Black-Box Control in Theory and Applications RMIT University, 19.08.2016 Arie Levant School of Mathematical Sciences, Tel-Aviv University, Israel Homepage: http://www.tau.ac.il/~levant/

Control problems

The task is to make a process behave as we want.

Mathematical control appears only when we succeed to quantify the problem.

Mathematical control theory usually requires a mathematical model of the process.

Contr. problems which cannot be addressed here Control of war and peace, geopolitics, Long-term climate control, Public opinion control

Contr. problems which maybe can be addressed Finances: Macro-economic control by state bank, Taxes control, etc

Short-term climate control (?)

Contr. problems which are addressed

Air condition, auto-pilots, keeping bicycle balance, targeting, tracking, orientation, hormonal levels in blood, etc.

General Control Problem as Black-Box control

$$u \longrightarrow System \longrightarrow \sigma$$
Tracking deviation: $\sigma = y - y_c(t)$
The goal: $\sigma = 0$

We need some PSEUDO-MODEL

Main "principles"

System **model** is a mathematical model which adequately describes the input-output relations. Whatever it means ... No model is exact.

The control goal is to make the output σ satisfy some requirements by a proper choice of the control *u* in real time.

Any solution of the problem should be feasible and robust.

Models & approaches to "Black Box"

1. Sliding-Mode Control (here):

$$\frac{d^r}{dt^r} \sigma = h(t) + g(t)u,$$

 $r \in \mathbb{N}, h \in [-C, C], g \in [K_m, K_M]$

2. Model-free control (Fliess, Join, Lafont, et al) "Ultra-local model"

$$\frac{d^r}{dt^r}\sigma = F + Ku, \quad r = 1, 2, F, K = const$$

PID (proportional, integral, derivative) control

Some names and notation

 $\frac{d^r}{dt^r}\sigma = h(t) + g(t)u$ *r* is called the relative degree $\frac{d^{r}}{dt^{r}}\sigma = \sigma^{(r)}, \ \frac{d}{dt}\sigma = \dot{\sigma}$ $x \in [a,b] \Leftrightarrow a \le x \le b$

 $\sigma = O(\varepsilon)$ of the order of ε , i.e. roughly proportional In order to control a Black Box $\sigma^{(r)} \in [-C, C] + [K_m, K_M] u$ one should at least identify r.

r is called the Practical Relative Degree (PRD)

In the framework by Fliess r = 1, 2

We also want some nice features: smooth / Lipschitzian bounded control

Start with control of a smooth system $\dot{x} = f(t, x, u), \quad \sigma = \sigma(t, x)$ $x \in \mathbf{R}^n, \quad u, \sigma \in \mathbf{R}$

Systems non-affine in control $\dot{x} = f(t,x,u), x \in \mathbb{R}^n$, output $\sigma(t,x)$ (tracking error), input $u \in \mathbb{R}^l$ The goal: $\sigma \equiv 0$

Nonlinearity in control and its discontinuity \Rightarrow

 $v = \dot{u}$ is taken as a new control,

$$\begin{pmatrix} \dot{x} \\ \dot{u} \end{pmatrix} = \begin{pmatrix} f(t, x, u) \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ I \end{pmatrix} v$$

The new system is affine in control, u(t) is differentiable.

From that moment the system is $\dot{x} = a(t,x) + b(t,x)u, \quad \sigma = \sigma(t,x)$ $a,b,\sigma \in C^{\infty}, \quad x \in \mathbb{R}^{n}, \quad u,\sigma(t,x) \in \mathbb{R}$

Relative Degree (RD)
$$\dot{x} = a(t,x) + b(t,x)u, x \in \mathbb{R}^{n}, \sigma, u \in \mathbb{R}$$

Informally: RD is the number r of the first total derivative of σ where the control explicitly appears with a not-vanishing coefficient.

$$\sigma^{(r)} = h(t, x) + g(t, x)u, g \neq 0$$

Newton law:
$$\ddot{x} = \frac{1}{m}F$$
, RD=2

In my practice the relative degrees r = 2, 3, 4, 5

mechanical systems, Newton law, integrators

But the solution will be valid for any *r*.

Any relative degree is possible (example by Isidori) $J_1\ddot{q}_1 + F_1\dot{q}_1 - \frac{K}{N}(q_2 - \frac{q_1}{N}) = u,$ $J_2\ddot{q}_2 + F_2\dot{q}_2 + K(q_2 - \frac{q_1}{N}) + mgd\cos q_2 = 0$

The output : q_2 , The input: *u*. The relative degree r = 4

$$\dot{u} = v$$

The output : q_2 , The input: v. The relative degree r = 4+1=5Any relative degree can be got in such a way.

