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2-sliding mode with respect to the constraint= 0 at the origin
Arie Levant x = & = 0 (at one point only) of a 2-dimensional VSS keeping the
constraintz 4+ & = 0 in a standard 1-sliding mode. Asymptotically
stable or unstable HOSMs inevitably appear in VSSs with fast
Abstract—An universal controller is constructed, formulated in  actuators [8]. Stable HOSM reveals itself in that case by spontaneous
input-output terms only, which causes the output of any uncertain smooth  disappearance of the chattering effect. Thus, examples of asymptot-

single-input-single-output (SISO) minimum-phase dynamic system with ;a1 stable or unstable sliding modes of any order are well known

known relative degree to vanish in finite time. That allows exact tracking of 31051, 2-slidi d . | tai ltiole-i ¢ |
arbitrary real-time smooth signals. Only one parameter is to be adjusted. [3I-[5]- 2-sliding modes in general uncertain multiple-input-mul-

The approach being based on higher-order finite-time-convergence sliding tiple-output (MIMO) systems are studied in [2]. Dynamic sliding
modes, the control can be made arbitrarily smooth, providing for the modes [18] produce asymptotically stable higher-order sliding modes
arbitrarily-high tracking-accuracy order with respect to the sampling step.  gnd are to be specially mentioned here. However, so far examples of

Index Terms—Nonlinear systems, output feedback, uncertainty, variable 7-sliding modes attracting in finite time were known fot= 1 (which
structure systems. is trivial), for » = 2 [1], [2], [5], [10], [11], [15] and forr = 3 [8].

Another interesting family of sliding mode controllers featuring
finite-time convergence is based on so-called “terminal sliding modes”
[16], [21]. Though independently developed, the first version of these

Control under heavy uncertainty conditions is one of the main probentrollers is identical to the so-called “2-sliding algorithm with a pre-
lems of the modern control theory. While there are a number of sophégribed convergence law” [5], [10]. The latter version [21] is intended
ticated methods like adaptation based on identification and observatiastually to provide for arbitrary-order finite-time-convergence sliding
or absolute stability methods, one of the common approaches is to keegre. Unfortunately, all trajectories are to start from a prescribed
some constraints in sliding mode [20] known for its insensitivity to exsector of the state space in order to avoid infinite control values. Being
ternal and internal disturbances. formally bounded along each transient trajectory, the control takes

The constraint being given by an equality of an output variable on infinite values in any vicinity of the steady state corresponding to
to zero, the standard sliding mode may be implemented only if tii¢e supposedly higher-order sliding mode. Resulting systems have
control appears explicitly already in the first total derivativerofin  unbounded right-hand sides, which prevents the very implementation
other words, such mode provides for full output control if the relativef the Filippov theory.
degree is 1. The controllers presented in this note are based on high@bitrary-order sliding controllers with finite-time convergence

were recently presented at conferences [12], [13]. The present note is
_ _ ‘ the first regular publication of these results. Only the relative degree
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uncertain SISO minimum-phase dynamic systems with known relativénereg, ..., 3._1 are positive numbers.

degree. Higher-order total derivatives of the output, needed for theTheorem 1: Let system (1) have relative degreewith respect to
controller implementation, can be calculated in real time by meatte output functiorr and (2) be fulfilled. Suppose also that trajectories
of robust exact finite-time-convergence differentiators [11] based afi system (1) are infinitely extendible in time for any Lebesgue-mea-

2-sliding mode. surable bounded control function. Then with properly chosen positive
Each controller provides forth order precision with respect to theparameters, . ... 3.—1, a the controller

sampling time step, which is the best precision possible witirorder ) ’ ) (r—1)

sliding [10]. This is the first time that sliding precision of an order U = —asign (@rfl-f (‘7:‘7» SR )) ®3)

higher than 3 is demonstrated. The system'’s relative degree being ?étjafds to the establishment of arsliding moder = 0 attracting each
ficially increased, sliding control of arbitrary smoothness order can ?re ‘ectory in finite time. The convergence time_is a locally bounded
achieved, completely removing the chattering effect. The features Snction);f initial condifions g y

the proposed universal controllers are illustrated by computer smu‘a-The assumption on the solution extendibility means in practice that

tion of kinematic car control. the system be minimum phase. The positive paramsters . , 5.1
are to be chosen sufficiently large in the index order and may be fixed

Il. THE PROBLEM AND ITS SOLUTION in advance for each relative degreeParameter > 0 is to be chosen
Consider a dynamic system of the form specifically for any fixedC', K,,, I{xs. The controller is easily gen-
eralized. For example, coefficients &% .. andp may be any positive

i=a(t,x)+b(t,a)u o =0t ) (1) numbers, in particulap; = ! andp = 1 are acceptable.

