllers are easily developed for
any relative degree, at the same time most of the practi-
cally important problems in output control are covered
by the cases when relative degree equals 2, 3, 4 and 5.
Indeed, according to the Newton law, the relative degree
of a spatial variable with respect to a force, being under-
stood as a control, is 2. Taking into account some
dynamic actuators, achieve relative degree 3 or 4. If
the actuator input is required to be a continuous
Lipschitz function, the relative degree is artificially
increased to 4 or 5. Recent results (Bartolini et al.
1999 b) seem to allow the implementation of the devel-
oped controllers for general multi-input–multi-output
systems.

Appendix 1. Proofs of Theorems 3, 4 and Proposition 3

The general idea of the proofs is presented in } 4 and
is illustrated by figures 2 and 3.

Preliminary notions: The following notions are
needed to understand the proof. They are based on re-
sults by Filippov (1988).

Differential inclusion _�� 2 Xð�Þ, � 2 Rm is called
further Filippov inclusion if for any �:

1. Xð�Þ is a closed non-empty convex set;

2. Xð�Þ � fv 2 Rmjkvk � �ð�Þg, where �ð�Þ is a con-
tinuous function;

3. the maximal distance of the points of Xð� 0Þ from
Xð�Þ tends to zero when � 0 ! �.

Recall that any solution of a differential inclusion is
an absolutely continuous function satisfying the inclu-
sion almost everywhere, and that any differential equa-
tion with a discontinuous right-hand side is understood
as equivalent to some Filippov inclusion.

The graph of a differential inclusion _�� 2 Xð�Þ, � 2 Rm

is the set fð�; _��Þ 2 Rm � R
mj _�� 2 Xð�Þg. A differential

inclusion _�� 2 X 0ð�Þ is called "-close to the Filippov inclu-
sion _�� 2 Xð�Þ in some region if any point of the graph of
_�� 2 X 0ð�Þ is distanced by not more than " from the graph
of _�� 2 Xð�Þ. It is known that within any compact region
solutions of _�� 2 X 0ð�Þ tend to some solutions of _�� 2 Xð�Þ
uniformly on any finite time interval with " ! 0. In the

special case �ðmÞ 2 Xð�; _��; . . . ; �ðm�1ÞÞ, � 2 R, which is
considered in the present paper, the graph may be con-
sidered as a set from R

m � R. An inclusion
�ðmÞ 2 X 0ð�; _��; . . . ; �ðm�1ÞÞ corresponding to the closed
"-vicinity of that graph is further called the "-swollen
inclusion. It is easy to see that this is a Filippov inclu-
sion. An "-swollen differential equation is the inclusion
corresponding to the "-vicinity of the corresponding
Filippov inclusion.

Proof of Theorem 3: Consider the motion of a projec-
tion trajectory of (3) and (10) in coordinates �,
_��; . . . ; �ðr�1Þ

�ðrÞ ¼ Lrae�ðt; xÞ þ u
@

@u
�ðrÞðt; x; uÞ ð29Þ

Taking into account (5) achieve a differential inclusion

�ðrÞ 2 ½�C;C� þ ½Km;KM�u ð30Þ

which will be considered from now on instead of the real
equality (29). The operations on sets are naturally
understood here as sets of operation results for all poss-
ible combinations of the operand set elements. Control u
is given by (10) or (11).

A given point P is called here a discontinuity point of
a given function, if for any point set N of zero measure
and any vicinity O of P there are at least two different
limit values of the function when point p 2 O=N
approaches P. Let G be the closure of the discontinuity
set of sign ðr�1;rð�; _��; . . . ; �ðr�1ÞÞÞ or, in other words, of
control (10).

Lemma 1: Set G partitions the whole space
�; _��; . . . ; �ðr�1Þ into two connected open components
satisfying r�1;rð�; . . . ; �ðr�1ÞÞ > 0 and r�1;rð�; . . . ;
�ðr�1ÞÞ < 0 respectively. Any curve connecting points
from different components has a non-empty intersection
with G.

