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Abstract

Homogeneous sliding-mode-based differentiators (HD) are known to provide for the high-accuracy robust estimation of deriva-
tives in the presence of sampling noises and discrete measurements, provided that the differentiator dynamics evolve in contin-
uous time. The popular one-step Euler discrete-time implementation is proved to cause differentiation accuracy deterioration,
if the differentiation order exceeds 1. A novel discrete-time realization of the HD is proposed, which preserves the ultimate
accuracy of the continuous-time HD also with discrete measurements.
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1 Introduction

Sliding-modes (SMs) are used to control uncertain sys-
tems by keeping some functions (sliding variables) at
zero due to high-frequency control switching. SMs are es-
tablished in finite time, are accurate and robust [15,33].
Possible dangerous vibrations (chattering effect) consti-
tute their main drawback [8,15,19,33].

Standard SMs [15,33] require the sliding-variable rela-
tive degree to be 1. High-order sliding modes (HOSMs)
[10,23–26,28,29,31] remove this restriction, placing the
switching in the higher sliding-variable derivatives. Ar-
tificially increasing the relative degree one can remove
the high-energy chattering [10,28,31]. Their high accu-
racy is due to the local homogeneity features [26].

One of the main applications of sliding-mode control
is the robust finite-time-exact differentiation and obser-
vation [11,12,22,24,25,31,33,35]. HOSM-based homoge-
neous differentiator (HD) [25] estimates n derivatives of
a signal, provided the absolute value of its (n + 1)th
derivative has a known bound. Contrary to the popular
linear [4] and nonlinear [34] high-gain observers, having
been robust with respect to noises, HDs also produce ex-
act finite-time derivative estimations in the absence of
noises. Such differentiators have found a lot of theoreti-
cal and practical applications [6,9,10,14,20,21,30–32].

The HD accuracy originates from the homogeneity of
the error dynamics [25]. It is asymptotically optimal in
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the presence of infinitesimal input noises [24], and the
accuracy of its ith derivative is of the order τn−i+1, with
the sampling interval τ , if the noise is absent.

The recent HD modifications (for example [2,13]) con-
tain additional higher order terms and feature faster
convergence. The asymptotic accuracy is the same [1], if
the local homogeneous error dynamics is preserved. It is
usually worsened, if the local homogeneity is lost [16].

The above features were proved under the assumption
that the system evolves in continuous time between the
sampling time instants. Unfortunately, in practice the
differentiator is a hybrid computer-based discrete dy-
namic system with a sampled continuous-time input. It
obviously requires special study and design.

A natural approach is to make the discrete-time HD [25]
emulate the corresponding continuous-time HD. Since
the system is discontinuous, the Euler method is taken
with the integration step much less than the sampling
period, which makes the integration step choice difficult.
Hence, only one Euler integration step is usually applied
at each sampling interval. The corresponding asymp-
totic accuracy is calculated in this paper for the cases of
constant and variable sampling intervals. In particular,
the accuracy is proved to be proportional to the sam-
pling interval in the first case, whereas it is worth in the
second case. Thus, the high accuracy of the continuous-
time HD [25] is lost, if the HD order is higher than 1.

We propose a novel discretization scheme of the differ-
entiators [25]. Terms of higher-order with respect to the
sampling intervals are added to the original Euler inte-
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gration scheme. Similar terms are notably introduced in
[7] for the proper analysis of discrete dynamics. The pro-
posed scheme preserves the computational simplicity of
the one-step Euler scheme and provides for the homoge-
neous discrete error dynamics. Thus, the novel scheme
restores the asymptotic accuracy of its continuous-time
counterpart. Simulation demonstrates the calculated ac-
curacies and the advantages of the proposed scheme.

Notation

A sum or multiplication of two sets is understood in the
Minkowski sense, e.g.,AB = {ab| a ∈ A, b ∈ B}. d(x,A)
is the Euclidean distance from x ∈ Rm to A ⊂ Rm,
d(x,A) = inf{‖x − a‖ | a ∈ A}. Following [17], Aε =
{x ∈ Rm | d(x,A) ≤ ε}; co(A) is the convex closure of
A. Denote f(A) = {f(x)|x ∈ A}, and F (A) =

⋃
x∈A

F (x)

for any function f and set-valued function F .

The distance dHs(A,B) between non-empty bounded
sets A, B is taken in the Hausdorff metric, dHs(A,B) =
max {supa∈A d(a,B), supb∈B d(b, A)}.

A set-valued function F (x) ⊂ Rn, x ∈ Rm, is called
continuous, if lim

x→y
dHs(F (x), F (y)) = 0, and upper-

semicontinuous, if lim
x→y

(sup{d(z, F (y)) | z ∈ F (x)}) = 0.

Let pi = deg xi, pi > 0, be homogeneous degrees
(weights) of the coordinates x1, ..., xm. Then ‖x‖h =(
|x1|p/p1 + ...+ |xn|p/pm

)1/p
is called the homogeneous

norm, p ≥ max{pi | i = 1, 2, ...,m}.

2 Preliminaries: HOSM-based differentiation
and discretization problem

The main idea of the differentiation based on control
methods is to construct a dynamic system, tracking an
input function with no knowledge of its derivatives. Let
the input be f(t) = f0(t) + η(t), f : R → R, where
η(t) is a Lebesgue-measurable bounded noise, |η| ≤ ε,
ε ≥ 0 is unknown. The function f0(t) is an n-times
differentiable unknown function to be restored together

with its n derivatives. The last derivative f
(n)
0 is known

to have a Lipschitz constant L > 0, which means that

f
(n+1)
0 (t) ∈ [−L,L] almost everywhere.

