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1.1 Introduction

One of the most important control problems is control under heavy un-
certainty conditions. While there are a number of sophisticated methods
like adaptation based on identification and observation, or absolute stability
methods, the most obvious way to withstand the uncertainty is to keep some
constraints by ”brutal force”. Indeed any strictly kept equality removes one
”uncertainty dimension”. The most simple way to keep a constraint is to
react immediately to any deviation of the system stirring it back to the con-
straint by a sufficiently energetic effort. Implemented directly, the approach
leads to so-called sliding modes, which became main operation modes in the
variable structure systems (VSS) [52]. Having proved their high accuracy
and robustness with respect to various internal and external disturbances,
they also reveal their main drawback: the so-called chattering effect, i.e.
dangerous high-frequency vibrations of the controlled system. Such an effect
was considered as an obvious intrinsic feature of the very idea of immediate
powerful reaction to a minutest deviation from the chosen constraint. An-
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other important feature is proportionality of the maximal deviation from the
constraint to the sampling time interval (or to the switching delay).

To avoid chattering some approaches were proposed . The main idea was
to change the dynamics in a small vicinity of the discontinuity surface in
order to avoid real discontinuity and at the same time to preserve the main
properties of the whole system. In particular, high-gain control with satu-
ration approximates the sign-function and diminishes the chattering, while
on-line estimation of the so-called equivalent control [52] is used to reduce the
discontinuous-control component [49]; the sliding-sector method [25] is suit-
able to control disturbed linear time-invariant systems; the changing speed
of the control value is artificially bounded, removing the chattering effect
[13]. However, the ultimate accuracy and robustness of the sliding mode
were partially lost. On the contrary, higher order sliding modes (HOSM)
generalize the basic sliding mode idea acting on the higher order time deriv-
atives of the system deviation from the constraint instead of influencing the
first deviation derivative like it happens in standard sliding modes. Keep-
ing the main advantages of the original approach, at the same time they
totally remove the chattering effect and provide for even higher accuracy in
realization. A number of such controllers were described in the literature
[29, 14, 30, 33, 3, 5, 37, 24] . As we will see soon, these modes may not only
remove the chattering effect, but also completely solve a number of “black-
box” control problems when actually only the relative degree of the system
is known [40]. One of the sudden applications of these modes is construction
of an exact robust differentiator with finite-time convergence [32, 38].

The purpose of this Chapter is not to present an accurate review of the
current achievements in the field, but to provide a simple introduction to the
theory and to demonstrate the main features and abilities of higher order
sliding modes.

1.2 Elementary Introduction to Higher-Order

Sliding Modes

HOSM is actually a movement on a discontinuity set of a dynamic system
understood in Filippov’s sense [20]. The sliding order characterizes the dy-
namics smoothness degree in the vicinity of the mode. If the task is to provide
for keeping a constraint given by equality of a smooth function σ to zero, the
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sliding order is a number of continuous total derivatives of σ (including the
zero one) in the vicinity of the sliding mode. Hence, the rth order sliding
mode is determined by the equalities

σ = σ̇ = σ̈ = ... = σ(r−1) = 0. (1.1)

forming an r-dimensional condition on the state of the dynamic system. The
words ”rth order sliding” are often abridged to ”r-sliding”. Standard sliding
mode is called in this notation 1-sliding mode, for σ̇ is discontinuous. A
simple introduction to 2-sliding modes is presented in this Section.

1.2.1 Twisting controller

Consider a simple example. Let an uncertain dynamic system be given by
the following differential equation

ẍ = a(t) + b(t)u, (1.2)

where

|a| ≤ 1, 1 ≤ b ≤ 2 (1.3)

are unknown, u ∈ R is the control. The goal is to stabilize the system at the
origin. Mark that any approach except for the VSS can hardly do the job.
The standard VSS way is to define a constraint like σ = x + ẋ = 0 and to
keep it by the controller

σ = x+ ẋ, u = −2 sign σ. (1.4)

That controller solves the problem locally. Indeed, the calculation

σ̇ = ẋ+ ẍ = ẋ+ a(t) − 2b(t) sign σ

shows that with |ẋ| < 1 the control dominates, σσ̇ < 0 and σ vanishes in
finite time. The global controller is also easily constructed:

u = −2(|x| + |ẋ| + 1) sign σ,

but it is unbounded. The transient time is infinite and in the presence of
a small switching delay the accuracy is proportional to the delay [49]. The
phase portrait is given in Fig. 1.1.
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Consider now a simple 2-sliding controller, namely the “twisting” con-
troller [29, 14, 30]

u = −5 sign x− 3 sign ẋ. (1.5)

It will be shown a little bit later that it provides for the global finite time
convergence to the origin. The control is obviously bounded here.

The 2-sliding mode exists in the both systems (1.2), (1.4) and (1.2), (1.5)
at the origin x = ẋ = 0 only. Indeed, the functions x, ẋ are obviously
continuous functions of the state space coordinates t, x, ẋ, and the origin
is described by the equations x = ẋ = 0. Thus, there is an asymptotically
stable 2-sliding mode with respect to the constraint x = 0 in system (1.2),
(1.4) (Fig. 1.1) and a 2-sliding mode attracting in finite time in (1.2), (1.5)
(Fig. 1.2). At the same time there is a 1-sliding mode with respect to the
constraint x+ ẋ = 0 in (1.2), (1.4). It exists on the line x+ ẋ = 0.

Figure 1.1: Classical 2-dimensional VSS

In order to demonstrate the chattering elimination, consider even a sim-
pler dynamic system

ẋ = a(t) + b(t)u, (1.6)

where the condition |ȧ| ≤ 1, |ḃ| ≤ 1 is added to (1.3). The traditional VSS
controller is u = −2 sign x. As a result a global finite-time attracting 1-sliding
mode appears at the origin. The 2-sliding controller removing the chattering
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Figure 1.2: Twisting controller: phase portrait

is given by

u̇ =

{

−u with |u| > 2,
−10 signx− 6 sign ẋ with |u| ≤ 2.

(1.7)

The state space is extended here to include the coordinate u. The functions
x and ẋ = a(t) + b(t)u are obviously continuous functions of the state space
coordinates t, x, u, and the 2-sliding mode is described by the equations x =
0, a(t) + b(t)u = 0. Thus, in the 2-sliding mode u = a(t)/b(t), which means
that the control is continuous and coincides with the equivalent control [52].
The problem in realization of this approach is that ẋ is often not available.
In that case sign ẋ is replaced by sign ∆xi where ∆xi = x(ti) − x(ti−1) and
the current time t ∈ [ti, ti+1).

Consider now a general case when

|a(t, x)| ≤ C, 0 ≤ Km ≤ b(t, x) ≤ KM , (1.8)

u = −r1 sign x− r2 sign ẋ, r1 > r2 > 0. (1.9)

Lemma 1 Let r1 and r2 satisfy the conditions

Km(r1 + r2) − C > KM(r1 − r2) + C, Km(r1 − r2) > C. (1.10)

Then controller (1.9) provides for the appearance of a 2-sliding mode x =
ẋ = 0 attracting the trajectories in finite time.
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Proof. It is easy to see that every trajectory of the system crosses the
axis x = 0 in finite time. Indeed, due to (1.8), (1.10) signx sign ẍ < 0 and
with sign x being constant for a long time, signx sign ẋ < 0 is established,
while the absolute value of ẋ tends to infinity. It follows from (1.10) that
with x 6= 0

−[KM (r1 + r2) + C] ≤ ẍ sign x ≤ −[Km(r1 + r2) − C] < 0 with ẋx > 0,
−[KM (r1 − r2) + C] ≤ ẍ sign x ≤ −[Km(r1 − r2) − C] < 0 with ẋx < 0.

(1.11)
As always with the Filippov definitions the values taken on a set of the
measure 0 do not matter. Let ẋ0xM ẋM (Fig. 1.3) be the trajectory of the
differential equation

ẍ =

{

−[Km(r1 + r2) − C] sign x with ẋx > 0,
−[KM (r1 − r2) + C] sign x with ẋx ≤ 0.

(1.12)

with the same initial conditions. Assume now for simplicity that the initial
values are x = 0, ẋ = ẋ0 > 0 at t = 0. Thus, the trajectory enters the
half-plane x > 0. Simple calculation shows that with x > 0 the solution of
(1.12) is determined by the equalities

x = xM − ẋ2

2[Km(r1+r2)−C]
with ẋ > 0,

x = xM − ẋ2

2[KM (r1−r2)+C]
with ẋ ≤ 0,

where 2[Km(r1 + r2) − C]xM = ẋ2
0. Consider any point P (xP , ẋP )of this

curve (Fig. 1.3). The velocity of (1.2), (1.9) at this point has coordinates
(ẋP , ẍP ). Hence, the horizontal component of the velocity depends only on
the point itself. Since the vertical component satisfies the inequalities (1.11),
the velocity of (1.2), (1.9) always ”looks” into the region bounded by the
axis x = 0 and curve (1.12). That curve is called the majorant [30]. Let the
trajectory of (1.2), (1.9) intersect the next time with the axis x = 0 at the
point ẋ1. Then, obviously, |ẋ1| ≤ |ẋM | and

|ẋ1|/|ẋ0| ≤ [KM(r1 − r2) + C]/[Km(r1 + r2) − C] = q < 1.