Proof: Consider any equation i;rð�; _��; . . . ; �ðiÞÞ ¼ 0;
i ¼ 1; . . . ; r� 1. It may be rewritten in the form

�ðiÞ ¼ �ið�; _��; . . . ; �ði�1ÞÞ

¼ ��iNi;rð�; _��; . . . ; �ði�1ÞÞ sign ði�1;rð�; _��; . . . ; �ði�1ÞÞÞ

Let Si be the closure of the discontinuity set of sign
i;r; i ¼ 0; . . . ; r� 1;G ¼ Sr�1, and S0 ¼ f0g � R (figure
7). Each set Si lies in the space �; _��; . . . ; �ðiÞ and is, actu-
ally, a modification of the graph of
�ðiÞ ¼ �ið�; _��; . . . ; �ði�1ÞÞ.

The Lemma is proved by the induction principle.
Obviously, S0 partitions R into two open connected
components. Let Si�1 divide the space Ri with coordi-
nates �; _��; . . . ; �ði�1Þ into two open connected compon-
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ents Oþ
i�1 and O�

i�1 with i�1;r > 0 and i�1;r < 0 respect-
ively. It is easy to see (figure 7) that

Si ¼ f�; _��; . . . ; �ðiÞj j�ðiÞj

� �iNi;rð�; _��; . . . ; �ði�1ÞÞ& ð�; _��; . . . ; �ði�1ÞÞ 2 Si�1_

ð�ðiÞ ¼ ��iNi;rð�; _��; . . . ; �ði�1ÞÞ sign ði�1;rð�; _��; . . . ; �ði�1ÞÞÞ

& ð�; _��; . . . ; �ði�1ÞÞ =2Si�1Þg

Oþ
i ¼ f�; _��; . . . ; �ðiÞj�ðiÞ > �iNi;rð�; _��; . . . ; �ði�1ÞÞ_

ð�ðiÞ > ��iNi;rð�; _��; . . . ; �ði�1ÞÞ

& ð�; _��; . . . ; �ði�1ÞÞ 2 Oþ
i�1Þg

O�
i ¼ f�; _��; . . . ; �ðiÞj�ðiÞ < ��iNi;rð�; _��; . . . ; �ði�1ÞÞ_

ð�ðiÞ < �iNi;rð�; _��; . . . ; �ði�1ÞÞ

& ð�; _��; . . . ; �ði�1ÞÞ 2 O�
i�1Þg

Considering the division of the whole space �; _��; . . . ; �ðiÞ

in the sets j�ðiÞj � �iNi;r; �
ðiÞ < ��iNi;r and �ðiÞ > �iNi;r

it is easily proved that Oþ
i and O�

i are connected and
open. &

Consider the transformation Gv : ðt; �; _��; . . . ; �ðr�1ÞÞ7!
ðvt; vr�; vr�1 _��; . . . ; v�ðr�1ÞÞ. It is easy to see that this linear
transformation complies with understanding �ð jÞ as

coordinates and as derivatives as well. It is also easy to
check that inclusion (30) and (10) is invariant with
respect to Gv; v > 0. That invariance implies that any
statement invariant with respect to Gv is globally true if
it is true on some set E satisfying the condition
[v�0GvE ¼ R

r. That reasoning is called further ‘homo-
geneity reasoning’. For example, it is sufficient to prove
the following lemma only for trajectories with initial con-
ditions close to the origin.

Lemma 2: With sufficiently large 	 any trajectory of
inclusion (30) and (10) hits G in finite time.

Proof: Obviously, it takes finite time to reach the re-
gion j�ðr�1Þj � �r�1Nr�1;r. It is also easy to check that
it takes finite time for any trajectory in a sufficiently
small vicinity of the origin to cross the entire region
j�ðr�1Þj � �r�1Nr�1;r if no switching happens. Thus, ac-
cording to Lemma 1 set G is also encountered on the
way. The homogeneity reasoning completes the
proof. &

Lemma 3: There is a 1-sliding mode on r�1;r in the
continuity points of r�1;r with sufficiently large 	.
There is such a choice of �j that each differential equa-
tion i;r ¼ 0; i ¼ 1; . . . ; r� 1 provides for the existence
of a 1-sliding mode in the space �; _��; . . . ; �ði�1Þ on the
manifold �ði�1Þ ¼ �i�1ð�; _��; . . . ; �ði�2ÞÞ in continuity
points of �i�1.