Note that the considered noise restrictions actually im-
ply that the “worst-case” bounded noises are consid-
ered. That approach significantly differs from stochastic
noise restrictions, or the requirement that the noises be
“highly fluctuating” functions [18] with infinitesimally-
small integrals over any finite time interval.

A general differentiator mostly has the form

żi = ϕi(z0 − f) + zi+1, i = 0, 1, ..., n− 1,

żn = ϕn(z0 − f),
(1)

where ϕi is a scalar function of scalar argument
[4,2,13,25]. The system is understood in the Filippov
sense [17] to allow discontinuities of ϕi. Subtracting

f
(i+1)
0 from both sides, denoting σi = zi−f (i)0 and using

f
(n+1)
0 (t) ∈ [−L,L], with η = 0 obtain

σ̇i = ϕi(σ0) + σi+1, i = 0, 1, ..., n− 1,

σ̇n ∈ ϕn(σ0) + [−L,L],
(2)

which is a differential inclusion in the error space
σ0, σ1, ..., σn. Here and further, for notational simplicity,
the equality is considered as an inclusion with the corre-
sponding set having only one element. Solutions of a dif-
ferential inclusion are defined as absolutely continuous
functions satisfying the inclusion almost everywhere.

Inclusion (2) becomes homogeneous and finite-time-
stable with properly chosen functions ϕi. The homo-
geneity means that some positive number (called the
weight or the homogeneity degree [5]) is assigned to each
coordinate σi, deg σi = mi, mi > 0. Also the time t
gets its weight deg t = p (called the minus homogene-
ity degree of the inclusion [26]), which means that the
transformation

(t, σ0, σ1, ..., σn) 7→ (κpt, κm0σ0, κ
m1σ1, ..., κ

mnσn) (3)

preserves the trajectories of (2) with any positive κ. Re-
call that a function of σ0, σ1, ..., σn is said to have the
homogeneity degree (weight) q, if the same transforma-
tion of the arguments is equivalent to the multiplication
of the function by κq.

Since (2) is finite-time stable, the inclusion homogene-
ity degree is to be negative [26]. It is easy to see that all
weights can be proportionally changed, thus in the fol-
lowing assume that the homogeneity degree is −1, i.e.,
deg t = 1. Due to the segment present in the last nth
equation of (2) the only possible weight of σ̇n is 0, thus
deg σn = 1, and deg σi = n− i+ 1, i = 0, ..., n [26].

The recursive form of the nth-order homogeneous HOSM
differentiator [25] is

ż0 = −λ̃nL
1

n+1 |z0 − f0|
n
n+1 sign(z0 − f0) + z1,

ż1 = −λ̃n−1L
1
n |z1 − ż0|

n−1
n sign(z1 − ż0) + z2,

...

żn = −λ̃0L sign(zn − żn−1).

(4)
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Here zi, i = 0, 1, ...n, is the estimation of f
(i)
0 , and pa-

rameters λ̃i of differentiator (4) are chosen in advance

for each n. An infinite sequence of parameters λ̃i can be
built, which is valid for all n [25]. In particular, one can

choose λ̃0 = 1.1, λ̃1 = 1.5, λ̃2 = 2, λ̃3 = 3, λ̃4 = 5,
λ̃5 = 8 [27], which correspond to the differentiators of
the order n, n ≤ 5.

In the absence of noises the equalities zi = f
(i)
0 are

established in finite time. In the presence of a sam-
pling noise with the maximal magnitude ε the accuracy

|zi − f (i)0 | = O(εi/(n+1)) is obtained, and these asymp-
totics cannot be improved [25].

Extracting żi from (4) obtain the standard form (1) with

ϕi(z0−f0) = −λn−iL
i+1
n+1 |z0 − f0|

n−i
n+1 sign(z0−f0), (5)

and the new coefficients λ0, λ1, ..., λk > 0, calculated
from (4). That is,

ż0 = −λnL
1

n+1 |z0 − f0|
n
n+1 sign(z0 − f0) + z1,

ż1 = −λn−1L
2

n+1 |z0 − f0|
n−1
n+1 sign(z0 − f0) + z2,

...

żn = −λ0L sign(z0 − f0),

(6)

with λ0 = λ̃0, λn = λ̃n, and λj = λ̃jλ
j/(j+1)
j+1 , j = n −

1, n− 2, ..., 1. It is always assumed in the following that
system (2), (5) is finite-time stable.

In the case of discrete-time measurements of the input
function f differentiator (1) takes the form

żi = ϕi(z0(tk)− f(tk)) + zi+1, i = 0, 1, ..., n− 1,

żn = ϕn(z0(tk)− f(tk)), t ∈ [tk, tk+1).
(7)

Note that, whereas the measurements are discrete, the
integration is performed in continuous time. It is proved
in [25] that the accuracy of system (7) is defined by the
homogeneity weights of its coordinates. In particular, the

relations |zi − f (i)0 | = O(τn−i+1), τ = supk{tk+1 − tk},
hold in the absence of noises.

The computer-based realization of (7) requires its
discrete-time integration. Obviously, in order to get the
specified accuracy, the integration step should be much
smaller than the measurement step, which is trouble-
some. Hence, the integration step and the measurement
step are usually taken the same. Unfortunately, it is fur-
ther shown that the accuracy can significantly degrade
in that case.

Consider the computationally inexpensive and easily
implemented one-step Euler integration of the nth or-
der differentiator (7). Note that the cases of constant
and variable sampling intervals differ significantly. The
asymptotic accuracy is further shown to be worse in the
latter case. Nevertheless, in both cases the discrete-time
solutions uniformly converge to the continuous-time
solutions over any compact time interval [17], as the
maximal sampling interval tends to zero.