Extending the trajectory into the half=plane x < 0 after a similar rea-
soning achieve that the successive crossings of the axis x = 0 satisfy the
inequality |ẋi+1|/|ẋi| ≤ q < 1 (Fig. 1.2). Therefore, the algorithm obviously
converges. The convergence time is to be estimated now. The real trajectory
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Figure 1.3: Majorant curve of the twisting controller

consists of infinite number of segments belonging to the half-planes x ≥ 0
and x ≥ 0. On each of these segments ẋ changes monotonously according to
(1.11). The total variance of the function ẋ(t) is

V ar(ẋ(·)) =
∑

|ẋi| ≤ |ẋ0|(1 + q + q2 + ...) =
|ẋ0|

1 − q
,

and the total convergence time is estimated as

T ≤
∑ |ẋi|

[Km(r1 − r2) − C]
≤ |ẋ0|

(1 − q)[Km(r1 − r2) − C]

�

Important remark : in practice the parameters are never assigned accord-
ing to inequalities (1.10). Usually the real system is not exactly known,
the model itself is not really adequate, and the estimations of parameters
KM ,Km,C are much larger than the actual values (often 100 times larger!).
The larger the controller parameters, the more sensitive is the controller to
any switching imperfections and measurement noises. Thus, the right way
is to adjust the controller parameters during computer simulation. That
remark is true with respect to all controllers described in this Chapter.
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1.2.2 Super-twisting controller

As it was shown, the twisting controller (1.7) requires real-time measurements
of ẋ or just of sign ẋ, when used to remove chattering. In other words, in
order to provide for x = ẋ = 0 both x and ẋ measurements are needed.
That is reasonable, but, nevertheless, not inevitable. Consider once more
the dynamic system

ẋ = a(t) + b(t)u, (1.13)

and suppose that for some positive constants C, KM , Km, UM , q

|ȧ| + UM |ḃ| ≤ C, 0 ≤ Km ≤ b(t, x) ≤ KM , |a/b| < qUM , 0 < q < 1.
(1.14)

The following controller does not need measurements of ẋ. Let

u = −λ|x|1/2 sign x+ u1, u̇1 =

{

−u, |u| > UM ,
−α sign x, |u| ≤ UM .

Lemma 2 With Kmα > C and λ sufficiently large the controller provides
for the appearance of a 2-sliding mode x = ẋ = 0 attracting the trajectories
in finite time. The control u enters in finite time the segment [−UM , UM ]
and stays there. It never leaves the segment if the initial value is inside at
the beginning.

The latter controller is called super-twisting controller. The correspond-
ing phase portrait is shown in Fig. 1.4 . A sufficient (very crude! ) condition
for validity of the Lemma is

λ >

√

2

(Kmα− C)

(Kmα + C)KM(1 + q)

K2
m(1 − q)

. (1.15)

Proof. Calculate u̇ with |u| > UM and obtain u̇ = −1
2
λẋ|x|−1/2 − u. It

follows from (1.13), (1.14) that ẋu > 0 with |u| > UM . Thus, u̇u < 0, |u̇| >
UM when |u| > UM , and |u| ≤ UM is established in finite time. Nevertheless,
a 1-sliding mode u = − sign x is still possible during time intervals with
constant sign x. The following equation is satisfied with |u| < UM , x 6= 0:

ẍ = ȧ+ ḃu− b
1

2
λ

ẋ

|x|1/2
− bα sign x.
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Figure 1.4: Super-twisting controller: phase portrait

The trivial identity d
dt
|x| = ẋ sign x is used here. Note once more that the

values taken on sets of measure 0 are not accounted for, thus the differentia-
tion is performed when sign x = const. The latter equation may be rewritten
as

ẍ ∈ [−C,C] − [Km, KM ](
1

2
λ

ẋ

|x|1/2
+ α sign x). (1.16)

This inclusion does not “remember” anything on the original system. Sim-
ilarly to the proof of Lemma 1 with x > 0, ẋ > 0 the real trajectory is
confined by the axes x = 0, ẋ = 0 and the trajectory of the equation
ẍ = −(Kmα− C). Let xM be the intersection of this curve with axis ẋ = 0.
Obviously, 2(Kmα− C)xM = ẋ2

0 (Fig. 1.5). It is easy to see from (1.5) that

x > 0, ẋ > 0,
1

2
λ

|ẋ|
|x|1/2

>
C

Km
+ α =⇒ ẍ > 0.

Thus, the majorant curve with x > 0 may be taken as follows (Fig. 1.5):

ẋ2 = 2(Kmα− C)(xM − x) with ẋ > 0,

x = xM with 0 ≥ ẋ ≥ −2

λ
(
C

Km
+ α)x1/2,

ẋ = ẋM = −2

λ
(
C

Km
+ α)x

1/2
M with ẋ > −2

λ
(
C

Km
+ α)x1/2.
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Figure 1.5: Super-twisting controller: the proof

The condition |ẋM/ẋ0| < 1 is sufficient for the algorithm convergence while
|u| < UM . That condition is

2(Kmα + C)2

λ2K2
m(Kmα− C)

< 1.

Unfortunately, the latter inequality is still not sufficient, for this consid-
eration does not include possible 1-sliding mode keeping u = ±UM . It is easy
to see that such a mode is not possible with x > 0, ẋ > 0. Indeed, in that
case u̇ stays negative and does not allow any sign switching. On the other
hand, as follows from (1.13), (1.14) and |u| ≤ UM

|ẋ| = b|(a/b+ u)| ≤ KM(1 + q)UM , |ẋ| = b|(a/b+ u)| ≥ Km(1 − q)UM .

Thus, ẋ0 ≤ KM(1 + q)UM , and the condition

| ẋM

ẋ0

| < Km(1 − q)UM

KM(1 + q)UM

=
Km(1 − q)

KM(1 + q)

is sufficient to avoid keeping u = ±UM in sliding mode. The resulting final
condition coincides with (1.15).

It is required now to prove the finite-time convergence. It is sufficient
to consider only sufficiently small vicinity of the origin where |u| < UM is
guaranteed. Consider an auxiliary variable ξ = a(t) + b(t)u1. Obviously,
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ξ = ẋ at the moments when x = 0, and u1 → −a/b as t → ∞. Thus,
ξ = b(a/b + u1) tends to zero. Starting from the moment when |u1| < UM

holds, its derivative ξ̇ = ȧ + ḃu1 − bα sign x satisfies the inequalities

0 < Kmα− C ≤ −ξ̇ sign x ≤ KMα + C.

Like in the proof of Lemma 1, the total variation of ξ equals
∑ |ẋi|, is majored

by a geometric series and therefore converges. The total convergence time
T ≤ ∑ |ẋi|/(Kmα− C). �

1.2.3 First-order differentiator

The super-twisting controller is used to control systems of the relative de-
gree 1. In other words it can be used instead of a standard 1-sliding-mode
controller in order to avoid chattering. Nevertheless, with the relative degree
2 the 2-sliding controller, like a twisting one, is needed to stabilize system
(1.2) in finite time. In order to avoid usage of ẋ measurements a differentia-
tor (observer) is needed. Popular linear high-gain observers [1] cannot do the
job here, for they provide only for asymptotic stabilization at an equilibrium
state. The latter requirement is the most restrictive, for it actually means
here that a(t) ≡ 0 or a = const. b = const. The differentiator needed here
has to feature robust exact differentiation with finite-time convergence.

Let input signal f(t) be a function defined on [0,∞) consisting of a
bounded Lebesgue-measurable noise with unknown features and an unknown
base signal f0(t) with the first derivative having a known Lipschitz constant
L > 0. The problem is to find real-time robust estimations of f0(t), ḟ0(t)
being exact in the absence of measurement noises.

Consider the auxiliary system ż = v, where v is control. Let x = z − f0

and let the task be to keep x = 0 in 2-sliding mode. In that case ẋ = x = 0,
which means that z = f0 and ḟ0 = v. The system can be rewritten as

ẋ = −ḟ0(t) + v, |f̈0| ≤ L.

The function ḟ0 does not need to be smooth here, its derivative f̈0 exists
almost everywhere due to the Lipschitz property of ḟ0. A modification of
the super-twisting controller can be applied here:

v = −λ1|x|1/2 sign x+ z1,

ż1 = −λ2 sign x.
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The modification is needed here, for neither ḟ0(t) nor v is bounded. The
differentiator takes on the resulting form

ż = v = −λ1|z − f(t)|1/2 sign(z − f(t)) + z1, (1.17)

ż1 = −λ2 sign(z − f(t)),

where both v and z1 can be taken as the differentiator outputs.

Theorem 3 [32] For any λ2 > L with every sufficiently large λ1 both v and
z1 converge in finite time to ḟ0(t).

The proof of the Theorem is actually contained in the proof of Lemma 2.
The sufficient convergence conditions are

λ2 > L,
2(λ2 + L)2

λ2
1(λ2 − L)

< 1. (1.18)

Theorem 4 [32] Let the input noise satisfy the inequality |f(t) − f0(t)| ≤
ε. Then the following inequalities are established in finite time for some
positive constants µ, ν, η depending exclusively on the parameters of the
differentiator:

|z − f0(t)| ≤ µε, |z1 − ḟ0(t)| ≤ νε1/2, |v − ḟ0(t)| ≤ ηε1/2.