Idea of the Proof: Due to (2) trajectories of system (1) sat-
wherez € R", u € R is control, smooth functions, b, = and Sy the (iT;dUSiO“U(”. € [-C.C] + [Ku, Karlu. Each equality
the dimensiom are unknown. The relative degreef the system is @i = 0 + AilNi. sign(¢i—1,.) = 0 leads to the establishment of
assumed to be constant and known. The task is to make the meas@ré_(‘f“d'ng(m?ge in the continuity points of, . in the coordinates
outputs vanish in finite time and to keep = 0 by discontinuous ?:9----»0" . None of these sliding modes really exists due to
feedback control. the discontinuity of¢,—,,, with ¢ = 2,...,r — 1. Nevertheless,

The heavy uncertainty of the problem prevents immediate reductilf €auationso; . = 0 are successively fulfilled approximately,
of (1) to any standard form by means of approaches based on the knd{¥f €guation residuals vanishing while the trajectory approaches
edge ofu, b ande. In caser = 16 = o + oha+ o'b-u,andthe © =9 =+ = o~ in finite time. The full proof may be down-
problem is solved by the standard relay controller —a sign o, pro- loaded f!'om the author’s homepgge at ht.tp:.//vyvyw.cs.bgu.ac.il/~|evant/.
videdo! +a".a is globally bounded and. b is separated from zero and Certainly, the_number of choices of is |nf|_n|te. Here are a few
positive. The first order real sliding accuracy with respect to the saifRntrollers (3) with; tested for- < 4. The firstis the relay controller,

pling interval is ensured i#.b is also bounded. the second is listed in [5], [10], [16].
The parametric strict feedback form [7] is a particular case of the 1) © = —asigno;
considered systems. With= 0 trajectories inevitably satisfy-sliding 2) u = —asign(s + |o|'/? signo);
mode conditiorr = ¢ = --- = ¢(""Y = 0 and the zero-dynamics  3) v = —asign (0’ +2(6* + o) /Osign (6 + |o[*/? sign 0')) ;

equations [9]. They are described also by the equivalent control methods)

[20]. It was proved [8] that the trivial controller = — K sign o leads

to appearance of such a mode, however, it is usually unstable. @ = —asign {U +3(5° + 6"+ |o]’)
The problem is to find a discontinuous feedback= U (¢, )

causing the appearance of asliding mode attracting in finite time.

That new controller has to generalize the standard 1-sliding relay5)

controlleru = — K sign . Thus, we require that for sonf€,., K,

1/12

X sign [Ei + ([74 + |0’|3)1/6 sign(é + 0.5|0]*/* sign J)] } ;

¢>0 u = — asign <0'(4) + 54 (0’12 +16]"" + 67" + }7"30)1/60
0< Ko < %a“‘) < Ku, |Lho|<C. 2) sign (574 fa (7 + |o]'" 4 670)'
. . , 12 . 1154 1/20
Obviously, L}, o is therth total time derivative ot calculated with | sign (‘7 + 02 (07 +16]7)
u = 0. Hence, conditions (2) can be defined in input-output terms . . 45 .
only. Note that(8/0u) o) = LyLi ' 0. | sign (‘T + Bilo | sign U))))
Building an arbitrary-order sliding controllerLet p be the least
common multiple oft, 2, ...r. Denote Obviously, parameter is to be taken negative withs (" /du < 0.
Controller (3) is certainly insensitive to any disturbance which pre-
Nir =|o|"7V/7, serves the relative degree and (2). No matching condition having been
N /v . p/(r—1) supposed, the residual uncertainty reveals itself in-thikding motion
Nip = (|"| +19] equations (in other words, in zero dynamics). \
bt oD |p/(r,i+1))(r7i)/p Con_troller (3) requires the availat_)ility ofg,...,0""1 . That inj
formation demand may be lowered if the measurements are carried out
i=1,...,r—1 at timest; with constant step > 0. Indeed, let
Nt = (lol + 161700 g [ 2pe2) 7 u(t) = — asign (A0l

bo,r =0, - . et
?D, . - . +y‘3r—17——7\/7'—1.7' (Ui'/o-ia"'ﬂa—l( 2)>
o1, =6 + S1 N1, sign(o),

Gir =5 + 8:N;sign(di_1,), i=1,...,r—1 Xsign ((,brfz,r (Ui,(.fi,“-,ggr—z)))) (4)
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where ofj) = oW, x(t)), AO’ET‘_Q) = JET_QJ - O'E:TQ), t y
€ [titiy1).