Applying the one-step Euler method to (7) get

zi(tk+1) = zi(tk) + τkϕi(z0(tk)− f(tk)) + τkzi+1(tk),

zn(tk+1) = zn(tk) + τkϕn(z0(tk)− f(tk)),

(8)
where i = 0, ..., n− 1, τk = tk+1− tk, τk > 0. In the case
of constant sampling intervals get τk = τ , k = 0, 1, ...,
with some fixed τ > 0.

Subtracting f
(i)
0 (tk+1) from both sides of (8), utilizing

that η ∈ [−ε, ε], f (n)0 (t) is an absolutely continuous func-

tion, and using the Taylor expansion [3] of f
(i)
0 (tk+1) =

f
(i)
0 (tk+τk) with the Lebesgue-integral remainder form,

obtain that

σi(tk+1) ∈ σi(tk) + τkϕi(σ0(tk) + [−ε, ε])+
τkσi+1(tk)− τ2

k

2 f
(i+2)
0 (ξik), i ∈ [0, n− 2]

τkσn(tk) +
τ2
k

2 [−L,L], i = n− 1

τk[−L,L], i = n,

(9)

where i = 0, 1, ..., n and ξik ∈ [tk, tk+1].

It is easy to see that in the absence of the terms

f
(i+2)
0 (ξik), (i.e., with n = 1) inclusion (9) becomes

homogeneous with respect to the transformation

(tk, ε, σ0, ..., σn) 7→ (κtk, κ
n+1ε, κn+1σ0, ..., κσn),

so that trajectories of the system with parameters τk, ε
are bijectively transferred onto trajectories with param-
eters κτk, κn+1ε. In such a case the discrete-time differ-
entiator (8) would preserve the asymptotic properties of
the original continuous-time HD [25]. Unfortunately, the

terms f
(i+2)
0 (ξik) appear with n ≥ 2. This means that

the one-step Euler method destroys the homogeneity of
the continuous-time differentiator for n ≥ 2.

In the sequel the accuracy of system (8) is evaluated, and
a novel discretization method is proposed, preserving
the ultimate accuracy σi = O(τn−i+1) also with n ≥ 2.
The proofs are based on a general auxiliary lemma and
presented in Section 5.
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3 Accuracy of one-step Euler differentiator dis-
cretization

The accuracy of the discretized HD (5), (8) is studied
separately for variable and constant sampling periods.

3.1 Asymptotic accuracy in the case of variable sam-
pling intervals

Theorem 1 Let the input f(t) of the discrete-time
differentiator (5), (8) consist of an n-smooth func-
tion f0(t), n ≥ 1, and a Lebesgue-measurable additive
noise not exceeding ε in its absolute value. Suppose that

|f (j)0 | ≤ Dj, j = 2, 3, ..., n, and f
(n)
0 (t) is a Lipschitzian

function with the Lipschitz constant L > 0, Dn+1 = L.
Also let the sampling intervals be bounded from above by
τ , 0 < τk ≤ τ , k = 0, 1, 2, ....

Then, the accuracy |zi− f (i)0 | ≤ µiρn−i+1, i = 0, 1, ..., n,

ρ = max
j=2,3,...,n+1

{(τ
2
Dj

) 1
n−j+2

, τ, ε
1

n+1

}
, (10)

is established in finite-time and kept forever. The coef-
ficients µi only depend on the differentiator parameters
λ0, . . . , λn, L.

The proof is provided in the Appendixes. Clearly, only
the first argument of the maximum (10) is significant,
as τ tends to zero in the absence of noise, and σi =
O(τ (n−i+1)/n). The input function derivatives gradually
change in the steady state. As a result, the local-in-time
accuracy is determined by the local derivative bounds
instead of the larger global bounds Dj , j = 2, 3, ..., n.
Thus, in practice, if the input derivatives are large and
τ is fixed, different arguments of the formula (10) can
play the main role.

3.2 Asymptotic accuracy in the case of constant sam-
pling intervals

The one-Euler-step discrete differentiator (8) with con-
stant sampling intervals takes the form

zi(tk+1) = zi(tk) + τϕi(z0(tk)− f(tk)) + τzi+1(tk),

zn(tk+1) = zn(tk) + τϕn(z0(tk)− f(tk)),

(11)
where i = 0, 1, ..., n− 1.

Theorem 2 Let the input f(t) of the discrete-time dif-
ferentiator (11) be as in Theorem 1, and τ > 0 be the
constant sampling interval. Then, the accuracies

|zi − f (i)0 | ≤ µi max{εn−i+1
n+1 , τn−i+1}+ i τDi+1, (12)

i = 0, 1, ..., n, are established in finite time and kept for-
ever. The constants µi > 0 only depend on the differen-
tiator parameters λ0, . . . , λn, L.

The proof is provided in the Appendixes.

Remark 1 Note that in the absence of noises all accu-
racies are proportional to τ except the tracking accuracy
σ0 = |z0 − f0|, which is of the order τn+1. With suffi-

ciently small τ the local upper bounds of errors |zi−f (i)0 |,
i = 1, 2, ..., n − 1, obviously follow the evolution of the

absolute value |f (i+1)
0 | of the next derivative. The esti-

mation accuracies of f0 and f
(n)
0 do not depend on the

unknown input f0 and its derivatives, since in the first
case D1 is multiplied by i = 0, and in the second case
Dn+1 = L, L being the differentiator parameter.