Sketch of the proof. Let σ = z − f0(t), ξ = z1 − ḟ0(t), then

ξ̇ = −f̈0(t) − λ2 sign σ ∈ [−L,L] − λ2 sign σ,

and the differentiator equations in the absence of the input noise may be
replaced by the inclusion

σ̇ = −λ1|σ|1/2 sign σ + ξ, (1.19)

ξ̇ ∈ −[λ2 − L, λ2 + L] sign σ.

Its solutions converge to the origin σ = 0, ξ = 0 in finite time. With ε 6= 0
inclusion (1.19) turns into

σ̇ = −λ1|σ + [−ε, ε]|1/2 sign(σ + [−ε, ε]) + ξ, (1.20)

ξ̇ ∈ −[λ2 − L, λ2 + L] sign(σ + [−ε, ε]).
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With small ε = ε0 the trajectories are concentrated in a small set σ ≤ κ1, ξ ≤
κ2 and stay there forever. Apply combined transformation of coordinates,
time and parameters

Gν : (σ, ξ, t, ε0) 7→ (ν2σ, νξ, νt, ν2ε0).

It is easy to see that the trajectories of inclusion (1.20) are transferred into
the trajectories of the same inclusion but with the different noise magnitude
ε = ν2ε0. Thus, ν =

√

ε/ε0 and the new attracting invariant set is given by
the inequalities σ ≤ ν2

κ1 = (κ1/ε0)ε, ξ ≤ νκ2 = (κ2/
√
ε0)ε. �

Lemma 5 [32] Let parameters λ1 = Λ1, λ2 = Λ2 of differentiator (1.17)
provide for exact differentiation with L = 1. Then the parameters λ1 =
Λ1L

1/2, λ2 = Λ2L are valid for any L > 0 and provide for the accuracy

|z − f0(t)| ≤ µε, |z1 − ḟ0(t)| ≤ νL1/2ε1/2, |v − ḟ0(t)| ≤ ηL1/2ε1/2.

for some positive constants µ, ν, η.

Proof. Denote f̃ = f/L, then the following differentiator provides for
the exact differentiation of f̃(t):

.

z̃ = −Λ1|z̃ − f̃(t)|1/2 sign(z̃ − f̃(t)) + z̃1, (1.21)
.

z̃1 = −Λ2 sign(z̃ − f̃(t)).

Multiplying by L and defining z = Lz̃, z1 = Lz̃1, achieve the statement of
the Lemma.�

Convergence condition (1.18) is very conservative. A special integral con-
vergence criterion is developed in [32]. In particular, the parameter choices
λ1 = 1.5L1/2, λ2 = 1.1L and λ1 = L1/2, λ2 = 2L are valid, though they do
not satisfy (1.18). Note that while v is noisy in the presence of the input
noises, z1 is a Lipschitzian signal, but input noises lead to small phase delay.

Computer simulation

It was taken that t0 = 0, initial values of the internal variable x(0) and the
measured input signal f(0) coincide, initial value of the output signal u(0) is
zero. The simulation was carried out by the Euler method with measurement
and integration steps equaling 10−4.
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Compare the proposed differentiator (1.17) with a simple linear dif-
ferentiator described by the transfer function p/(0.1p + 1)2. Such a differ-
entiator is actually a combination of the ideal differentiator and a low-pass
filter. Let λ1 = 6, λ2 = 8. The output signals for inputs f(t) = sin t + 5t,
f(t) = sin t+ 5t+ 0.01 cos 10t, and f(t) = sin t+ 5t+ 0.001 cos 30t and ideal
derivatives ḟ0(t) are shown in Fig. 1.6. The linear differentiator is seen not to
differentiate exactly. At the same time it is highly insensitive to any signals
with frequency above 30. The proposed differentiator handles properly any
input signal f with f̈ ≤ 7 regardless the signal spectrum.

1.2.4 Output-feedback control

We are able now to construct a 2-sliding controller for system (1.2)

ẍ = a(t) + b(t)u, (1.22)

|a(t, x)| ≤ C, 0 ≤ Km ≤ b(t, x) ≤ KM ,

which solves the stabilization problem in finite time using only measurements
of x. It is possible due to the boundedness of ẍ. Combining the twisting
controller and the differentiator achieve

u = −r1 sign z − r2 sign z1, r1 > r2 > 0.
ż = −λ1|z − x|1/2 sign(z − x) + z1,
ż1 = −λ2 sign(z − x),
λ1 = 1.5(Km(r1 + r2) + C)1/2, λ2 = 1.1(Km(r1 + r2) + C)

(1.23)

where the convergence condition is

Km(r1 + r2) − C > KM(r1 − r2) + C, Km(r1 − r2) > C. (1.24)

As a consequence of Lemma 1 and Theorem 3 achieve exact stabiliza-
tion and finite-time convergence. It is proved [39] that in the presence of
a bounded Lebesgue-measurable noise with the maximal magnitude ε the
steady state accuracies sup |x| and sup |ẋ| are proportional to ε and

√
ε re-

spectively.
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Figure 1.6: Comparison of the proposed and linear differentiators
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Example

Consider system (1.2) with restrictions (1.3)

ẍ = a(t) + b(t)u, |a| ≤ 1, 1 ≤ b ≤ 2

and compose an output-feedback control of form (1.23) from (1.5):

u = −5 sign z − 3 sign z1,
ż = −7|z − x|1/2 sign(z − x) + z1,
ż1 = −18 sign(z − x).

(1.25)

At the moment t = 0 the initial values z(0) = x(0), z1 = 0 were taken. The
concrete dynamic system

ẍ = sin 14.12t+ (1.5 + 0.5 cos 21t)u,

was taken for simulation. The trajectory in the plane xẋ and the mutual
graph of x, ẋ and z1 are shown in Figs. 1.7a,b respectively. The graph of z
cannot be shown, since one cannot distinguish it from x. Convergence in the
presence of an input high-frequency noise with magnitude 0.01 and graphs of
x, ẋ and z1 are shown in Figs. 1.7c,d respectively. The resulting steady-state
accuracies are |x| ≤ 0.041, and |ẋ| ≤ 0.79.

1.3 Definitions of higher order sliding modes

Standard sliding mode features few special properties. It is reached in finite
time, which means that a number of trajectories meet at any sliding point.
In other words, the shift operator along the phase trajectory exists, but is
not invertible in time at any sliding point. Other important features are
that the manifold of sliding motions has a nonzero codimension and that any
sliding motion is performed on a system discontinuity surface and may be
understood only as a limit of motions when switching imperfections vanish
and switching frequency tends to infinity. Any generalization of the sliding
mode notion has to inherit some of these properties [11].

Let us recall first what Filippov’s solutions [19, 20] are of a discontinuous
differential equation

ẋ = v(x),
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Figure 1.7: Output-feedback twisting controller
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where x ∈ R
n, v is a locally bounded measurable (Lebesgue) vector function.

In that case, the equation is replaced by an equivalent differential inclusion

ẋ ∈ V(x).

In the particular case when the vector-field v is continuous almost every-
where, the set-valued function V(x) is the convex closure of the set of all
possible limits of v(y) as y → x, while {y} are continuity points of v. Any
solution of the equation is defined as an absolutely continuous function x(t),
satisfying the differential inclusion almost everywhere.

The following Definitions are based on [29, 14, 15, 17, 30, 23]. Recall that
the word combinations ”rth order sliding” and ”r-sliding” are equivalent.

1.3.1 Sliding modes on manifolds

Let S be a smooth manifold. Set S itself is called the 1-sliding set with
respect to S. The 2-sliding set is defined as the set of points x ∈ S, where
V(x) lies entirely in tangential space Tx to manifold S at point x (Fig.1.8).

Definition 1 It is said that there exists a first (or second) order sliding mode
on manifold S in a vicinity of a first (or second) order sliding point x, if in
this vicinity of point x the first (or second) order sliding set is an integral
set, i.e. it consists of Filippov’s sense trajectories.

Let S1 = S. Denote by S2 the set of 2-sliding points with respect to
manifold S. Assume that S2 may itself be considered as a sufficiently smooth
manifold. Then the same construction may be considered with respect to S2.
Denote by S3 the corresponding 2-sliding set with respect to S2. S3 is called
the 3-sliding set with respect to manifold S . Continuing the process, achieve
sliding sets of any order.

Definition 2 It is said that there exists an r-sliding mode on manifold S in a
vicinity of an r-sliding point x ∈ Sr, if in this vicinity of point x the r-sliding
set Sr is an integral set, i.e. it consists of Filippov’s sense trajectories.

1.3.2 Sliding modes with respect to constraint func-
tions

Let a constraint be given by an equation σ(x) = 0, where σ : R
n → R

is a sufficiently smooth constraint function. It is also supposed that total
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time derivatives along the trajectories σ, σ̇, σ̈, . . . , σ(r−1) exist and are single-
valued functions of x, which is not trivial for discontinuous dynamic systems.
In other words, this means that discontinuity does not appear in the first r−1
total time derivatives of the constraint function σ. Then the rth order sliding
set is determined by the equalities

σ = σ̇ = σ̈ = . . . = σ(r−1) = 0. (1.26)

Here (1.26) is an r-dimensional condition on the state of the dynamic system.