Theorem 2: Under conditions of Theorem 1 with discrete measure-
ments both algorithms (3) and (4) provide in finite time for fulfillment

of the inequalitieds| < ao7”, |6| < a7 ', J0" " > ar—i7
for some positive constants, a1, ..., a,—;.

That accuracy is the best possible with discontinugtis separated
from zero [10]. Following are some remarks on the usage of the pro- a. Kinematic model b. 4-sliding deviations
posed controllers. s y/\ 5V

Convergence timmay be reduced by changing coefficieats An- \
other way is to substitutd=’ ¢/ for o), A\ for o and A+ for 7 in ’ /\\ ’
(3) and (4) A > 0, causing convergence time to be diminished approx- | / \ 3 A
imately by times. As a result the coefficients &f; . will differ from \ i X X
1. R 20 o0 W 140 180 R 20 60 100 140 180
|eslgnt$]|:rTﬁ2f[?;§SCic:'_SIIdmg cgntrgller Wh.en .the .relatl\{e(,Q,eg,r?)e IS c. 3-sliding trajectory d. 4-sliding trajectory

: g successive time derivativesi, . . . , u 0

as new auxiliary variables and”~*) as a new control, achieve dif-
ferent modifications of each-sliding controller intended to control
systems with relative degreés= 1,2,...,r. The resulting control
is an(r — k — 1)-smooth function of time witlk < » — 1, a Lipschitz
function withk = » — 1 and a bounded “infinite-frequency switching”
function withk = r.

Chattering removalThe same trick removes the chattering effect. e. Steering angle: 3-sliding  f. Steering angle: 4-sliding
For example, substituting’” ~) for « in (3), receive a locat-sliding
controller to be used instead of the relay controller= —sign ¢ and  Fig. 1. Kinematic car control.
attain therth-order sliding precision with respect toby means of an

(r — 2)-smoot_h_ con_trol_wnh L'pSCh_'tZT - 2)th time derivative. It e measurements. Otherwise, the proper way is, probably, to employ

has to be modified like in [10], [15] in order to provide for the globalgy 1 o1otically-optimal robust exact differentiators specially developed

boundedn_ess of. i ) . for each differentiation order [11], [13]. Such differentiators have so far
Controlling systems nonlinear on contraonsider a systen = been constructed for the first order (see above) and second order [13]

f(t, 2, u) nonlinear on control. The problem is reduced to that consi%—nly_ The resulting sliding accuracy sigp| in the closed system will
ered above by introducing a new auxiliary variabland a new control be proportional to the maximal error afmeasurements [13]

v = U,

Real-time output controlThe implementation of the above-listed
r-sliding controllers requires real-time observation of the successive
derivativess, &, ..., o~V In case system (1) is known and the full Consider a simple kinematic model of car control [Fig. 1(a)] [17]
state is available, these derivatives may be directly calculated. In the
real uncertainty case the derivatives are to be real-time evaluated in
some other way. Let some signglt) be a function defined off), oo)
and consisting of an unknown base signa{t) having a derivative
with known Lipschitz's constan€ > 0 and an unknown bounded
Lebesgue-measurable noi¥ét). Then, the following system realizes

al
0.05
X t
2 1o 16 20
-0.05

02

Ill. SIMULATION EXAMPLES

. . . . v 5
& =wcosp, @Y =wvsinp, @zjtan& 0=u

where
z andy Cartesian coordinates of the rear-axle middle point;
® orientation angle;
v longitudinal velocity;

real-time differentiation ofy(¢) [11]: I distance between the two axles:
S 0 steering angle.
cT s The task is to steer the car from a given initial position to the trajectory
v=Co= ¢ — ()] sign(¢ - n(t)) y = g(z), whilex andy are assumed to be measured in real time. Note
Si(d¢ /dt) = — psign(¢ — n(t)). (5) that the actual control here fisandé = u is used as a new control in