Remark 2 In the case when n = 1, Theorems 1, 2 pro-
vide for the same well-known standard accuracy z0−f0 =
O(max{ε, τ2}), z1 − ḟ0 = O(max{ε1/2, τ}) of the 1st-
order HD [25] valid both for variable and constant sam-
pling intervals (also see Remark 3, Section 4).

4 Proper discretization of homogeneous SM-
based differentiators

The proposed nth-order homogeneous discrete-time dif-
ferentiator (HDD) has the form

zi(tk+1) = zi(tk) + τkϕi(z0(tk)− f(tk))+∑n−i
j=1

τj
k

j! zj+i(tk),

zn(tk+1) = zn(tk) + τkϕn(z0(tk)− f(tk)),

(13)

where z(tk) = (z0(tk), ..., zn(tk)) is the vector of deriva-
tive estimations and i = 0, 1, ..., n− 1. For example, the
3rd-order HDD takes the form

z0(tk+1) = z0(tk) + τkϕ0(z0(tk)− f(tk))+

τkz1(tk) +
τ2
k

2! z2(tk) +
τ3
k

3! z3(tk),

z1(tk+1) = z1(tk) + τkϕ1(z0(tk)− f(tk))+

τkz2(tk) +
τ2
k

2! z3(tk),

z2(tk+1) = z2(tk) + τkϕ2(z0(tk)− f(tk))+

τkz3(tk),

z3(tk+1) = z3(tk) + τkϕ3(z0(tk)− f(tk)).

(14)

The proposed discrete-time differentiator (13) for-
mally is just another approximation of the standard
continuous-time differentiator (1). Also note that the
1st-order discrete-time differentiator remains intact.

Theorem 3 Let the input f(t) of the discrete-time dif-
ferentiator (13) be as in Theorems 1, 2. Also let the sam-
pling intervals be bounded by the constant τ , 0 < τk ≤ τ,
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k = 0, 1, 2, .... Then, the accuracy |zi−f (i)0 | ≤ µiρn−i+1,

i = 0, 1, ..., n, ρ = max{τ, ε1/(n+1)}, is kept after a finite-
time transient. The coefficients µi only depend on the
differentiator parameters λ0, . . . , λn, L.

The proof is provided in the Appendixes.

Remark 3 Since the additional terms only appear in
(13) with n ≥ 2, also this Theorem confirms the standard
accuracy of the 1st-order HD [24,25].

5 Asymptotic accuracy of disturbed homoge-
neous inclusions

The proofs of the presented Theorems are based on Lem-
mas 1, 2 formulated in this Section and substantially
generalizing the corresponding results from [26]. They
represent a stand-alone result, and the reader who is only
interested in the implementation of the differentiators
can skip this section.

Consider the differential inclusion

ṡ ∈ F (s), (15)

where s ∈ Rm. The inclusion is assumed to be a Fil-
ippov differential inclusion [17], i.e., F (s) ⊂ Rm is an
upper-semicontinuous non-empty compact convex set-
valued function. Let also inclusion (15) be finite-time
stable and homogeneous of the degree −1. The latter
means that the time-coordinate transformation Gκ :
(t, s) 7→ (κt, dκs), κ > 0, with the homogeneity dilation
dκ : (s1, ..., sm) 7→ (κp1s1, ..., κ

pmsm) and the weights
p1, p2, ..., pm > 0 preserves the differential inclusion. In
other words, F (s) = κ d−1κ F (dκs). It is easy to prove
that the upper-semicontinuity and compactness features
of F imply that pi ≥ 1, i = 1, 2, ...,m.

The disturbances considered in the sequel are of
a special form. Let ρ ≥ 0 be a parameter de-
termining the disturbance intensity. Assume that
Γ̃(s, ρ) = (Γ̃1(s, ρ), ..., Γ̃m(s, ρ))T be a column of nu-

meric sets Γ̃i, i = 1, 2, ...,m, satisfying the following
conditions.

D1 Γ̃i(s, ρ) are set-valued functions with non-empty
compact segment values, s ∈ Rm, ρ ≥ 0.
D2 Γ̃i are homogeneous with respect to the transforma-
tion (ρ, s) 7→ (κρ, dκs) with deg Γ̃i = deg si = pi, i.e.,

Γ̃i(dκs, κρ) = κpi Γ̃i(s, ρ).

D3 Γ̃i(s, ρ) monotonously increase with respect to the
parameter ρ in the sense that for any s the inequality
0 ≤ ρ ≤ ρ̂ implies Γ̃i(s, ρ) ⊂ Γ̃i(s, ρ̂).

D4 The disturbances vanish with ρ = 0, i.e., Γ̃i(s, 0) =

{0}. Moreover, there exists some r > 0, such that Γ̃i(s, ρ)
are uniformly Hausdorff continuous in ρ at ρ = 0 for

any ‖s‖ ≤ r. By that we mean that for any ε > 0 there
exists ρ̂ > 0, such that if 0 ≤ ρ ≤ ρ̂, ||s|| ≤ r, then
the Hausdorff distance of the set from the origin satisfies
dHs(Γ̃i(s, ρ), {0}) ≤ ε.

Obviously, due to the homogeneity of Γ̃i condition D4 is
satisfied for any r > 0. An example of such a function is
provided by Γ̃i = |si|1/2ρpi/2[−1, 1].

Recall that by definition Γ̃i(A, ρ) =
⋃
s∈A

Γ̃i(s, ρ) for any

A ⊂ Rm. Obviously, also Γ̃i(A, ρ) are monotonous and
uniformly continuous at ρ = 0. The first property means
that if 0 ≤ ρ ≤ ρ̂ then Γ̃i(A, ρ) ⊂ Γ̃i(A, ρ̂). The second
means that for any r > 0, ε > 0 there exists ρ̂ > 0,
such that if dHs(A, {0}) ≤ r and 0 ≤ ρ ≤ ρ̂ then

dHs(Γ̃i(A, ρ), {0}) ≤ ε.