Definition 3 Let the r-sliding set (1.26) be non-empty and assume that it is
locally an integral set in Filippov’s sense (i.e. it consists of Filippov’s trajec-
tories of the discontinuous dynamic system). Then the corresponding motion
satisfying (1.26) is called an r-sliding mode with respect to the constraint
function σ (Fig.1.8).

Figure 1.8: Second order sliding mode trajectory

To exhibit the relation with the previous Definitions, consider a mani-
fold S given by the equation σ(x) = 0. Suppose that σ, σ̇, σ̈, . . . , σ(r−2) are
differentiable functions of x and that

rank{∇σ,∇σ̇, . . . ,∇σ(r−2)} = r − 1 (1.27)

holds locally ( here rankV is a notation for the rank of the vector set V).
Then Sr is determined by (1.26) and all Si, i = 1, . . . , r − 1 are smooth
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manifolds. If in its turn Sr is required to be a differentiable manifold, then
the latter condition is extended to

rank{∇σ,∇σ̇, . . . ,∇σ(r−1)} = r (1.28)

Equality (1.28) together with the requirement for the corresponding deriv-
atives of σ to be differentiable functions of x will be referred to as the sliding
regularity condition, whereas condition (1.27) will be called the weak sliding
regularity condition.

With the weak regularity condition satisfied and S given by equation
σ = 0 Definition 3 is equivalent to Definition 2. If regularity condition
(1.28) holds, then new local coordinates may be taken. In these coordinates
the system will take the form

y1 = σ, ẏ1 = y2; . . . ; ẏr−1 = yr;

σ(r) = ẏr = Φ(y, ξ);

ξ̇ = Ψ(y, ξ), ξ ∈ Rn−r.

Proposition 6 Let regularity condition (1.28) be fulfilled and r-sliding man-
ifold (1.26) be non-empty. Then an r-sliding mode with respect to the con-
straint function σ exists if and only if the intersection of the Filippov vector-
set field with the tangential space to manifold (1.26) is not empty for any
r-sliding point.

Proof. The intersection of the Filippov set of admissible velocities with
the tangential space to the sliding manifold (1.26), mentioned in the Proposi-
tion, induces a differential inclusion on this manifold. This inclusion satisfies
all the conditions by Filippov [19, 20] for solution existence. Therefore, man-
ifold (1.26) is an integral one.�

Let now σ be a smooth vector function, σ : R
n → R

m, σ = (σ1, . . . , σm),
and also r = (r1, . . . , rm), where ri are natural numbers.

Definition 4 Assume that the first ri successive full time derivatives of σi

are smooth functions, and a set given by the equalities

σi = σ̇i = σ̈i = . . . = σ
(ri−1)
i = 0, i = 1, . . . , m,

is locally an integral set in Filippov’s sense. Then the motion mode existing
on this set is called a sliding mode with vector sliding order r with respect to
the vector constraint function σ.
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The corresponding sliding regularity condition has the form

rank{∇σi, . . . ,∇σ(ri−1)
i |i = 1, . . . , m} = r1 + . . .+ rm.

Definition 4 corresponds to Definition 2 in the case when r1 = . . . = rm and
the appropriate weak regularity condition holds.

A sliding mode is called stable if the corresponding integral sliding set is
stable.

Remarks

1. These definitions also include trivial cases of an integral manifold in a
smooth system. To exclude them we may, for example, call a sliding mode
”not trivial” if the corresponding Filippov set of admissible velocities V (x)
consists of more than one vector.
2. The above definitions are easily extended to include non-autonomous
differential equations by introduction of the fictitious equation ṫ = 1. Note
that this differs slightly from the Filippov definition considering time and
space coordinates separately.

1.3.3 Higher-order sliding in control systems

Single out two cases: ideal sliding occurring when the constraint is ideally
kept and real sliding taking place when switching imperfections are taken
into account and the constraint is kept only approximately.

Ideal sliding

All the previous considerations are translated literally to the case of a process
controlled

ẋ = f(t, x, u), σ = σ(t, x) ∈ R, u = U(t, x) ∈ R,

where x ∈ R
n, t is time, u is control, and f, σ are smooth functions. Control

u is determined here by a feedback u = U(t, x), where U is a discontinuous
function. For simplicity we restrict ourselves to the case when σ and u are
scalars. Nevertheless, all statements below may also be formulated for the
case of vector sliding order.
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Let the system to be controlled have the form

ẋ = a(t, x) + b(t, x)u, x ∈ Rn, u ∈ R, (1.29)

σ : (t, x) 7−→ σ(t, x) ∈ R,

where σ is the output of the system. We confine ourseves to the Single-
Input-Single-Output (SISO) case. The task is to make σ vanish by means of
possibly discontinuous feedback.

Extend the system by means of a fictituous equation

ṫ = 1.

Let x̃ = (x, t)t, ã(x̃) = (a(t, x), 1)t, b̃(x̃) = (b(t, x), 0)t. Then the system takes
on the form

·

x̃ = ã(x̃) + b̃(x̃)u, σ = σ(x̃). (1.30)

According to [26] the equality of the relative degree of system (1.30) to r
means that the Lie derivatives Lb̃σ, Lb̃Lãσ, . . . , Lb̃L

r−2
ã σ equal zero identically

in a vicinity of a given point and Lb̃L
r−1
ã σ is not zero at the point. The

equality of the relative degree to r means, in a simplified way, that u first
appears explicitly only in the rth total time derivative of σ. It is known that
in that case σ(i) = Li

ãσ for i = 1, . . . , r − 1, regularity condition (1.28) is
satisfied automatically and also ∂

∂u
σ(r) = Lb̃L

r−1
ã σ 6= 0. Each time when it is

mentioned that system (1.29) has relative degree r it is meant that system
(1.30) has the same relative degree.

As follows from [26] in the case of the relative degree r the equation

σ(r) = h(t, x) + g(t, x)u, g(t, x) 6= 0,

holds locally, where h(t, x) = Lr
ãσ = σ(r)|u=0, g(t, x) = Lb̃L

r−1
ã σ = ∂

∂u
σ(r).

Thus, h, g may be defined on the basis of the input-output relations. There is
a direct analogy between the relative degree notion and the sliding regularity
condition. Loosely speaking, it may be said that the sliding regularity con-
dition (1.28) means that the ”relative degree with respect to discontinuity”
is not less than r. Similarly, the rth order sliding mode notion is analogous
to the zero-dynamics notion [26].

Theorem 7 Let the system have relative degree r with respect to the out-
put function σ at some r-sliding point (t0, x0). Let, also, the discontinuous
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function U take on values from sets [K,∞) and (−∞,−K] on some sets of
non-zero measure in any vicinity of any r-sliding point near point (t0, x0).
Then it provides, with sufficiently large K, for the existence of r-sliding mode
in some vicinity of point (t0, x0). r-sliding motion satisfies the zero-dynamics
equations.

Proof. This Theorem is an immediate consequence of Proposition 6,
nevertheless, we will detail the proof. Consider some new local coordinates
y = (y1, . . . , yn), where y1 = σ, y2 = σ̇, . . . , yr = σ(r−1). In these coordinates
manifold Lr is given by the equalities y1 = y2 = . . . = yr = 0 and the
dynamics of the system is as follows:

ẏ1 = y2, . . . , ẏr−1 = yr,
ẏr = h(t, y) + g(t, y)u, g(t, y) 6= 0,

ξ̇ = Ψ1(t, y) + Ψ2(t, y)u, ξ = (yr+1, . . . , yn).
(1.31)

Denote Ueq = −h(t, y)/g(t, y). It is obvious that with initial conditions
being on the r-th order sliding manifold Sr equivalent control u = Ueq(t, y)
provides for keeping the system within manifold Sr. It is also easy to see that
the substitution of all possible values from [−K,K] for u gives us a subset of
values from Filippov’s set of the possible velocities. Let |Ueq| be less than K0,
then with K > K0 the substitution u = Ueq determines a Filippov’s solution
of the discontinuous system which proves the Theorem.�

The trivial control algorithm u = −K sign σ satisfies Theorem 7. Usu-
ally, however, such a mode will not be stable. In particular, such HOSMs
arise in VSSs with actuators. Such r-sliding modes are always unstable with
r > 2 [21, 22, 24]. It follows from the proof above that the equivalent control
method [51] is applicable to r-sliding mode and produces equations coinciding
with the zero-dynamics equations for the corresponding system:

σ = σ̇ = . . . = σ(r−1) = 0, y = (0, ξ), ξ̇ = Ψ1(t, 0, ξ) − Ψ2(t, 0, ξ)
h(t, 0, ξ)

g(t, 0, ξ)
.

The sliding mode order notion [9, 12] seems to be understood in a very
close sense (the authors had no possibility to acquaint themselves with the
work by Chang). A number of papers approach the higher order sliding mode
technique in a very general way from the differential-algebraic point of view
[45, 46, 47, 41]. In these papers so-called ”dynamic sliding modes” are not
distinguished from the algorithms generating them. Consider that approach.
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Let the following equality be fulfilled identically as a consequence of the
dynamic system equations [47]:

P (σ(r), . . . , σ̇, σ, x, u(k), . . . , u̇, u) = 0. (1.32)

Equation (1.32) is supposed to be solvable with respect to σ(r) and u(k).
Function σ may itself depend on u. The rth order sliding mode is considered
as a steady state σ ≡ 0 to be achieved by a controller satisfying (1.32). In
order to achieve for σ some stable dynamics

Σ = σ(r−1) + a1σ
(r−2) + . . .+ ar−1σ = 0

the discontinuous dynamics

Σ̇ = −sign Σ (1.33)

is provided. For this purpose the corresponding value of σ(r) is evaluated
from (1.33) and substituted into (1.32). The obtained equation is solved for
u(k).