Inevitable BAD subproblem $\dot{z}_0 = z_1, \ \dot{z}_1 = z_2, \ ..., \ \dot{z}_{r-2} = z_{r-1},$ $\dot{z}_{r-1} = u$, output: $y = z_0$ The goal: $\sigma = v(t) - f(t) = 0$ $\sigma^{(r)} = f^{(r)}(t) + u \text{ compare } \sigma^{(r)} \in [-C, C] + [K_m, K_M]u$ Let $|f^{(r)}(t)| \leq C$ If $\sigma \equiv 0$ then $z_i = f^{(i)}(t)$, i = 0, 1, ..., r - 1**Exact differentiation is included!**

Main idea

Black-Box Control problem: $\sigma \rightarrow 0$

 $\sigma^{(r)} = h(t, x(t)) + g(t, x(t))u$

is replaced with

$\sigma^{(r)} \in [-C, C] + [K_m, K_M]u$ Assumptions $h \in [-C, C], g \in [K_m, K_M]$

Solution method

$$\sigma^{(r)} \in [-C, C] + [K_m, K_M] u$$

$$u = \alpha U_r(\sigma, \dot{\sigma}, ..., \sigma^{(r-1)})$$
or
$$\sigma^{(r+1)} \in [-C_1, C_1] + [K_m, K_M] \dot{u}$$

$$\dot{u} = \alpha_1 U_{r+1}(\sigma, \dot{\sigma}, ..., \sigma^{(r)})$$

Continuous control cannot solve the problem U_r, U_{r+1} are discontinuous, but bounded

Sliding mode (SM) (not a math. definition)

Any system motion mode existing due to high-frequency (theoretically infinite-frequency) control switching is called SM.

*r*th-order sliding mode (*r*-SM) (not a math. definition) *r*-SM is a SM keeping $\sigma \equiv 0$ for RD = *r* by means of high(infinite)-frequency switching of *u*.

Some abbreviations till now

SM - sliding mode, *r*-SM – *r*th order SM SMC – sliding mode control RD – relative degree PRD – practical relative degree

Preliminary conclusions

SMC theoretically "almost" solves the classical Black-Box control problem.

 \sim solved - by SMC - solved!

It includes exact robust differentiation of any order and robustness to small sampling/model noises, delays and disturbances (also singular).

The following controllers exactly robustly and in finite time provide for

for the simplest model

 $\sigma \equiv 0$

 $\sigma^{(r)} \in [-C,C] + [K_m,K_M]u$

Simplest *r*-SM controllers (Ding, Levant, Li, Automatica 2016) $[[s]]^{\gamma} \triangleq |s|^{\gamma} \operatorname{sign} s, \quad \forall d > 0, \exists \beta_0, ..., \beta_{n-2} > 0$

Relay-polynomial homogeneous *r*-SMC $u = -\alpha \operatorname{sign}\left[\left[\sigma^{(r-1)} \right]^{\frac{d}{1}} + \beta_{n-2} \left[\sigma^{(r-2)} \right]^{\frac{d}{2}} + \dots + \beta_0 \left[\sigma^{\frac{d}{r}} \right]^{\frac{d}{r}} \right]$ Quasi-continuous polynomial homogeneous *r*-SMC $u = -\alpha \frac{\left[\!\left[\sigma^{(r-1)}\right]\!\right]^{\frac{d}{1}} + \beta_{n-2}\left[\!\left[\sigma^{(r-2)}\right]\!\right]^{\frac{d}{2}} + \dots + \beta_{0}\left[\!\left[\sigma\right]\!\right]^{\frac{d}{r}}}{\left|\sigma^{(r-1)}\right|^{\frac{d}{1}} + \beta_{n-2}\left[\sigma^{(r-2)}\right]^{\frac{d}{2}} + \dots + \beta_{0}\left[\!\left[\sigma\right]\!\right]^{\frac{d}{r}}}$

25

Quasi-continuous control

$$u = U(\sigma, \dot{\sigma}, ..., \sigma^{(r-1)})$$

is called quasi-continuous (quasi-smooth), provided it remains a continuous (smooth) function whenever $(\sigma, \dot{\sigma}, ..., \sigma^{(r-1)}) \neq (0, 0, ..., 0)$

List of controllers,
$$d = r$$

 $r = 1,2,3,4,5$
1. $u = -\alpha \operatorname{sign} \sigma$,
2. $u = -\alpha \operatorname{sign}([[\dot{\sigma}]]^2 + \sigma)$,
3. $u = -\alpha \operatorname{sign}([[\ddot{\sigma}]]^2 + [[\dot{\sigma}]]^{\frac{3}{2}} + \sigma)$,
4. $u = -\alpha \operatorname{sign}([[\ddot{\sigma}]]^4 + 2[[\ddot{\sigma}]]^2 + 2[[\dot{\sigma}]]^{\frac{4}{3}} + \sigma)$,
5. $u = -\alpha \operatorname{sign}([[\sigma^{(4)}]]^5 + 6[[\ddot{\sigma}]]^{\frac{5}{2}} + 5[[\ddot{\sigma}]]^{\frac{5}{3}} + 3[[\dot{\sigma}]]^{\frac{5}{4}} + \sigma)$.

