Vectors

Notation: vectors are bold Latin characters, while real numbers are Greece.
Main properties:

$$
\begin{gathered}
\boldsymbol{a}+\boldsymbol{b}=\boldsymbol{b}+\boldsymbol{a},(\boldsymbol{a}+\boldsymbol{b})+\boldsymbol{c}=\boldsymbol{a}+(\boldsymbol{b}+\boldsymbol{c}), \\
0 \boldsymbol{a}=\mathbf{0}, \lambda(\boldsymbol{a}+\boldsymbol{b})=\lambda \boldsymbol{a}+\lambda \boldsymbol{b},(\lambda+\mu) \boldsymbol{a}=\lambda \boldsymbol{a}+\mu \boldsymbol{a}
\end{gathered}
$$

Linear independence (is similarly defined for any number of vectors):
Vectors $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}$ are called linearly independent if for any real numbers λ, μ, ν, η, not all of which are zero, $\lambda \boldsymbol{a}+\mu \boldsymbol{b}+\nu \boldsymbol{c}+\eta \boldsymbol{d} \neq \mathbf{0}$.

Or equivalently:

$$
\lambda \boldsymbol{a}+\mu \boldsymbol{b}+v \boldsymbol{c}+\eta \boldsymbol{d}=\mathbf{0} \Rightarrow \lambda=\mu=v=\eta=\mathbf{0} .
$$

Vectors $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}$ are called linearly dependent if there are real numbers λ, μ, ν, η, not all of which are zero, such that $\lambda \boldsymbol{a}+\mu \boldsymbol{b}+\nu \boldsymbol{c}+\eta \boldsymbol{d}=\mathbf{0}$.

If, for example, $\boldsymbol{\lambda} \neq 0$, then $\boldsymbol{a}=-\frac{\mu}{\lambda} \boldsymbol{b}-\frac{v}{\lambda} \boldsymbol{c}-\frac{\eta}{\lambda} \boldsymbol{d}$.
In other words:
A group of vectors are linearly dependent iff one of them can be expressed as a linear combination of the others (with possibly zero coefficients).

In particular, any set of vectors containing zero are linearly dependent. Indeed if $\boldsymbol{a}=\mathbf{0}$ then

$$
\boldsymbol{a}=\mathbf{0}=0 \boldsymbol{b}+0 \boldsymbol{c}+0 \boldsymbol{d}
$$

A group of vectors are linearly independent iff none of them is a linear combination of the others (with possibly zero coefficients).

The maximal number of linearly independent vectors is called the dimension. The dimension of the plane is 2 , the dimension of the space is 3 .

In particular, if $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ are independent, then any other vector \boldsymbol{r} can be expressed as

$$
\boldsymbol{r}=\lambda \boldsymbol{a}+\mu \boldsymbol{b}+v \boldsymbol{c} .
$$

Here λ, μ, ν are called the coordinates of \boldsymbol{r} in the basis $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$. Similarly any 2 independent vectors constitute a basis in the plane.

Any 2 non-parallel vectors can be used as a basis in the plane. Any 3 vectors which cannot be put in one plane can be used as a basis in the space.

Projection of vector \boldsymbol{v} on vector $\boldsymbol{a}: \operatorname{proj}_{\boldsymbol{a}} \boldsymbol{v}=|\boldsymbol{v}| \cos (\operatorname{angle}(\boldsymbol{a}, \boldsymbol{v}))$

Cartesian coordinates: ortogonal coordinates generated by some ortogonal unit vectors $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$ constituting a right-hand basis.

Notation: $r_{x}=\operatorname{proj}_{i} r, r_{y}=\operatorname{proj}_{j} r, r_{z}=\operatorname{proj}_{k} r$
$\boldsymbol{r}=r_{x} \boldsymbol{i}+r_{y} \boldsymbol{j}+r_{z} \boldsymbol{k},|\boldsymbol{r}|=\left(r_{x}^{2}+r_{y}^{2}+r_{z}{ }^{2}\right)^{1 / 2}$,
$\boldsymbol{r}=|\boldsymbol{r}|(\boldsymbol{i} \cos \alpha+\boldsymbol{j} \cos \beta+\boldsymbol{k} \cos \gamma), \cos \alpha=r_{x} /|\boldsymbol{r}|, \cos \beta=r_{y} /|\boldsymbol{r}|, \cos \gamma=r_{z} /|\boldsymbol{r}|$.