With any ρ ≥ 0 the function Γ̃i maps bounded sets
to bounded sets. Indeed, let Br ⊂ Rm be any m-
dimensional ball with radius r centered at the ori-
gin, and such that A ⊂ Br. Fix some ε > 0. Due
to the uniform continuity of Γ̃i at ρ = 0 there exists
ρ̂ > 0, such that if 0 ≤ ρ ≤ ρ̂ then Γ̃i(Br, ρ) ⊂ Bε.
Hence, for any ν > ρ̂, letting κ = ν/ρ̂, obtain that

Γ̃i(A, ν) ⊂ Γ̃i(dκBr, κρ̂) = κpi Γ̃i(Br, ρ̂) ⊂ Bκpiε.

Define the column Γ(A, ρ) = (Γ̃1(A, ρ), ..., Γ̃m(A, ρ))T

and consider the disturbed differential inclusion

ṡ ∈ F (s(t− ρ[0, 1]) + Γ(s(t− ρ[0, 1]), ρ)), (16)

where t ≥ 0 and ρ ≥ 0. Realization of the time delayed
process (16) requires some initialization

s(t) = ξ(t), t ∈ [−ρξ, 0], ξ(0) = sξ. (17)

Here ξ : [−ρξ, 0]→ Rm, (ξ, sξ, ρξ) ∈ Xsξ,ρξ , is a contin-
uous function of the initial values, sξ is its initial value
at t = 0, ρξ is the length of its domain time segment,
andXsξ,ρξ is the set of all possible initial conditions with
fixed sξ, ρξ. Respectively, X =

⋃
s∈Rm,ρ∈R

Xs,ρ is the set

of all initial conditions.

The homogeneity of the differential inclusion (15) im-
poses a few natural consistency conditions on the set
X. In particular, since any solution is transferred to an-
other solution under the homogeneity transformation
Gκ : (t, ρ, s) 7→ (κt, κρ, dκs), then also its initial condi-
tion should be transferred to the new initial condition.
Also with bounded sξ and small ρξ, the maximal ho-
mogeneous norm of the function ξ(t) − sξ, t ∈ [−ρξ, 0],
should be small as well.

Let the parameter $ > 0 formally measure the depen-
dence of the initial conditions on the disturbance. The
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following procedure provides for a reasonably large fam-
ily X($), $ > 0, which is sufficient all over the paper.
Consider solutions of the simple Filippov differential in-
clusion

ζ̇i ∈ $
(
‖ζ‖pi−1h + ρpi−1

)
[−1, 1], i = 1, ...,m, (18)

defined over 0 ≤ t ≤ ρξ, with initial condition ζ(0) = sξ.
It is formally assumed here that ω0 = 1 for any ω ≥ 0.
The inclusion is homogeneous with respect to the trans-
formation (t, ρ, ζ) 7→ (κt, κρ, dκζ). Inverting the time,
i.e., defining ξ(t) = ζ(−t) for all possible solutions ζ,
obtain the set X.

Obviously, solutions of (15) with appropriate initial val-
ues are also solutions of (16), (17). Other solutions ap-
pear in the sequel of the paper. In the following Lemma,
the existence of a global attractor of (16), (17) is proved.

Lemma 1 There are such constants µi > 0 that with any
ρ > 0 all solutions of the disturbed differential inclusion
(16), (17) after a finite-time transient enter the region
|si(t)| ≤ µiρpi to stay there forever.

The proof is provided in the Appendixes. Note that the
convergence time of the original continuous-time differ-
ential inclusion (15) does not exceed the homogeneous
norm of the initial condition with some constant coeffi-
cient. Obviously, with any compact set of initial errors
the convergence time of the disturbed inclusion (16) is
practically the same, provided the disturbance parame-
ter ρ is small enough.

Lemma 2 Let the set-valued functions Λj(A, ρ), j =
1, 2, ..., l, be constructed in the same manner as Γ(A, ρ).
Then the statement of Lemma 1 (with possibly different
coefficients µi) is true for the differential inclusion

ṡ ∈ F (s(t− ρ[0, 1]) + Λ1(s(t− ρ[0, 1]), ρ) + ...

+Λl(s(t− ρ[0, 1]), ρ)),
(19)

with initial conditions (17).

The proof of the Lemma is straightforward.

6 Simulation results

The discrete-time approximation of the 3rd-order homo-
geneous differentiator (HD) (6) with λ0 = 1.1, λ1 = 3.0,

λ2 = 4.1, λ3 = 3 (respectively, (4) with λ̃0 = 1.1,

λ̃1 = 1.5, λ̃2 = 2, λ̃3 = 3) is considered. The time is mea-
sured in some fixed unified time units. In the constant
sampling intervals’ case the sampling interval τk = τ
takes values in [0.001, 0.01] with the increment 0.0001.
In the case of variable sampling intervals the intervals τk

are generated by a random-value generator with uniform
probability density function in the range (0, τ), whereas
τ remains constant during each run, but varies in the
range [0.001, 0.01] from run to run, also with the incre-
ment 0.0001.

The steady state accuracies are calculated using the
norm ‖ · ‖∞,[a,b], which is simply the maximal absolute

value of the considered sampled variable over a finite
time interval [a, b].