order to avoid discontinuities af.
Hereu, A > 0, v(t) is the output of the differentiator. Solutions of the Letv = const= 10 m/s,l = 5 m, g(z) = 10 sin(0.05z) + 5,2 =
system are understood in the Filippov sense. Parameters may be chgsen, = ¢ = 0 att = 0. Definec = y — g(«). The relative degree
in the formp = 1.1C, A = 1.5C'"/?, for example (it is only one of of the system is 3 and the listed 3-sliding controller may be applied
possible choices). That differentiator provides for finite-time convehere. Note that practical implementation of the controller would require
gence to the exact derivative gf(¢) if N(¢) = 0. Otherwise, if sup some real-time coordinate transformation wjtrapproachingtm /2.
|N(t)| = e, it provides for accuracy proportional @'/2='/2, which |t was takem = 20. In order to demonstrate the differentiator usage
is the best possible asymptotics in the considered case [11]. Theref@igoduce 2 successive differentiators (5):
having beerk times successively implemented, that differentiator will

provide forkth-order differentiation accuracy of the orderf . A=

Hence, full local real-time robust control of output variables is possible v; =wy — 7|z — o sign(z — o)
under uncertainty conditions, using only output variable measurements Wy = — 15sign(z — o)

and knowledge of the relative degree R

The author wants to stress here that he does not consider successive 2
differentiation as an appropriate way to deal with a practical uncertainty vo =wz — 15|20 — v |17 sign(z2 — v1)
problem. The best way, definitely, is to find some way for direct deriva- we = — 50sign(zo — vy).
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During the first half-second the control is not applied in order to alloModification (4) does not require!" ") to be available. A variable

the convergence of the differentiators. Substitutingndv- for & and measurement step feedback [14] or the above-described robust differ-
d respectively, obtain the following 3-sliding controller: entiator [11] are to be implemented for (4) and (3) respectively in the
presence of errors in the evaluation of other derivatives.

In case the mathematical model of the system is known and the full
state is available, the real-time derivatives of the output are directly
calculated, the controller implementation is straightforward and does
not require reduction of the dynamic system to any specific form. In
the uncertainty case the mathematical model of the process is not re-
ally needed. It is actually sufficient to know only the relative degree
The trajectory and function = ¢(:x) with the sampling step = 10~ ofa minimum phase system. Necessary tw_ne derivatives of the output

S . . ; ) an be obtained by recursive implementation of the robust exact dif-

are shown in Fig. 1(c). The integration was carried out accordingtothe . e o
Euler method, the steering angle graph (actual control) is presente eIF]ennator with finite-time convergence [11]. Thus, the only needed

. ’ 8 g angle grap . P (ijeal-time information is the current valueof At the same time, in the
Fig. 1(e). The obtained accuracies ¢ < 0.0036, || < 0.026, - : o L

.. . _3 J 26 ). Z." presence of measurement noises the differentiation accuracy inevitably
|5] < 1.94 with 7 = 107 and|s| < 2.8-107°, 6] < 1.1-107*, . . : ) e
5] < 011 with 7 = 2-10— deteriorates rapidly with the growth of the differentiation order [11],
71> b = : and direct observation of the derivatives is preferable.

4-sliding control In case the steering angle dependence on time_l_he resented approach is comparable with back-stepping bro-
[Fig. 1(e)] is considered as unacceptable, the relative degree of the P PP P bping p

o cedure [7], being very different in the requirements (differential
system may be artificially increased once more. i.& the new con- inequalities instead of parametric uncertainties) and resulting perfor-
trol, v(0) = 0. Suppose that, y, ¢, ¢ are available, and apply the d p gp