Scalar product:

$\boldsymbol{a} \cdot \boldsymbol{b}=(\boldsymbol{a}, \boldsymbol{b})=|\boldsymbol{a}| \operatorname{proj}_{\boldsymbol{a}} \boldsymbol{b}=|\boldsymbol{b}| \operatorname{proj}_{b} \boldsymbol{a}=|\boldsymbol{a}||\boldsymbol{b}| \cos (\operatorname{angle}(\boldsymbol{a}, \boldsymbol{b}))$
Main properties:
$(\boldsymbol{a}, \boldsymbol{b})=(\boldsymbol{b}, \boldsymbol{a}),(\boldsymbol{a}, \boldsymbol{b}+\boldsymbol{c})=(\boldsymbol{a}, \boldsymbol{b})+(\boldsymbol{a}, \boldsymbol{c}),(\lambda \boldsymbol{a}, \boldsymbol{b})=\lambda(\boldsymbol{a}, \boldsymbol{b}),(\boldsymbol{a}, \boldsymbol{a})=|\boldsymbol{a}|^{2} \geq 0$
$(\boldsymbol{a}, \boldsymbol{b})=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}$,
$\cos \left(\operatorname{angle}\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right)\right)=\frac{\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right)}{\left|\boldsymbol{a}_{1} \| \boldsymbol{a}_{2}\right|}=\cos \alpha_{1} \cos \alpha_{2}+\cos \beta_{1} \cos \beta_{2}+\cos \gamma_{1} \cos \gamma_{2}$.
In particular $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$.
Plane and straight line. Let $\boldsymbol{r}=(x, y, z)$ (or $(x, y))$ be a radius-vector in the space (plane).
A straight line in the plane: $a_{1} x+a_{2} y=c$ or $(\boldsymbol{a}, \boldsymbol{r})=c, \boldsymbol{a}$ is ortogonal to the line
A plane in the space: $\quad a_{1} x+a_{2} y+a_{3} z=c \quad$ or $(\boldsymbol{a}, \boldsymbol{r})=c, \quad \boldsymbol{a}$ is ortogonal to the plane
A straight line in the space is given as the intersection of 2 planes:

$$
\begin{aligned}
& a_{1} x+a_{2} y+a_{3} z=c \\
& b_{1} x+b_{2} y+b_{3} z=d
\end{aligned}
$$

or

$$
\begin{aligned}
& (\boldsymbol{a}, \boldsymbol{r})=c, \quad \boldsymbol{a}, \boldsymbol{b} \text { are ortogonal to the line } \\
& (\boldsymbol{b}, \boldsymbol{r})=d
\end{aligned}
$$

Vector (cross) product.

$\boldsymbol{a} \times \boldsymbol{b}=\left|\begin{array}{ccc}\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|,|\boldsymbol{a} \times \boldsymbol{b}|=|\boldsymbol{a}||\boldsymbol{b}||\sin \operatorname{angle}(\boldsymbol{a}, \boldsymbol{b})|, \boldsymbol{a} \times \boldsymbol{b}$ is ortogonal to both $\boldsymbol{a}, \boldsymbol{b}$.
$\boldsymbol{a} \times \boldsymbol{b}=-\boldsymbol{b} \times \boldsymbol{a}$
The area of the parallelogram generated by $\boldsymbol{a}, \boldsymbol{b}$ equals $|\boldsymbol{a} \times \boldsymbol{b}|$.
Two vectors $\boldsymbol{a}, \boldsymbol{b}$ are linearly independent iff $\boldsymbol{a} \times \boldsymbol{b} \neq \mathbf{0}$.

Triple product.

$\boldsymbol{a} \boldsymbol{b} \boldsymbol{c}=(\boldsymbol{a} \times \boldsymbol{b}, \boldsymbol{c})=(\boldsymbol{a}, \boldsymbol{b} \times \boldsymbol{c})=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
$a b c=b c a=c a b=-b a c=-a c b=-c b a$.
The volume of the parallelepiped generated by $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ equals $|\boldsymbol{a b c}|$.
Three vectors $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ are linearly independent iff $\boldsymbol{a} \boldsymbol{b} \boldsymbol{c} \neq \mathbf{0}$.