6.1 One-step Euler approximation

Consider the noise-free input function f0(t) = sin(2t) +
5 cos(t)+cos(3t) for both the constant and variable sam-
pling intervals, L = 102. Note that here and further
the concrete final accuracies are easily extracted from
the demonstrated below logarithmic plots. Let Yj =

�6.5 �5.0

�15

0

Y0, y0

Y1, y1

Y2, y2Y3, y3

ln ⌧
�6.5 �5.0

�10

0

ln ⌧Y0, y0

Y1, y1

Y2, y2

Y3, y3

(a) (b)

Fig. 1. Asymptotics of the Euler-based discrete-time differ-
entiator: (a) with random intervals; (b) constant intervals.

ln ‖zj − f (j)0 ‖∞,[8,10], j = 0, ..., 3, be the logarithmic er-

rors. The straight lines yj = αj ln τ+βj , approximate Yj .
Their slopes αj are equal to the corresponding asymp-
totic orders. The values of βj determine the proportion-
ality coefficients, depending on the differentiator param-
eters and the upper bounds of the input function deriva-
tives.

Compare the asymptotic accuracies of the the one-
step Euler-approximation discrete HD with variable
and constant sampling intervals. The accuracy orders
{1.8, 1.1, 0.9, 0.4} are obtained with variable intervals,
which correspond to {Y0, Y1, Y2, Y3}, respectively (see
Fig. 1b). According to Theorem 1 the respective worst-
case accuracy orders are {1.3, 1.0, 0.6, 0.3}. Hence, the
simulation results obey the theory. In the constant
sampling intervals’ case the accuracy orders {4, 1, 1, 1}
are obtained, which correspond to {Y0, Y1, Y2, Y3}, re-
spectively (see Fig. 1a). That exactly corresponds to
Theorem 2 (n = 3, |z0 − f0| = O(τ4)), whereas other
accuracies are of the order O(τ). As it is expected, the
accuracy improves in comparison with the variable-
sampling-intervals’ case.

Theorems 1 and 2 state that the accuracies of the Euler-
integration-based discrete-time differentiator depend
on the upper bounds of the input function derivatives.

6



Thus, the performance of the nth-order differentiator
can significantly degrade for input functions with un-
bounded derivatives of the orders 1, ..., n. Demonstrate
this phenomenon and compare it with the HDD perfor-
mance.

10 40

�0.2

0.1

t

(z0 � f0)HDD

(z1 � f
(1)
0 )HDD

(z1 � f
(1)
0 )Euler

10 40

0

10

t

10 40

�10

10
(z2 � f

(2)
0 )Euler

(z2 � f
(2)
0 )HDD

t

(z3 � f
(3)
0 )HDD

(z3 � f
(3)
0 )Euler

10 40

�25

0

t

(z0 � f0)Euler

Fig. 2. Convergence of the novel 3rd-order HDD (solid lines)
vs. the Euler-based HD (dashed lines); the input is t4−5t2+2t
(i.e. with unbounded derivatives), τk = τ = 10−3.

Consider the 3rd-order one-Euler-step discrete-time dif-
ferentiator (11) with constant sampling intervals, and
the input function f0(t) = t4 − 5t2 + 2t, t ∈ [0, 50],

L = 24. The errors zi − f
(i)
0 , i = 0, 1, 2, 3, obtained

with τ = 10−3 are shown by the dashed lines in Fig.
2. It is seen that, according to Theorem 2 and Remark

1, the absolute errors |zi − f (i)0 |, i = 1, 2, increase with

time respectively, following |f̈0| and |f (3)0 |. In agreement
with Remark 1 the maximal errors |z0 − f0| = O(τ4)

and |z3 − f
(3)
0 | = O(τ) are independent of the input

and its derivatives. Note that the relative errors (zi −
f
(i)
0 )/‖f (i)0 ‖∞,[0,50], i = 0, 1, 2, 3, still remain small. Ac-

cording to Theorem 1 the error divergence is naturally
also observed with variable sampling intervals.

6.2 Homogeneous discrete-time differentiator (HDD)

Now apply the HDD (14) with the same parameters as
before, and L = 24. The same polynomial input func-
tion f0(t) = t4 − 5t2 + 2t, t ∈ [0, 50], is considered.

Respectively, the errors zi − f
(i)
0 , i = 0, 1, 2, 3, con-

verge to approximate zero, according to Theorem 3 (see
Fig. 2, solid lines). This time the accuracies do not de-
pend on the unbounded derivatives of f0 and remain the
same at all times. The asymptotic accuracies are shown
in Fig. 3. The slopes of the straight lines are as pre-
dicted in Theorem 3, i.e., σi = O(τn−i+1). Indeed, the
slopes of {y0, y1, y2, y3} correspond to the accuracy or-
ders {3.9, 2.9, 1.9, 0.9}, which are reasonably close to the

�6.5 �5.0

�20

0

ln ⌧
Y0, y0

Y1, y1

Y2, y2

Y3, y3

Fig. 3. Asymptotics of the novel 3rd-order HDD with random
sampling intervals and the input t4 − 5t2 + 2t.

predicted orders {4, 3, 2, 1}. Thus, the simulation results
agree with the theory.

7 Conclusions

The discrete-time implementation of the nth-order ho-
mogeneous differentiators [25] has been analyzed. It is
shown that whereas the accuracy of the 1st-order differ-
entiator is preserved, the simplistic one-step Euler dis-
cretization destroys the higher-order differentiators’ ac-
curacies. The accuracy differs in the cases of constant
and variable sampling intervals. In the latter case the ac-
curacy is worse, and even depends on the upper bounds
of the input function derivatives of the orders 2, . . . , n.