Proof: It is needed to prove that _’’r�1;r signr�1;r <
const < 0 with r�1;r ¼ 0 on trajectories of (30) and
(10). The second statement means that for each
i ¼ 1; . . . ; r� 1 the inequalities _’’i�1;r signi�1;r <
const �Ni;r < 0 hold with i�1;r ¼ 0 and i;r ¼ 0, where
the latter equation is understood as a differential one
and the previous determines a manifold in its state
space. The proofs are quite similar. Here is an outline
of the first-statement proof.

Actually it is needed to prove that _NNr�1;r is bounded
with r�1;r ¼ 0.

_NNr�1;r ¼
d

dt
ðj�jp=r þ j _��jp=ðr�1Þ þ � � � þ j�ðr�2Þjp=2Þ1=p

¼ 1

p

d

dt
ðj�jp=r þ j _��jp=ðr�1Þ þ � � � þ j�ðr�2Þjp=2Þ

� �	

ðj�jp=r þ j _��jp=ðr�1Þ þ � � � þ j�ðr�2Þjp=2Þðp�1Þ=p

Consider one term. The following estimation requires
p � r, also the trivial inequality ðaþ bÞ�þv �
a�bv; a; �; b; v > 0, is used. Let j ¼ 0; 1; . . . ; r� 3, then
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d

dt
j�ðjÞjp=ðr�jÞ=ðj�jp=r þ j _��jp=ðr�1Þ þ � � � þ j�ðr�2Þjp=2Þðp�1Þ=p












¼ p=ðr� jÞj�ðjÞjp=ðr�jÞ�1j�ðjþ1Þ sign �j=ðj�jp=r þ j _��jp=ðr�1Þ

þ � � � þ j�ðr�2Þjp=2Þðp�1Þ=p

� p=ðr� jÞj�ðjÞjp=ðr�jÞ�1=j�ðjÞj½p=ðr�jÞ�½ðp�1�ðr�j�1ÞÞ=p�j�ðjþ1Þj=

j�ðjþ1Þj½p=ðr�j�1Þ�½ðr�j�1Þ=p�

¼ p=ðr� jÞj�ðjÞjðp�rþjÞÞ=ðr�jÞ=j�ðjÞjðp�rþjÞÞ=ðr�jÞj�ðjþ1Þj=j�ðjþ1Þj

¼ p=ðr� jÞ

With j ¼ r� 2 the equality j�ðr�1Þj ¼ �r�1ðj�jp=rþ
j _��jp=ðr�1Þ þ � � � þ j�ðr�2Þjp=2Þ1=p is to be used. &

Let Gi be the corresponding subset of G which is

projected into Si;G ¼ Gr�1 ¼ Sr�1. Denote

�i ¼ f�; _��; . . . ; �ðr�1Þj j�ðjÞj � �iNj;rð�; _��; . . . ; �ðj�1ÞÞj

¼ i þ 1; i þ 2; . . . ; r� 1;

�ðiÞ ¼ ��iNi;rð�; _��; . . . ; �ði�1ÞÞ sign ði�1;rð�; _��; . . . ; �ði�1ÞÞÞ;

ð�; _��; . . . ; �ði�1ÞÞ =2Si�1g;

where i ¼ 1; . . . ; r� 1; �0 contains only the origin

� ¼ _�� ¼ � � ��ðr�1Þ ¼ 0. It is easy to check that

Gi ¼
[i
j¼0

�j; i ¼ 1; . . . ; r� 1

Lemma 3a: Let �j be chosen as in Lemma 3. There is
such a vicinity O of the origin � ¼ _�� ¼ � � � ¼ �ðiÞ ¼ 0

and such " > 0 that each "-swollen differential equa-

tion i;r ¼ 0; i ¼ 1; . . . ; r� 1, provides for finite-time

attraction of all trajectories from O into the "-vicinity of
Gi�1.