 α is to be taken sufficiently large.

Quasi-continuous controllers, d = r

1.
$$u = -\alpha \operatorname{sign} \sigma$$
,
2. $u = -\alpha \frac{\left\| \dot{\sigma} \right\|^2 + \sigma}{\dot{\sigma}^2 + |\sigma|}$,
3. $u = -\alpha \frac{\ddot{\sigma}^3 + \left\| \dot{\sigma} \right\|^{\frac{3}{2}} + \sigma}{|\ddot{\sigma}|^3 + |\dot{\sigma}|^{\frac{3}{2}} + |\sigma|}$,
4. $u = -\alpha \frac{\left\| \ddot{\sigma} \right\|^4 + 2\left\| \ddot{\sigma} \right\|^2 + 2\left\| \dot{\sigma} \right\|^{\frac{4}{3}} + \sigma}{\ddot{\sigma}^4 + 2\ddot{\sigma}^2 + 2\dot{\sigma}^{\frac{4}{3}} + |\sigma|}$,
5. $u = -\alpha \frac{\left\| \sigma^{(4)} \right\|^5 + 6\left\| \ddot{\sigma} \right\|^{\frac{5}{2}} + 5\left\| \ddot{\sigma} \right\|^{\frac{5}{3}} + 3\left\| \dot{\sigma} \right\|^{\frac{5}{4}} + \sigma}{\sigma^{(4)} |^5 + 6\left| \ddot{\sigma} \right|^{\frac{5}{2}} + 5\left| \ddot{\sigma} \right|^{\frac{5}{3}} + 3\left| \dot{\sigma} \right|^{\frac{4}{4}} + |\sigma|}$.

Another family (Levant 2005)

quasi-continuous controller r = 2 $u = -\alpha \frac{\dot{\sigma} + |\sigma|^{1/2} \operatorname{sign} \sigma}{|\dot{\sigma}| + |\sigma|^{1/2}}$

quasi-continuous controller r = 3

$$u = -\alpha \frac{\ddot{\sigma} + 2 \frac{(\dot{\sigma} + |\sigma|^{2/3} \operatorname{sign} \sigma)}{(|\dot{\sigma}| + |\sigma|^{2/3})^{1/2}}}{|\ddot{\sigma}| + 2(|\dot{\sigma}| + |\sigma|^{2/3})^{1/2}}$$

Discontinuous Differential Equations Filippov Definition

 $\dot{x} = f(x) \iff \dot{x} \in F(x)$

x(t) is an absolutely continuous function

$$F(x) = \bigcap_{\varepsilon > 0 \mu N = 0} \operatorname{convex_closure} f(O_{\varepsilon}(x) \setminus N)$$

Filippov DI: F(x) is non-empty, convex, compact, upper-semicontinuous.

Theorem (Filippov 1960-1970): \Rightarrow Solutions exist for Filippov DIs, and for any locally bounded Lebesgue-measurable f(x).

Non-autonomous case: $\dot{t} = 1$ is added.

Discontinuous Differential Equations Filippov Definition

When switching imperfections (delays, sampling errors, etc) tend to zero **usual solutions uniformly converge to Filippov solutions**

Robust differentiation problem

Arzela Theorem: Bounded functions with bounded derivative of the order *k* constitute a compact set in *C*. **"Solution"**: Take the closest function $\hat{f}(t)$!

Landau-Kolmogorov inequalities Landau: k = 1, \mathbb{R}_+ , 1912; Kolmogorov: k > 1, 1935 There exist such constants

$$\beta_{jk} \ge 1$$
, $k = 1, 2, ..., j = 0, 1, ..., k+1$, $\beta_{0k} = \beta_{k+1,k} = 1$

that for any function φ $\varphi : \mathbb{R} \to \mathbb{R}$ (or $\varphi : \mathbb{R}_+ \to \mathbb{R}$), $\forall t : |\varphi(t)| \le \varepsilon$; $\varphi^{(k)}(t)$ is a Lipschitz function, i.e. a.e. $|\varphi^{(k+1)}(t)| \le L$ implies

$$\forall t: | \varphi^{(j)}(t)| \leq \beta_{jk} L^{\frac{j}{k+1}} \varepsilon^{\frac{k+1-j}{k+1}}$$

 β_{jk} cannot be decreased and are realizable.