A novel discretization scheme is proposed, which totally
removes the sensitivity to the sampling interval variation
and to the upper bounds of the input function deriva-
tives up to the order n. The scheme is easily implemented
and does not require any noticeable increase of the cal-
culation complexity. The well-known ultimate accuracy
of the continuous-time differentiator with discrete mea-
surements is restored.

The proofs of the presented results are based on general
Lemmas 1, 2, which significantly generalize results of
[26] on the asymptotic accuracy of disturbed finite-time
stable homogeneous differential inclusions.

A Appendix. Proof of Theorem 1

Describe solutions of (9) by piecewise-linear continuous
functions s(t) = (s0(t), ..., sn(t)), defined by the equa-
tions

s(t) = s(tk) + (t− tk)vk, vk ∈ F (s(tk)), (A.1)

where tk ≤ t ≤ tk+1 and si(t0) = σi(t0), i = 0, 1, ..., n.
The vector vk ∈ F (s(tk)) is taken arbitrarily from the
set

F (s(tk)) = ϕi(s0(tk) + [−ε, ε])+{
si+1(tk) + ρ̄n−i[−1, 1], i ∈ [0, n− 1],

[−L,L], i = n,

(A.2)
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where i = 0, 1, ..., n. With ρ̄ large enough obtain that
each solution of (9) satisfies (A.1), (A.2) in the sense that
for each interval [tk, tk+1] there exists vk ∈ F (s(tk)),
such that the same values s(tk) are got at the same sam-
pling times.

Define

ρ̄ = max

{(τ
2
D2

)1/n
,
(τ

2
D3

)1/(n−1)
, ...,

τ

2
Dn+1

}
.

By construction the function s(t) has a bounded deriva-
tive |ṡ(t)| with t 6= tk. Therefore [17], each solution of
the discrete system (A.1), (A.2) satisfies the differential
inclusion

ṡi(t) ∈ ϕi(s0(tk) + [−ε, ε])+{
si+1(tk) + ρ̄n−i[−1, 1], i ∈ [0, n− 1]

[−L,L], i = n.

(A.3)

where i = 0, 1, ..., n, and t ∈ (tk, tk+1). Consider now
the disturbed continuous-time inclusion

ṡi ∈ ϕi(s0(t− τ [0, 1]) + [−ε, ε])+{
si+1(t− τ [0, 1]) + ρ̄n−i[−1, 1], i ∈ [0, n− 1],

[−L,L], i = n,

(A.4)
where i = 0, 1, ..., n. Obviously, each solution of inclu-
sion (A.3) satisfies inclusion (A.4) almost everywhere.
Indeed, for each t ∈ [tk, tk+1] there exists $ ∈ [0, 1],
such that t− τ$ = tk.

Define ρ = max
{
ρ̄, τ, ε1/(n+1)

}
, and rewrite (A.4) as

ṡi ∈ ϕi(s0(t− ρ[0, 1]) + ρn+1[−1, 1])+{
si+1(t− ρ[0, 1]) + ρn−i[−1, 1], i ∈ [0, n− 1],

[−L,L], i = n,

(A.5)
where i = 0, 1, ..., n. Due to the choice of ρ every solution
of inclusion (A.4) satisfies inclusion (A.5) almost every-
where [17]. Denote by F (s) the right-hand side of (A.5)
with ρ = 0. Now the Theorem follows from Lemma 1
with the homogeneity weights deg si = n − i + 1 and
Γ̃i(s, ρ) = ρn−i+1[−1, 1], i = 0, 1, ..., n. 2

B Appendix. Proof of Theorem 2

Introduce the variables (γ0, ..., γn+1) defined at time
tk as the divided differences γ0(tk) = f0(tk), γ1(tk) =
(γ0(tk+1) − γ0(tk))/τ , ..., γn+1(tk) = (γn(tk+1) −
γn(tk))/τ . It is well-known that γi(tk) = f

(i)
0 (ξk),

ξk ∈ [tk, tk+i], i = 0, ..., n, and γn+1(tk) ∈ [−L,L].
Letting si = zi − γi, obtain from (11) that

si(tk+1) ∈ si(tk) + τϕi(s0(tk) + [−ε, ε]) + τsi+1(tk),

sn(tk+1) ∈ sn(tk) + τϕn(s0(tk) + [−ε, ε]) + τ [−L,L],

(B.1)
where i = 0, 1, ...n− 1. Note that this coordinate trans-
formation does not affect the differentiator dynamics.
With ρ = max{τ, ε1/(n+1)}, similarly to the proof of
Theorem 1 obtain that any solution of (B.1) almost ev-
erywhere satisfies the disturbed differential inclusion

ṡi ∈ ϕi(s0(t− ρ[0, 1]) + ρn+1[−1, 1]) + si+1(t− ρ[0, 1]),

ṡn ∈ ϕn(s0(t− ρ[0, 1]) + ρn+1[−1, 1]) + [−L,L],

(B.2)
where i = 0, 1, ...n− 1.

Denoting by F (s) the right-hand side of (B.2) with
ρ = 0, and using Lemma 1 with the homogeneity
weights deg si = n− i+ 1, i = 0, 1, ..., n, and Γ̃0(s, ρ) =

ρn+1[−1, 1], Γ̃i(s, ρ) = 0 with i = 1, ..., n, obtain that
the accuracy |si| ≤ µi max {ε(n−i+1)/(n+1), τ (n−i+1)}
is established in finite time. The positive constants
µi depend only on the differentiator parameters.