Thus, a dynamic controller is constituted by the obtained differential
equation for u which has a discontinuous right hand side. With this con-
troller successive derivatives σ, . . . , σ(r−1) are smooth functions of closed sys-
tem state space variables. The steady state of the resulting system satisfies
at least (1.26) and under some relevant conditions also the regularity require-
ment (1.28), and therefore Definition 3 will hold. Note that there are two
different sliding modes in system (1.32), (1.33): a standard sliding mode of
the first order which is kept on the manifold Σ = 0, and an asymptotically
stable r-sliding mode with respect to the constraint σ = 0 which is kept in
the points of the r-sliding manifold σ = σ̇ = . . . = σ(r−1) = 0.

1.3.4 Real sliding and finite time convergence

Recall that the objective is synthesis of such a control u that the constraint
σ(t, x) = 0 holds. The quality of the control design is closely related to
the sliding accuracy. In reality, no approaches to this design problem may
provide for ideal keeping of the prescribed constraint. Therefore, there is a
need to introduce some means in order to provide a capability for comparison
of different controllers.

Any ideal sliding mode should be understood as a limit of motions when
switching imperfections vanish and the switching frequency tends to infinity
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(Filippov [19, 20]). Let ε be some measure of these switching imperfections.
Then sliding precision of any sliding mode technique may be featured by a
sliding precision asymptotics with ε→ 0 [30]:

Definition 5 Let (t, x(t, ε)) be a family of trajectories, indexed by ε ∈ R
µ,

with common initial condition (t0, x(t0)), and let t ≥ t0 (or t ∈ [t0, T ]).
Assume that there exists t1 ≥ t0 (or t1 ∈ [t0, T ]) such that on every segment
[t′, t′′], where t′ ≥ t1, (or on [t1, T ]) the function σ(t, x(t, ε)) tends uniformly
to zero with ε tending to zero. In that case we call such a family a real-sliding
family on the constraint σ = 0. We call the motion on the interval [t0, t1] a
transient process, and the motion on the interval [t1,∞) (or [t1, T ]) a steady
state process.

Definition 6 A control algorithm, dependent on a parameter ε ∈ R
µ, is

called a real-sliding algorithm on the constraint σ = 0 if, with ε → 0, it
forms a real-sliding family for any initial condition.

Definition 7 Let γ(ε) be a real-valued function such that γ(ε) → 0 as ε→ 0.
A real-sliding algorithm on the constraint σ = 0 is said to be of order r (r > 0)
with respect to γ(ε) if for any compact set of initial conditions and for any
time interval [T1, T2] there exists a constant C, such that the steady state
process for t ∈ [T1, T2] satisfies

|σ(t, x(t, ε))| ≤ C|γ(ε)|r.

In the particular case when γ(ε) is the smallest time interval of control
smoothness, the words ”with respect to γ” may be omitted. This is the case
when real sliding appears as a result of switching discretization.

As follows from [30], with the r-sliding regularity condition satisfied, in
order to get the rth order of real sliding with discrete switching it is nec-
essary to get at least the rth order in ideal sliding (provided by infinite
switching frequency). Thus, the real sliding order does not exceed the corre-
sponding sliding mode order. The standard sliding modes provide, therefore,
for the first order real sliding only. The second order of real sliding was
really achieved by discrete switching modifications of the second order slid-
ing algorithms [29, 14, 15, 16, 17, 30]. An arbitrary order of real sliding
can be achieved by discretization of the same order sliding algorithms from
[33, 34, 37]( see Section 1.5).
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Real sliding may also be achieved in a way different from the discrete
switching realization of sliding mode. For example, high gain feedback sys-
tems [44] constitute real sliding algorithms of the first order with respect to
k−1, where k is a large gain. A special discrete-switching algorithm providing
for the second order real sliding were constructed in [50], another example of
a second order real sliding controller is the drift algorithm [16, 30]. A third
order real-sliding controller exploiting only measurements of σ was recently
presented [7].

It is true that in practice the final sliding accuracy is always achieved
in finite time. Nevertheless, besides the pure theoretical interest there are
also some practical reasons to search for sliding modes attracting in finite
time. Consider a system with an r-sliding mode. Assume that with minimal
switching interval τ the maximal r-th order of real sliding is provided. That
means that the corresponding sliding precision |σ| ∼ τ r is kept, if the r-th
order sliding condition holds at the initial moment. Suppose that the r-
sliding mode in the continuous switching system is asymptotically stable and
does not attract the trajectories in finite time. It is reasonable to conclude
in that case that with τ → 0 the transient process time for fixed general case
initial conditions will tend to infinity. If, for example, the sliding mode were
exponentially stable, the transient process time would be proportional to
r ln(τ−1). Therefore, it is impossible to observe such an accuracy in practice,
if the sliding mode is only asymptotically stable. At the same time, the
time of the transient process will not change drastically if it was finite from
the very beginning. It has to be mentioned, also, that the authors are not
aware of a case when a higher real-sliding order is achieved with infinite-time
convergence.

1.4 Second-order sliding controllers: general

consideration

Problem of controlling general dynamic system of the second relative degree
is considered in this Section. Like previously only the twisting controller will
be considered. Other 2-sliding controllers may be found in [30, 23, 5, 6, 42].
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Let the system to be controlled have the form (1.29)

ẋ = a(t, x) + b(t, x)u, x ∈ Rn, u ∈ R, (1.34)

σ : (t, x) 7−→ σ(t, x) ∈ R.

The functions a, b, σ as well as n are supposed unknown. It is assumed that
the system does not explode in finite time when any Lebesque-measurable
bounded feedback is applied. In practical applications it is enough that
the zero-dynamics be stable (asymptotical stability is not needed), for the
convergence of the proposed controllers can be made arbitrarily fast. It is
assumed also that the relative degree is constant and equals 2. Hence the
equation

σ̈ = h(t, x) + g(t, x)u, g(t, x) 6= 0,

holds. Recall that h(t, x) = L2
ãσ = σ̈|u=0, g(t, x) = Lb̃Lãσ = ∂

∂u
σ̈. The func-

tions h, g are unknown, It is assumed, nevertheless, that they are bounded:

|σ̈|u=0| ≤ C, 0 < Km ≤ ∂

∂u
σ̈ ≤ KM (1.35)

The following results are mostly simple consequences of Section 1.2.

1.4.1 Twisting controller with relative degree 2

Theorem 8 Let r1 and r2 satisfy the conditions

Km(r1 + r2) − C > KM(r1 − r2) + C, Km(r1 − r2) > C. (1.36)

Then controller

u = −r1 sign σ − r2 sign σ̇ (1.37)

provides for the appearance of a 2-sliding mode σ = σ̇ = 0 attracting the
trajectories in finite time.

The proof actually coincides with the proof of Lemma 1. the following
Theorem is proved in [30, 18]. Let the measurements be carried out at
discrete times ti, t ∈ [ti, ti+1) with sampling step ti+1−ti = τ > 0, i = 0, 1, ....
Then σ̇ can be replaced in (1.37) by the finite difference ∆σi = σ(ti, x(ti))−
σ(ti−1, x(ti−1)).
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Theorem 9 Let τ > 0 be the constant input sampling interval, the noises be
absent and the controller

u(t) = −r1 sign σi − r2 sign ∆σi, t ∈ [ti, ti+1), ti+1 − ti = τ (1.38)

be applied. Then the inequalities |σ| ≤ µ0τ
2, |σ̇| ≤ µ1τ are established in

finite time for some positive constants µ0, µ1.

1.4.2 2-sliding controller with a given convergence law
(terminal sliding mode)

The following controller [14, 30] exploits the standard VSS approach. The
idea is to attain the 2-sliding mode keeping a suitable constraint in the stan-
dard 1-sliding mode. the following controller is close to the independently
developed ”terminal sliding mode” controller [42]. Let

u = −α sign(σ̇ − β|σ|1/2 sign σ), α, β > 0. (1.39)

Theorem 8 is valid also for this controller for any sufficiently large α. The
trajectory of the controller in the plane σσ̇ is shown in Fig. 1.9. Theorem 9
holds for the discrete-sampling version of controller (1.39)

u = −α sign(∆σi − βτ |σi|1/2 sign σ).

1.4.3 2-sliding control with relative degree 1

In the case of the relative degree 1 when the problem can be solved by the
traditional relay controller u = −UM sign σ, the chattering can be avoided
by application of the super-twisting controller

u = −λ|x|1/2 sign x+ u1, u̇1 =

{

−u, |u| > UM ,
−α sign x, |u| ≤ UM .

or by means of the twisting controller

u̇ =

{

−u with |u| > UM ,
−r1 sign σ − r2 sign σ̇ with |u| ≤ UM .
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Figure 1.9: Phase portrait of the 2-sliding controller with a given convergence
law (terminal sliding mode)

The formal problem statement is published, for example, in [30, 23, 6, 35]. All
other known 2-sliding controllers including (1.39) may be used in such a way.
Replacing σ̇ with finite difference an output-feedback controller is achieved
effective with small input noises, with significant noises or too small sampling
step variable sampling step is used [35].