above-listed 4-sliding controller with = 40 (modification (4)): irzarr:]c; Providing for uIt.imate. a(icuracy.an’(’:i finite-time convergence,
y cases (especially, in “exploding” systems) the proposed
controllers feature only local convergence, while the backstepping ap-
proach results in globally stable closed systems. Another comparable
approach is keeping in 1-sliding mode the equafity.( (d/dt)o = 0,
where P._; is a stable polynomial (dynamic sliding mode [18]).
The derivatives are directly calculated here (also here differentiat@ggsyiting in asymptotically stable-sliding mode, that approach
could be used). The 4-sliding deviations and the corresponding trajggstyres worse accuracy and a control dependent on higher derivatives
tory are shown in Fig. 1(b), (d) respectively. The finite-time convels ., 5o that the control may prove to be very large even with seall
gence is clearly seen from Fig. 1(b). The new graph of the steeringrhe proposed controllers are easily developed for any relative de-
angle (the actual control) is presented in Fig. 6(c). The sliding accuggse at the same time the most important are the cases when the rel-
cies|o| 3.9‘6 ' 1(.)_6’ |6 < 1.2-107% 17| <3.1-107% 37 < 033 ative degree equals 2, 3, and 4. Indeed, according to the Newton law,
were attained withr = 107" . . the relative degree of a spatial variable with respect to a force, being
_Note that the 4-sliding accuracy asymptofies~ 7°,6 ~ 77,5 ~ considered as a control, is 2. Taking into account some dynamic actu-
7°,d" ~ 7) cannot be checked on this example, for the identities likgor, achieve relative degree 3. If the actuator input is required to be
(sint)* = cost do not hold with the required accuracy in computep continuous Lipschitz function, the relative degree may be artificially
simulation. Therefore, that asymptotics was checked on a special R¥¢yeased to 4. Recent results [2] seem to allow the implementation of
ample of tracking solutions for the equatiofi’ + 32 + 2= = 0 ne developed controllers for general MIMO systems.
by the outputz of «' = u, o = z — z. The initial conditions
werez = 2 =z = 0,2 = 2,2 = & = & = & = 1; the
4-sliding controller wagxactly the sameThe corresponding accura-
cies change fronfr| < 1.3-107*,|5| < 1.7-107%,]5| < 3.0- 1072,

w=0, 0<t<0.5,

u = — 20sign <vz +2 (|v1|3 + 02)1/6

X sign (’U1 + |0|2/3 sign 0’) ), t > 0.5.

1/12

4 = —40sign {Aif',j 4+ 37 (Uf +ol+ |0’i|3)

Xsign [0’1 + ((if1 + |0'i|3)1/6 sign (('TZ' + O.5|0’i|3/4 sign ai)]}
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Il. THE BFPRG
A. Problem Statement
Consider the continuous-time bilinear system described by

A Geometric Approach to Fault Detection and Isolation 2(t) = A(uw)2(t) + By (x(t)vi (t) + Ea(2(t))v2(t) 1
for Bilinear Systems y(t) = Cz(t) @
H. Hammouri, P. Kabore, and M. Kinnaert whereA(u) = Ao+ 321" ui(t)Ai, vi andv: are respectively; and

{>-dimensional failure mode vectors, afitl(x) (i = 1,2) aren x {;
matrices depending smoothly an The input vector: and the fault
Abstract—in this note, a geometric approach to the synthesis of a vectorsv; andwvs belong to the class of admissible inputs and faults

residual generator for fault detection and isolation (FDI) in bilinear  respectively, such that the associated system trajectory is defined on the
systems is considered. A necessary and sufficient condition to solve theWhole time interva[0, c]. It can be shown that, i («), i = 1,2
so-called fundamental problem of residual generation is obtained. The . N . PN T
proposed approach resorts to extensions of the notions ofC, A)-in-  are global Lipschitz, then all Borelian bounded signals:, v» are
variant and unobservability subspaces, and it yields a constructive design admissible. The developments are restricted to the situation where two
method. failure modes are considered but they can be generalized to an arbitrary
Index Terms—Bilinear system, fault detection and isolation, observer, ~ Number of failure modes asin [4]_- N _
We shall need the following definition (see, for instance, [9], [10]).
Definition 1: The outputy of

#(t) = F(x(t),51(t)s...,s6())
In this note, we consider the design of a part of an advanced moni- y(t) = H(x(t))

toring system, namely the residual generator. The latter is a filter that o ) .
processes the measured plant outputs and the actuator commandg Rt affected by the signal if, for every initial staterl(O) and every
order to generate signals called residuals. These filter outputs are n&tNa!Ss1. 51. 52, 51, the following equality holds:

inally equal to zero in the absence of fault, when the filter transient has y(2(0), 51, 59, ... 55, 1) = y(2(0). 51, 50, ..., 55.1)

|. INTRODUCTION
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