Proof: Obviously, the "-vicinity of Gi divides the

space �; _��; . . . ; �ðiÞ in two parts (Lemma 1). Also 1-slid-

ing mode on �ði�1Þ ¼ �ið�; _��; . . . ; �ði�1ÞÞ is ensured at

continuity points of �i out of the "-vicinity of Gt�1: &

Lemma 4: With sufficiently large 	 any trajectory of

the inclusion (30), (10) which leaves G at time t0 returns

in finite time to G at some time t1 . The time t1 � t0 and

the maximal coordinate deviations from the initial point

at the moment t0 during t1 � t0 satisfy inequalities of

the form

t1 � t0 � c0	
�1Nr�1;rð�ðt0Þ; �ðt0Þ; _��ðt0Þ; . . . ; �ðr�2Þðt0ÞÞ

j��
ðr�jÞ
i j � cj	

�1Nr�1;rð�ðt0Þ; �ðt0Þ; _��ðt0Þ; . . . ; �ðr�2Þðt0ÞÞj;

j ¼ 1; 2; . . . ; r

where cj are some positive constants.

Proof: Considering a small vicinity of the origin, we
found that the first inequality is true when the initial
conditions belong to a set of the form Nr�1;r ¼ const.
Thus, according to the homogeneity reasoning, it is
true everywhere. Other inequalities are results of suc-
cessive integration and the homogeneity reasoning with
the same assumption Nr�1;r ¼ const with t ¼ t0. &

The following lemma is a simple consequence of
Lemma 4. It is illustrated by figure 2.

Lemma 4a: With sufficiently large 	 any trajectory of
the inclusion (30), (10) transfers in finite time into some
vicinity of G and stays there. That vicinity contracts to
G with 	 ! 1 uniformly within any compact area.

Let

Mð�Þ ¼ f�; _��; . . . ; �ðr�1ÞjNr�1;rð�; _��; . . . ; �ðr�1ÞÞ � �g:

Lemma 5: There is such �1 > 1 that with sufficiently
large 	 any trajectory of the inclusion (30), (10) starting
from M(1) never leaves M(�1).

Lemma 5 is an obvious consequence of Lemmas 3a
and 4a.

Lemma 6: There are such �2 < 1 and T > 0 that with
sufficiently large 	 any trajectory of inclusion (30), (10)
starting from M(1) enters M(�2) within time T and stays
in it.

Proof: As follows from Lemmas 3a, 4a and 5, there
are such successively embedded sufficiently small vici-
nities OiðGiÞ of Gi; i ¼ 0; 1; . . . ; r� 1;Gr�1 ¼ G, that
with sufficiently large 	 any trajectory of inclusion
(30), (10) hits one of these vicinities in finite time and
then transfers from one set to another in finite time ac-
cording to the diagram:

OðGÞ ¼ Or�1ðGr�1Þ ! Or�2ðGr�2Þ ! � � � ! O0ðG0Þ

¼ O0ð0Þ &

The invariance of inclusion (10), (30) with respect to

G�: ðt; �; _��; . . . ; �ðr�1ÞÞ7!ð�t; �r�; �r�1 _��; . . . ; ��ðr�1ÞÞ

implies that if Mð1Þ transfers in time T into Mð�2Þ,
Mð�2Þ transfers in time �2T intoMð�22Þ,Mð�22Þ transfers
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in time �22T into Mð�32Þ, etc. Thus, all trajectories start-
ing from Mð1Þ enter the origin during the time
T
P1

j¼1 �
j < 1 and stay there. Due to the homogeneity

reasoning the same is true with respect to initial con-
ditions taken from a set MðcÞ for any c > 0. Theorem
3 is proved. &

Proof of Theorem 4: Similarly to the proof of Theo-
rem 3 consider inclusion (30), (11) instead of (3), (11).
According to the Taylor formula ��

ðr�2Þ
i ¼

��
ðr�1Þ
i�1 þ 0:5�2�ðrÞð�Þ; � 2 ½ti�1; ti�. Hence, in its turn,

inclusion (30), (11) may be replaced by the

�ðrÞ 2 ½�C;C� � 	½Km;KM� sign ð�ðr�1Þ

þ�r�1Nr�1;rð�; _��; . . . ; �ðr�2ÞÞ sign ðr�2;rð�; _��; . . . ; �ðr�2ÞÞ

þ0:5� ½�C � 	KM;C þ 	KM�Þ

For any " > 0 the inequality �ðC þ 	KMÞ < "Nr�1;r is
satisfied outside of some bounded vicinity of the origin.
Thus, similarly to the Theorem 3 proof, sufficiently
small " being taken, finite-time convergence into some
vicinity D of the origin is provided. Obviously, the trans-
formation G�: ðt; �; _��; . . . ; �ðr�1ÞÞ7!ð�t; �r�; �r�1 _��; . . . ;
��ðr�1ÞÞ transfers (30), (11) into the same inclusion, but
with the new measurement interval �� . Thus, G�D is an
attracting set corresponding to that new value of the
measurement interval. &