1.4.4 Output-feedback 2-sliding control

The following theorems are simple consequences of the Theorems 3, 8.

Theorem 10 Under the conditions of Theorem 8 the output-feedback con-
troller

u = −r1 sign z − r2 sign z1, r1 > r2 > 0.
ż = −λ1|z − σ|1/2 sign(z − σ) + z1,
ż1 = −λ2 sign(z − σ),
λ1 = 1.5(Km(r1 + r2) + C)1/2, λ2 = 1.1(Km(r1 + r2) + C)

(1.40)

provides for the establishment of a finite-time attracting 2-sliding mode σ = 0.

1.4.5 Example

We follow here [39]. Consider a variable-length pendulum control problem.
All motions are restricted to some vertical plane. A load of some known mass
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m is moving along the pendulum rod (Fig. 1.10). Its distance from O equals
R(t) and is not measured. There is no friction. An engine transmits a torque
w which is considered as control. The task is to track some function xc given
in real time by the angular coordinate x of the rod. The system is described
by the equation

ẍ = −2
Ṙ

R
ẋ− g

1

R
sinx+

1

mR2
w (1.41)

where g = 9.81 is the gravitational constant, m = 1 was taken. Let 0 <
Rm ≤ R ≤ RM , Ṙ, R̈, ẋc and ẍc be bounded, σ = x− xc be available. The
initial conditions are x(0) = ẋ(0) = 0. Following are the functions R and xc

considered in the simulation:

R = 1 + 0.25 sin 4t+ 0.5 cos t,

xc = 0.5 sin 0.5t+ 0.5 cos t.

Figure 1.10: Variable-length pendulum

In case the torque chattering is unacceptable, u = ẇ is considered as a
new control. Define σ = ẋ− ẋc +2(x−xc). The relative degree of the system
is 2. Condition (1.35) holds here only locally: σ̈|u=0 depends on ẋ and is
not uniformly bounded. Thus, the controllers are effective only in a bounded
vicinity of the origin x = ẋ = w = 0. Their global application requires some
standard tricks [30, 35], not implemented here.
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The applied output-feedback controller is of form (1.40):

ẇ = u = −15 sign z0 + 10 sign z1, (1.42)

ż0 = −35|z0 − σ|1/2 sign(z0 − σ) + z1, ż1 = −70 sign(z0 − σ), (1.43)

σ = ẋ− ẋc + 2(x− xc). (1.44)

The angular velocity is considered here to be directly measured. Oth-
erwise, a 3-sliding controller can be applied together with a second order
differentiator (see the next Section) producing both - and . In the case when
discontinuous torque is acceptable, another way is to directly implement a
2-sliding controller considering x− xc as the output to be nullified. Indeed,
the corresponding relative degree is also 2, and the appropriate discontinuous
controller of form (1.40) is

w = −10 sign z0 + 5 sign z1, (1.45)

ż0 = −6|z0 − σ|1/2 sign(z0 − σ) + z1, ż1 = −35 sign(z0 − σ), (1.46)

σ = x− xc. (1.47)

Initial values x(0) = ẋ(0) = 0 were taken, w(0) = 0 is taken for controller
(1.42) - (1.44), the sampling step t = 0.0001. The trajectories in the coor-
dinates x - xc and - in the absence of noises are shown for systems (1.41)
- (1.44) and (1.41), (1.45) - (1.47) in Figs. 1.11a, b respectively, the corre-
sponding accuracies being |x − xc| ≤ 1.6 · 10−6, |ẋ − ẋc| ≤ 1.8 · 10−5 and
|x−xc| ≤ 6.7 ·10−6, |ẋ− ẋc| ≤ 0.01. The trajectory of (1.41) - (1.44) in the
presence of a noise with magnitude 0.02 in σ-measurements is shown in Fig.
1.11c, the tracking results are shown in Fig. 1.11d, the tracking accuracy
being |x − xc| ≤ 0.018, |ẋ − ẋc| ≤ 0.16. The performance does not differ
when the frequency of the noise changes from 10 to 10000.

1.5 Higher-order sliding controllers

We follow here [33, 34, 37].

1.5.1 The problem statement

Consider a dynamic system of the form

ẋ = a(t, x) + b(t, x)u, σ = σ(t, x), (1.48)
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Figure 1.11: Output-feedback 2-sliding control of the pendulum
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where x ∈ R
n, a, b, σ are smooth unknown functions, u ∈ R. The relative

degree r of the system is assumed to be constant and known. That means,
in a simplified way, that u first appears explicitly only in the r-th total
derivative of σ and d

du
σ(r) 6= 0 at the given point. The task is to fulfill the

constraint σ(t, x) = 0 in finite time and to keep it exactly by discontinuous
feedback control. Since σ, σ̇, ..., σ(r−1) are continuous functions of t and x, the
corresponding motion will correspond to an r-sliding mode. The equation

σ(r) = h(t, x) + g(t, x)u, g(t, x) 6= 0, (1.49)

holds for the relative degree is r. Recall that h(t, x) = Lr
ãσ = σ(r)|u=0,

g(t, x) = Lb̃L
r−1
ã σ = ∂

∂u
σ(r). In other words, the unknown functions h and

g may be defined in terms of input-output relations. Therefore, dynamic
system (1.48) may be considered as a ”black box”. The resulting controller
has to generalize the 1-sliding relay controller u = −Ksignσ. Hence, g(t, y)
and h(t, y) in (1.49) are to be bounded, h > 0. Thus, we require that for
some Km, KM , C > 0

|σ(r)|u=0| ≤ C, 0 < Km ≤ ∂

∂u
σ(r) ≤ KM . (1.50)

Let a trivial controller u = −Ksignσ be chosen with K > sup|ueq|, ueq =
−h(t, y)/g(t, y) [52]. Then the substitution u = ueq defines a differential
equation on the r-sliding manifold of (1.48). Its solution corresponds to the
r-sliding motion. Usually, however, such a mode is not stable.

1.5.2 Arbitrary order sliding controller

Let p ≥ r. Denote
N1,r = |σ|(r−1)/r,

Ni,r = (|σ|p/r + |σ̇|p/(r−1) + ... + |σ(i−1)|p/(r−i+1))(r−i)/p, i = 1, ..., r − 1,

Nr−1,r = (|σ|p/r + |σ̇|p/(r−1) + ... + |σ(r−2)|p/2)1/p.

ψ0,r = σ,

ψ1,r = σ̇ + β1N1,rsignσ,

ψi,r = σ(i) + βiNi,rsign(ψi−1,r), i = 1, ..., r − 1,

where β1, ..., βr−1 are positive numbers.
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Theorem 11 Let system (1.48) have relative degree r with respect to the
output function σ and (1.50) be fulfilled. Then with properly chosen positive
parameters β1, ..., βr−1 the controller

u = −α sign(ψr−1,r(σ, σ̇, ..., σ
(r−1))). (1.51)

provides for the appearance of r-sliding mode σ ≡ 0 attracting trajectories in
finite time.

The positive parameters β1, ..., βr−1 are to be chosen sufficiently large in
the index order. Each choice determines a controller family applicable to all
systems (1.48) of relative degree r. Parameter α > 0 is to be chosen specifi-
cally for any fixed C,Km, KM . The proposed controller is easily generalized:
coefficients of Ni,r may be any positive numbers etc. Obviously, α is to be
negative with ∂

∂u
σ(r) < 0.

Certainly, the number of choices of βi is infinite. Here are a few examples
with βi tested for r ≤ 4, p being the least common multiple of 1, 2, ..., r. The
first is the relay controller, the second is 1.39.

1.u = −α sign σ
2.u = −α sign(σ + |σ|1/2signσ),
3.u = −α sign(σ̈ + 2(|σ̇|3 + |σ|2)1/6sign(σ̇ + |σ|2/3signσ),
4.u = −α sign{σ(3) + 3(σ̈6 + σ̇4 + |σ|3)1/12sign[σ̈+

(σ̇4 + |σ|3)1/6sign(σ̇ + 0.5|σ|3/4signσ)]},
5.u = −α sign(σ(4) + β4(|σ|12 + |σ̈|15 + |σ|20+
|σ(3)|30)1/60sign(σ(3) + β3(|σ|12 + |σ|15 + |σ̈|20)1/30sign(σ̈
+β2(|σ|12 + |σ̇|15)1/20sign(σ̇ + β1|σ|4/5signσ))))

The idea of the controller is that a 1-sliding mode is established on the
smooth parts of the discontinuity set Γ of (1.51) (Fig.1.12). That sliding
mode is described by the differential equation ψr−1,r = 0 providing in its
turn for the existence of a 1-sliding mode ψr−1,r = 0. But the primary sliding
mode disappears at the moment when the secondary one is to appear. The
resulting movement takes place in some vicinity of the subset of Γ satisfying
ψr−2,r = 0, transfers in finite time into some vicinity of the subset satisfying
ψr−3,r = 0 and so on. While the trajectory approaches the r-sliding set, set

Γ retracts to the origin in the coordinates σ, σ̇, ..., σ(r−1). Set Γ with r = 3 is
shown in Fig. 1.13.
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Figure 1.12: The idea of r-sliding controller