Now, |zi(tk) − f
(i)
0 (tk)| ≤ |zi(tk) − γi(tk)| + |γi(tk) −

f
(i)
0 (tk)| ≤ µi max {ε(n−i+1)/(n+1), τ (n−i+1)} + (tk+i −
tk) sup |f (i+1)

0 |, and the needed asymptotics are ob-
tained. 2

C Appendix. Proof of Theorem 3

Similarly to Section 2, subtracting f
(i)
0 (tk+1) from both

sides of (13) and using η ∈ [−ε, ε], obtain

σi(tk+1) ∈ σi(tk) + τkϕi(σ0(tk) + [−ε, ε])+∑n−i
j=1

τj
k

j! σj+i(tk) +
τn−i+1
k

(n−i+1)! [−L,L],

σn(tk+1) ∈ σn(tk) + τkϕn(σ0(tk) + [−ε, ε]) + τk[−L,L],

(C.1)
where i = 0, 1, ...n− 1. Consider a piecewise-linear con-
tinuous function s(t) = (s0(t), ..., sn(t)) defined by

s(t) = s(tk) + (t− tk)vk, (C.2)

where tk ≤ t ≤ tk+1 and si(t0) = σi(t0), i = 0, 1, ..., n.
The vector vk ∈ F (s(tk), τ) is taken from the set

F (s(tk), τ) =
ϕi(s0(tk) + [−ε, ε]) + si+1(tk)+∑n−i

j=2
τj−1

j! sj+i(tk)[−1, 1] + τn−i

(n−i+1)! [−L,L],

ϕn(s0(tk) + [−ε, ε]) + [−L,L],

(C.3)
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where i = 0, 1, ..., n− 1. Each solution of (C.1) satisfies
(C.2), (C.3) in the sense that for each interval [tk, tk+1]
there exists vk ∈ F (s(tk), τ) such that the same values
s(tk) are got at the same sampling instants.

Similarly to the proof of Theorem 1 obtain that any so-
lution of system (C.2), (C.3) almost everywhere satisfies
the differential inclusion

ṡi ∈ ϕi(s0(t− ρ[0, 1]) + ρn+1[−1, 1]) + si+1(t− ρ[0, 1])+∑n−i
j=2

ρj−1

j! sj+i(t− ρ[0, 1])[−1, 1] + ρn−i

(n−i+1)! [−L,L],

ṡn ∈ ϕn(s0(t− ρ[0, 1]) + ρn+1[−1, 1]) + [−L,L],

(C.4)
where i = 0, 1, ..., n− 1. Denote by F (s) the right-hand
side of (C.4) with ρ = 0, and obtain that it can be
rewritten in the form (19). Each element of every vector

Λν is either a fixed set or a set of the form ρj−1

j! sj+i(t−
ρ[0, 1])[−1, 1]. Now Lemma 2 implies the statement of
the Theorem. 2

D Appendix. Proof of Lemma 1

Due to the finite-time stability of (15) solutions starting
at time 0 from a closed ball B0 centered at the origin,
converge to the origin at some time T . The points, ly-
ing on their corresponding graphs over the time interval
[0, T ], constitute a compact set [17]. Obviously, this set
is confined within another closed ball B1, B0 ⊂ B1.

Fix some value ρ̂ of the parameter ρ in (16), (17). Assume
that if ξ(0) ∈ B0 then ξ(t) ∈ B1 for all t ∈ [−ρ̂, 0].
Such ρ̂ always exists due to (18). Take any solution s(t)
of (16), (17). It is easy to see that there exists a closed
ball B2, B1 ⊂ B2 such that for any t ≥ 0 the argument
of F satisfies s(t − ρ̂[0, 1]) + Γ(s(t − ρ̂[0, 1]), ρ̂) ⊂ B2

whenever s(t) ∈ B1. Moreover, the claim is true for any
ρ, 0 ≤ ρ ≤ ρ̂.

Denote the right-hand side of (16) by F ∗(s, ρ). Due to
the boundedness of F over B2 and the continuity feature
of Γ, obtain that for every δ > 0 there exists ρ̃ > 0,

such that if 0 ≤ ρ ≤ ρ̃, then F ∗(s, ρ) ⊂ coF ({s}δ).
Therefore [17], with small enough ρ = ρ0 all solutions
of (16), (17), ξ(0) ∈ B0 converge to some small compact
vicinity of the origin W0 ⊂ B0 at the time T . Similarly,
during the time interval [0, T ] any solution of (16), (17)
with ξ(0) ∈W0 does not leave some larger neighborhood
of the origin still contained in B0. Denote by W the
compact set comprising all solutions of (16), (17) with
ξ(0) ∈W0 over the time interval [0, T ]. Obviously, W0 ⊂
W ⊂ B0, and W is an invariant attractor of (16), (17).

Due to the continuity property of the Hausdorff metric
there exists κ, 0 < κ < 1, such that W ⊂ dκB0 ⊂ B0.
Therefore, any solution of (16), (17) with ξ(0) ∈ B0 is

localized in dκB0 at the time T (the contractivity fea-
ture [26]). Due to the homogeneity property of (16) and

of the initial conditions with respect to Ĝκ : (t, ρ, s) 7→
(κt, κρ, dκs) obtain that the contractivity property is

preserved under the transformation Ĝκ−1 with the dis-
turbance ρ0 being enlarged to κ−1ρ0. Due to the mono-
tonicity of the set-valued functions Γi with respect to the
parameter ρ, obtain that the contractivity property is
preserved also with the disturbance ρ0 ≤ κ−1ρ0. There-
fore, any solution of (16), (17) with ρ ≤ ρ0 converges to
the global attractor W in finite-time.

Finally, let W satisfy |si| ≤ ai for the chosen ρ = ρ0.

Now, applying the transformation Ĝκ with κ = ρ/ρ0,
and taking µi = ai/ρ

pi
0 , achieve the needed asymp-

totics. 2
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