Proof of Proposition 3: As is seen from the proof of
Theorems 3 and 4 the only restriction on the choice of
�1 is formulated in Lemma 3, and 	 is chosen with re-
spect to Lemma 3 and is sufficiently enlarged after-
wards. Thus, at first the existence of the virtual sliding
modes i;r ¼ 0, i ¼ 1; . . . ; r� 1 is provided and than 	
is taken so large that the real motion will take place in
arbitrarily small vicinity of these modes. Thus, the
parameters may be chosen sufficiently large in the or-
der �1; . . . ; �r�1, 	 so that the convergence from any
fixed compact region of initial conditions be arbitrarily
fast, and at the same time the overregulation be arbi-
trarily small. &

Appendix 2. Proofs of Theorems 5–7

Consider for simplicity differentiator (16). The proof
for differentiator (15) is very similar. Introduce
functions �0 ¼ z0 � f0ðtÞ, �1 ¼ z1 � _ff0ðtÞ; . . . ; �n ¼
zn � f

ðnÞ
0 ðtÞ, � ¼ f ðtÞ � f0ðtÞ. Then any solution of (16)

satisfies the following differential inclusion understood
in the Filippov sense

_��0 ¼ �
0j�0 þ �ðtÞjðn=ðnþ1Þsign ð�0 þ �ðtÞÞ þ �1 ð31Þ

_��1 ¼ �
1j�1 � _��0jðn�1Þ=nsign ð�1 � _��0Þ þ �2

..

.

_��n�1 ¼ �
n�1j�n�1 � _��n�2j1=2sign ð�n�1 � _��n�2Þ þ �n;

_��n 2 �
n sign ð�n � _��n�1Þ þ ½�L;L�

9>>>>>>>>>>=
>>>>>>>>>>;

ð32Þ

where �ðtÞ 2 ½�"; "� is a Lebesgue-measurable noise
function. It is important to mark that (31), (32) does
not ‘remember’ anything on the unknown input basic

signal f0ðtÞ:
System (31), (32) is homogeneous with " ¼ 0, its tra-

jectories are invariant with respect to the transformation

G� : ðt; �i; �; "Þ7!ð�t; �n�iþ1�i; �nþ1�; �nþ1"Þ ð33Þ

Define the main features of differential inclusion (31),
(32) which hold with a proper choice of the parameters

i.

Lemma 7: Let ��ðtÞ satisfy the condition that the inte-
gral

Ð
j��ðtÞjdt over a time interval � is less than some

fixed K > 0. Then for any 0 < Si < S 0
i ; i ¼ 0; . . . ; n,

each trajectory of (31), (32) starting from the region
j�ij � Si does not leave the region j�ij � S 0

i during this
time interval if � is sufficiently small.

Lemma 8: For each set of numbers Si > 0; i ¼ 0; . . . ; n,
there exist such numbers Si > Si; ki > 0 and T >
0; "M � 0 that for any �ðtÞ 2 ½�"; "�; " � "M, any trajec-
tory of (31), (32) starting from the region j�ij � Si
enters within the time T, and without leaving the region
j�ij � Si, the region j�ij � ki"

n�iþ1 and stays there
forever.

Mark that � _��0 plays rule of the disturbance � for the
(n� 1)th-order system (32). With n ¼ 0 (31), (32) is
reduced to _��0 2 �
0 sign ð�0 þ �ðtÞÞ þ ½�L;L�, and
Lemmas 7 and 8 are obviously true with n ¼ 0; 
0 > L.
The lemmas are proved by induction. Let their state-
ments be true for the system of the order n� 1 with

some choice of parameters 	

i, i ¼ 0; . . . ; n� 1. Prove
their statements for the nth order system (31), (32)
with sufficiently large 
0, and 
i ¼ 	

i�1; i ¼ 1; . . . ; n.