Figure 1.13: The discontinuity set of the 3-sliding controller

An interesting controller, so-called “terminal sliding mode controller”,
was proposed by [53]. In the 2-dimensional case it coincides with a particular
case of the 2-sliding controller with given convergence law ( 1.39). In the r-
dimensional case a mode is produced at the origin similar to the r-sliding
mode. The problem is that a closed-loop system with terminal sliding mode
does not satisfy the Filippov conditions [20] for the solution existence with
r > 2. Indeed, the control influence is unbounded in vicinities of a number of
hyper-surfaces intersecting at the origin. The corresponding Filippov velocity
sets are unbounded as well. Thus, some special solution definition is to be
elaborated, the stability of the corresponding quasi-sliding mode at the origin
and the very existence of solutions are to be shown.
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Controller (1.51) requires the availability of σ, σ̇, ..., σ(r−1). The needed
information may be reduced if the measurements are carried out at times ti
with constant step τ > 0. Consider the controller

u(t) = −α sign(∆σ
(r−2)
i + βr−1τNr−1,r(σi, σ̇i, ..., σ

(r−2)
i )

sign(ψr−2,r(σi, σ̇i, ..., σ
(r−2)
i ))

(1.52)

Theorem 12 Under conditions of Theorem 11 with discrete measurements
both algorithms (1.51) and (1.52) provide in finite time for some positive
constants a0, a1, ..., ar−1 for fulfillment of inequalities

|σ| < a0τ
r, |σ̇| < a1τ

r−1, ..., |σ(r−1)| < ar−1τ .

That is the best possible accuracy attainable with discontinuous σ(r).
Convergence time may be reduced by changing coefficients βj . Another way

is to substitute λ−jσ(j) for σ(j), λrα for α and ατ for τ in (1.51) and (1.52),
λ > 0, causing convergence time to be diminished approximately by λ times.

Implementation of r-sliding controller when the relative degree is less than
r. Introducing successive time derivatives u, u̇, ..., u(r−k−1) as new auxiliary
variables and u(r−k) as a new control, achieve different modifications of each
r-sliding controller intended to control systems with relative degrees k =
1, 2, ..., r. The resulting control is (r − k − 1)-smooth function of time with
k < r, a Lipschitz function with k = r−1 and a bounded ”infinite-frequency
switching” function with k = r.

Chattering removal. The same trick removes the chattering effect. For
example, substituting u(r−1) for u in (1.52), receive a local r - sliding controller
to be used instead of the relay controller u = −signσ and attain rth order
sliding precision with respect to τ by means of (r − 2)-smooth control with
Lipschitz (r − 2)th time derivative. It has to be modified for global usage.

Controlling systems nonlinear on control. Consider a system ẋ = f(t, x, u)
nonlinear on control. Let ∂

∂u
σ(i)(t, x, u) = 0 for i = 1, ..., r−1, ∂

∂u
σ(r)(t, x, u) >

0. It is easy to check that

σ(r+1) = Λr+1
u σ +

∂

∂u
σ(r)u̇, Λu(·) =

∂

∂t
(·) +

∂

∂x
(·)f(t, x, u).

The problem is now reduced to that considered above with relative degree
r + 1 by introducing a new auxiliary variable u and a new control v = u̇.
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Discontinuity regularization. The complicated discontinuity structure of
the above-listed controllers may be smoothed by replacing the discontinu-
ities under the sign-function with their finite-slope approximations. As a
result, the transient process becomes smoother. Consider, for example, the
above-listed 3-sliding controller. The function sign(σ̇ + |σ|2/3signσ) may be
replaced by the function max[−1,min(1, |σ|−2/3(σ̇+ |σ|2/3signσ)/ε)] for some
sufficiently small ε > 0. For ε = 0.1 the resulting tested controller is

u = −α sign(σ̈+2(|σ̇|3 + |σ|2)1/6 max[−1,min(1, 10|σ|−2/3(σ̇+ |σ|2/3signσ))]).
(1.53)

Controller (1.53) provides for the existence of a standard 1-sliding mode on
the corresponding continuous piece-wise smooth surface.

Theorem 13 Theorems 11, 12 remain valid for controller (1.53).

1.5.3 Arbitrary-order exact robust differentiation

The implementation of the above-listed r-sliding controllers requires real-
time observation of the successive derivatives σ, σ̇, ..., σ(r−1). Thus, theoreti-
cally no model of the controlled process needs to be known. Only the relative
degree and 3 constants are needed in order to adjust the controller. Unfor-
tunately, the problem of successive real-time exact differentiation is usually
considered to be practically unsolvable. Nevertheless, as we have seen, un-
der some assumptions the real-time exact robust differentiation is possible.
Differentiator (1.17)

ż = v = −λ1|z − f(t)|1/2 sign(z − f(t)) + z1, (1.54)

ż1 = −λ2 sign(z − f(t)),

provides for finite-time convergence to the exact derivative of f0(t) if the
input noise η = f(t) − f0(t) = 0. Otherwise, if sup η(t) = ε it provides
for accuracy proportional to C1/2ε1/2. Therefore, having been implemented k
times successively, that differentiator will provide for kth order differentiation
accuracy of the order of ε(2−k). Thus, full local real-time robust control of
output variables is possible, using only output variable measurements and
knowledge of the relative degree [37].

When the base signal f0(t) has (r-1)th derivative with Lipschitz’s constant
L > 0, the best possible kth order differentiation accuracy is dk L

k/r ε(r−k)/r,
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where dk > 1 may be estimated (this asymptotics may be improved with
additional restrictions on f0(t)). Moreover, it is proved that such a robust
exact differentiator really exists [32]. The corresponding differentiator has
been recently presented by Levant ([38]).

The aim is to find real-time robust estimations of f0(t), f0(t), ..., f
(p)
0 (t),

being exact in the absence of measurement noise and continuously depending
on it. A recursive design scheme is proposed. Let a (p − 1)th-order differ-
entiator Dp−1(f(t), Cp−1) produce outputs Di

p−1 (i = 0, 1, ..., p − 1) which

are estimates of f0, ḟ0, , ..., f
(p−1)
0 for any input signal f with f

(p−1)
0 having

Lipschitz constant L > 0.

Then, the pth order differentiator has the outputs zi = Di
p , i = 0, 1, ..., p,

defined as follows:

ż0 = ν, ν = −λ|z0 − f(t)|
p

p+1 sign(z0 − f(t)) + z1,

z1 = D0
p−1(ν, L), . . . , zp = Dp−1

p−1(ν, L)
(1.55)

Here D0(h(t), L) is a simple nonlinear filter

D0 : ż = −λ sign(z − f(t)) , λ > L. (1.56)

In other words it has the form

ż0 = ν0, ν0 = −λ0|z0 − f(t)|
p

p+1 sign(z0 − f(t)) + z1,
. . .

żi = νi, νi = −λi|zi − νi−1|
p−i

p−i+1 sign(zi − νi−1) + zi+1,
. . .
żp = −λp sign(zp − νp−1)

(1.57)

It is easy to check that the above-presented pth order differentiator can
be expressed in the non-recursive form

ż0 = z1 − κ0|z0 − f(t)|
p

p+1 sign(z0 − h(t))

ż1 = z2 − κ1|z0 − f(t)|
p−1
p+1 sign(z0 − h(t))

. . .

żi = zi − κi|z0 − f(t)|
p−i

p+1 sign(z0 − h(t))
. . .
żp = −κp sign(z0 − f(t))

(1.58)
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for suitable positive constant coefficients κi. The coefficients are easier to
be found for form (1.57), for in that case the pth order differentiator re-
quires only one parameter to be found, if the lower-order differentiators are
already built. Having been found for L = 1, the parameters are easily re-
calculated for any L. In the following Theorems [38] the performance of the
proposed differentiator in the presence of bounded measurement noises, and
with discrete-time implementation, is studied.

Theorem 14 Let the input noise satisfy the inequality |f(t) − f0(t)| ≤ ε.
Then the following inequalities are established in finite time for some positive
constants µi, νi depending only on the parameters of differentiator (1.57)

|zi − f
(i)
0 (t)| ≤ µi ε

(p−i+1)
(p+1) , i = 0, ..., p;

|vi − f
(i+1)
0 (t)| ≤ νi ε

(p−i)
(p+1) , i = 0, ..., p− 1.

Exact differentiation is provided with ε = 0. Using recursive high-order
differentiators the noise propagation is obviously counteracted as compared
with the cascade implementation of first-order differentiators. Consider the
discrete-sampling case, when z0(tj) − f(tj) is substituted for z0 − f(t), with
tj ≤ t < tj+1, tj+1 − tj = τ > 0.

Theorem 15 Let τ > 0 be the constant sampling interval in the absence of
noises. Then the following inequalities are established in finite time for some
positive constants µi, νi depending exclusively on the parameters of differen-
tiator (1.57)

|zi − f
(i)
0 (t)| ≤ µi τ

p−i+1, i = 0, ..., p;

|vi − f
(i+1)
0 (t)| ≤ νi τ

p−i, i = 0, ..., p− 1.

Theorem 16 Let parameters λ0i, i = 0, 1, ...., p, of differentiator (1.57) pro-
vide for exact p−th order differentiation with L = 1. Then the parameters
λi = λ0iL

1/(n−i+1) are valid for any L > 0 and provide for the accuracy
|zi − f0(i)(t)| ≤ µiL

i/(n+1)ε(n−i+1)/(n+1) for some µi ≥ 1.
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Parameters λ0i are easily found by computer simulation, successively ris-
ing the differentiator order according to (1.55). A set of such parameters is
demonstrated in the following simulation example.

Simulation example

Differentiator (1.57) of order 5 with L = 1 and coefficients λ0 = 12, λ1 = 8,
λ2 = 5, λ3 = 3, λ4 = 1.5, λ5 = 1.1 has been tested. As it was mentioned
above (see (1.55)), it contains also all differentiators of the lower orders.
These parameters can be easily changed, for the differentiator is not very
sensitive to these values. The tradeoff is as follows: the larger the parameters,
the faster the convergence and the higher sensitivity to the input noise and
the sampling step. The estimation of the i-th derivative achieved by means
of the k-th order differentiator is denoted as Di

k(t).
Initial values of the differentiator state were taken zero with exception

for the initial estimation z0 of f, which is taken equal to the initial measured
value of f. The base input signal

f0(t) = 0.5 sin 0.5t+ 0.5 cos t.

was taken for the differentiator testing. Derivatives of f0(t) do not exceed 1
in absolute value.

Figure 1.14: 5th order differentiation
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Figure 1.15: Noisy 5th order differentiation

The attained accuracies are 1.1 · 10−16, 1.29 · 10−12, 7.87 · 10−10, 5.3 ·
10−7, 2.0 · 10−4 and 0.014 for tracking the signal, the first, second, third,
fourth and fifth derivatives respectively with τ = 10−4 (Fig. 1.14). Recall

that zi are estimations of f
(i)
0 . There is no significant improvement with

further reduction of τ . The author wanted to demonstrate the 10th order
differentiation, but found that differentiation of the order exceeding 5 is
unlikely to be performed with the standard software. Further calculations
are to be carried out with precision higher than the standard long double
precision (128 bits per number).

Sensitivity to noises. The main problem of the differentiation is certainly
its well-known sensitivity to noises. As we have seen, even small computer
calculation errors appear to be a considerable noise in the calculation of
the fifth derivative. Recall that, when the pth derivative has the Lipschitz
constant 1 and the noise magnitude is ε, the best possible accuracy of the
ith order differentiation, i ≤ p, is k(i, p)ε(p−i+1)/(p+1) (Levant 1998a), where
k(i, p) > 1 is a constant independent of the differentiation realization. That
is a minimax (worst case) evaluation. Since differentiator (1.57) assumes
this Lipschitz input condition, it satisfies this accuracy restriction as well
(see also Theorems 14, 16). In particular, with the noise magnitude ε = 10−6
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the maximal 5th derivative error exceeds ε1/6 = 0.1. For comparison, if the
successive first-order differentiation were used, the respective maximal error
would be at least ε(2−5) = 0.649 and some additional conditions on the input
signal would be required. Taking 10% as a border, achieve that the direct
successive differentiation does not give reliable results starting with the order
3, while the proposed differentiator may be used up to the order 5.

With the noise magnitude 0.01 and the noise frequency about 1000
the 5th-order differentiator produces estimation errors 0.00042, 0.0088, 0.076,
0.20, 0.34 and 0.52 for the signal and its 5 derivatives respectively (Fig. 1.15).
The differentiator performance does not significantly depend on the noise
frequency.

1.5.4 Universal output-feedback SISO controller

These results have been just recently obtained ([40]), and the author
supposes to describe them in a special paper. Thus, only a brief description
is provided. Consider uncertain system (1.48), (1.50). Combining controller
(1.51) and differentiator (1.57) achieve a combined SISO controller

u = −α sign(ψr−1,r(z0, z1, ..., zr−1)),

ż0 = ν0, ν0 = −λ0|z0 − σ| r−1
r sign(z0 − σ) + z1,

. . .

żi = νi, νi = −λi|zi − νi−1|
r−2
r−1 sign(zi − νi−1) + zi+1,

. . .
żr−1 = −λr−1 sign(zr−1 − νr−1)

where parameters λi of the differentiator are chosen according to the condi-
tion |σ(r)| ≤ L, L ≥ C + αKM . As noted above, relations λi = λ0iL

1/(r−i)

may be used, where λ0i are chosen in advance for L = 1 (Theorem 16). Thus,
parameters of controller (1.51) are chosen separately of the differentiator. In
case when C and KM are known, only one parameter α is really needed to
be tuned, otherwise both L and a might be found in computer simulation.
Theorems 11, 12 hold also for the combined output-feedback controller. In
particular, under the conditions of Theorem 11 the combined controller pro-
vides for the global convergence to the r-sliding mode σ ≡ 0 with the transient
time being a locally bounded function of the initial conditions.

On the other hand, let the initial conditions of the differentiator
belong to some compact set. Than for any 2 embedded disks centered at the
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origin of the space σ, σ̇, ..., σ(r−1) the parameters of the combined controller
can be chosen in such a way that all trajectories starting in the smaller disk
do not leave the larger disk during their finite-time convergence to the origin.
The maximal convergence time can be made arbitrarily small. That allows
for the local controller application.

With discrete measurements, in the absence of input noises, the con-
troller provides for the rth-order real sliding sup |σ|˜τ r, where τ is the sam-
pling interval. Therefore, the differentiator does not spoil the r-sliding as-
ymptotics if the input noises are absent. It is also proved that the resulting
controller is robust and provides for the accuracy proportional to the maxi-
mal error of the input measurement (the input noise magnitude). Note once
more that the proposed controller does not require detailed mathematical
model of the process to be known.

1.5.5 Example

Car control.

Consider a simple kinematic model of car control [43]

ẋ = v cosϕ, ẏ = v sinϕ,

ϕ̇ =
v

l
tan θ,

θ̇ = u,

where x and y are Cartesian coordinates of the rear-axle middle point, ϕ is
the orientation angle, v is the longitudinal velocity, l is the length between
the two axles and θ is the steering angle (Fig. 1.16). The task is to steer the
car from a given initial position to the trajectory y = g(x), while x, y and ϕ
are assumed to be measured in real time. Note that the actual control here
is θ and θ̇ = u is used as a new control in order to avoid discontinuities of θ.
Any practical implementation of the developed here controller would require
some real-time coordinate transformation with ϕ approaching ±π/2. Define

σ = y − g(x).

Let v = const = 10m/s, l = 5m, g(x) = 10 sin 0.05x + 5, x = y =
ϕ = θ = 0 at t = 0. The relative degree of the system is 3 and both 3-
sliding controller No.3 and its regularized form (1.53) may be applied here.
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Figure 1.16: Kinematic car model

The resulting steering angle dependence on time is not sufficiently smooth
([37]), therefore the relative degree is artificially increased up to 4, u̇ having
been considered as a new control. The 4-sliding controller from the list in
Subsection 1.5.2 is applied now, α = 20 is taken. The following 3rd order
differentiator was implemented:

ż0 = v0, v0 = −25|z0 − σ|3/4 sign(z0 − σ) + z1,

ż1 = v1, v1 = −25|z1 − v0|2/3 sign(z1 − v0) + z2,

ż2 = v2, v2 = −33|z2 − v1|1/2 sign(z2 − v1) + z3,

ż3 = −500 sign(z3 − v2). (1.59)

The coefficient in (1.59) is large due to the large values of σ(4), other
coefficients were taken according to Theorem 16 and the parameters defined
for L=1 in the simulation example of Subsection 1.5.3. During the first half-
second the control is not applied in order to allow the convergence of the
differentiator. Substituting z0, z1, z2 and z3 for σ, σ̇, σ̈ and

...
σ respectively,

obtain the following 4-sliding controller:

u = 0, 0 ≤ t < 0.5,

u = −20 sign{z3 + 3(z6
2 + z4

1 + |z0|3)1/12 sign[z2 + (z4
1 + |z0|3)1/6 sign(z1+

0.5|z0|3/4 sign z0)]}, t ≥ 0.5.

The trajectory and function y = g(x) with the sampling step τ =
10−4 are shown in Figure 1.17a. The integration was carried out according
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Figure 1.17: 4-sliding car control
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to the Euler method, the only method effective for sliding-mode simulation.
Graphs of σ, σ̇, σ̈, σ(3) are shown in Figure 1.17b. The differentiators’ per-
formance within the first 1.5 seconds is demonstrated in Figure 1.17c. The
steering angle graph (actual control) is presented in Figure 1.17d. The sliding
accuracies |σ| ≤ 9.3 · 10−8, |σ̇| ≤ 7.8 · 10−5, |σ̈| ≤ 6.6 · 10−4, |σ(3)| ≤ 0.43
were attained with the sampling time step τ = 10−4.

1.6 Conclusions

• An elementary introduction to the higher order sliding theory, its main
notions and results is presented.

• Some detailed proofs for the twisting and super-twisting controller are
published for the first time.

• A robust first-order exact differentiator is presented. Otput-feedback
2-sliding control is demonstrated.

• A family of arbitrary-order sliding controllers with finite time conver-
gence was presented.

• Arbitrary-order robust exact differentiator with finite-time convergence
is presented.

• Output-feedback arbitrary-order sliding controllers are presented.

• The discrete switching modification of presented sliding controllers pro-
vide for the sliding precision of their order with respect to the measure-
ment time interval.

• A number of simulation examples were presented.
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