Proof of Lemma 7: Choose some SMi;Si < S 0
i < SMi,

i ¼ 0; . . . ; n. Then
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j _��0j � 
0k�ðtÞj þ j�0kn=ðnþ1Þ þ j�1j

� 
0j�ðtÞjn=ðnþ1Þ þ 
0S
n=ðnþ1Þ
M0 þ SM1

Thus, according to the Hölder inequality

ð
j _��0jdt � 
0�

1=ðnþ1Þ
ð
j�ðtÞdt

� �n=ðnþ1Þ
þ�ð
0S

n=ðnþ1Þ
M0 þ SM1Þ

Hence, j�0j � S 0
0 with small �. On the other hand _��0

serves as the input disturbance for the (n� 1)th order
system (32) and satisfies the conditions of Lemma 7,
thus due to the induction assumption j�ij � S 0

i ;
i ¼ 1; . . . ; n with small �. &

Lemma 9: If for some Si < S 0
i ; i ¼ 0; . . . ; n; � � 0 and

T > 0 any trajectory of (31), (32) starting from the re-
gion j�ij � S 0

i enters within the time T the region
j�ij � Si and stays there forever, then the system (31),
(32) is finite-time stable with � � 0.

Lemma 9 is a simple consequence of the invariance
of (31), (32) with respect to transformation (33). The
convergence time is estimated as a sum of a geometric
series.

Proof of Lemma 8: Consider first the case "M ¼ 0; i.e.
� ¼ 0. Choose some larger region j�ij � S 0

i ;Si < S 0
i ,

i ¼ 0; . . . ; n, and let Si > S 0
i ; i ¼ 0; . . . ; n� 1, be some

upper bounds chosen with respect to Lemma 8 for (32)
and that region. It is easy to check that for any q > 1
with sufficiently large 
0 the trajectory enters the re-
gion j�0j � ðqS1=
0Þðnþ1Þ=n in arbitrarily small time.
During that time _��0 does not change its sign. There-
fore,

Ð
j _��0jdt � S 0

0 for sufficiently large 
0. Thus, the
disturbance � _��0 entering subsystem (32) satisfies Lem-
ma 7 and the inequalities j�ij � S 0

i are kept with i � 1.
As follows from (31), from that moment on j _��0j � 3S1

is kept with a properly chosen q.
Differentiating (31) with � ¼ 0 achieve

€��0 ¼ �
0j�0j�1=ðnþ1Þ _��0 þ _��1

where according to (32) the inequality j _��1j � 4
1S1 þ S2

holds. Thus, with sufficiently large 
0 within arbitrarily
small time the inequality j _��0j � 
�1

0 ð4
1S1þ
S2ÞðqS1=
0Þ1=n is established. Its right-hand side may
be made arbitrarily small with large 
0. Thus, due to
Lemma 8 for (n� 1)-order system (32) and to Lemma
9, the statement of Lemma 8 is proved with "M ¼ 0.

Let now "M > 0. As follows from the continuous
dependence of the solutions of a differential inclusion
on the right-hand side (Filippov 1988) with sufficiently
small "M all trajectories concentrate within a finite time
in a small vicinity of the origin. The asymptotic features
of that vicinity with "M changing follow now from the
homogeneity of the system. &

Theorems 5 and 6 are simple consequences of
Lemma 8 and the homogeneity of the system. To
prove Theorem 7 it is sufficient to consider

_��0 ¼ �
0j�0ðtjÞjn=ðnþ1Þ sign ð�0ðtÞÞ þ �1 ð34Þ

instead of (31) with tj � t < tjþ1 ¼ tj þ � . The resulting
hybrid system (34), (32) is invariant with respect to the
transformation

ðt; �; �iÞ7!ð�t; ��; �n�iþ1�iÞ ð35Þ
On the other hand, it may be considered as system (31),
(32), j�j � ", with arbitrarily small " for any fixed region
of the initial values when � is sufficiently small. Applying
successively Lemma 8 and the homogeneity reasoning
with transformation (35) achieve Theorem 7. &

Remark: It is easy to see that the above proof may
be transformed in order to obtain a constructive upper
estimation of the convergence time. Also the accuracy
may be estimated by means of the suggested inductive
approach.
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