Kolmogorov constants $\varphi : \mathbb{R} \to \mathbb{R} \quad |\varphi(t)| \le \varepsilon; |\varphi^{(k+1)}(t)| \le L$ $\forall t : \quad |\varphi^{(j)}(t)| \le \beta_{jk} L^{j/(k+1)} \varepsilon^{(k+1-j)/(k+1)}$ $1 \le \beta_{jk} < \pi/2$

k	<i>j</i> = 1	j = 2	j = 3	j = 4	j = 5	<i>j</i> = 6
1	1.41421					
2	1.04004	1.44225				
3	1.08096	1.09545	1.48017			
4	1.04426	1.11665	1.11942	1.49631		
5	1.04298	1.08001	1.14520	1.14280	1.50892	
6	1.03451	1.07289	1.10472	1.16471	1.15137	1.51748

kth-Order Differentiation Problem

Parameters of the problem: $k \in \mathbb{N}, L > 0$

Measured input:
$$f(t) = f_0(t) + \eta(t)$$
, $|\eta| < \varepsilon$
 f_0, η, ε are unknown,
 $\eta(t)$ - Lebesgue-measurable function,
known: $|f_0^{(k+1)}(t)| \le L$
(or |Lipschitz constant of $f_0^{(k)}| \le L$)

The goal: real-time estimation of $\dot{f}_0(t)$, $\ddot{f}_0(t)$, ..., $f_0^{(k)}(t)$
Best worst differentiation error Suppose both f(t), $f_0(t)$ satisfy: $|f_0^{(k+1)}(t)|$, $|f_0^{(k+1)}(t)| \le L$ Then $|\eta^{(k+1)}(t)| \le 2L$, $|\eta(t)| \le \varepsilon$, $\forall \eta$ is possible

The worst possible error in the *j*th derivative is not less than $\sup |\eta^{(j)}(t)| \le \beta_{jk} 2^{\frac{j}{k+1}} L^{\frac{j}{k+1}} \varepsilon^{\frac{k+1-j}{k+1}}$

In particular for
$$n = j = 1$$
 get $\beta_{11} = \sqrt{2}$

$$\sup |\dot{f}(t) - \dot{f}_0(t)| \le 2L^{\frac{1}{2}} \varepsilon^{\frac{1}{2}}$$

Differentiator (Levant 1998, 2003)

$$\dot{z} = D_k(z, f(t), L), \quad |f^{(k+1)}| \leq L$$

 $\dot{z}_0 = -\lambda_k L^{\frac{1}{k+1}} [[z_0 - f(t)]]^{\frac{k}{k+1}} + z_1,$
 $\dot{z}_1 = -\lambda_{k-1} L^{\frac{1}{k}} [[z_1 - \dot{z}_0]]^{\frac{k-1}{k}} + z_2,$

• • •

$$\dot{z}_{k-1} = -\lambda_1 L^{\frac{1}{2}} \left[\left[z_{k-1} - \dot{z}_{k-2} \right] \right]^{\frac{1}{2}} + z_k, \dot{z}_k = -\lambda_0 L \operatorname{sign}(z_k - \dot{z}_{k-1}), \quad z_i - f^{(i)} \to 0. \lambda_0 = 1.1, \lambda_1 = 1.5, \lambda_2 = 2, \ \lambda_3 = 3, \lambda_4 = 5, \ \lambda_5 = 8, \dots$$

The differentiation accuracy

 $\varepsilon = 0$ (**no noise**) \Rightarrow in a finite time $z_i \equiv f^{(i)}, i = 0,...,k$

In the presence of the noise with the magnitude ε , and sampling with the step τ : $\exists \mu_i \geq 1$

$$z_j - f_0^{(j)} \leq \mu_j L \rho^{k+1-j}, \ \rho = \max(\tau^{k+1-j}, (\frac{\varepsilon}{L})^{\frac{k+1-j}{k+1}}),$$

The asymptotics with respect to noise cannot be improved! (Kolmogorov, ≈ 1935)

$$\tau = 0 \Rightarrow |z_j - f^{(j)}| \le \mu_{kj} L^{\frac{j}{k+1}} \varepsilon^{\frac{k+1-j}{k+1}}, \mu_{kj} \ge 2^{\frac{j}{k+1}}$$

In particular the *k*th derivative has the worst-case accuracy $|Z_k - f^{(k)}| \leq \mu_{kk} L^{\frac{k}{k+1}} \varepsilon^{\frac{1}{k+1}}$ For $k = 5, 6, ...; \quad \mu_{kk} \ge 3$ $k = 5, L = 1, \epsilon = 10^{-6}, \text{ error of } f^{(5)} > 0.3$ Digital round up: $\varepsilon = 5 \cdot 10^{-16}$ k = 5: error ~ 0.01; k = 6: error ~ 0.02 It is bad, but it cannot be improved!

Universal controller for any RD r $\sigma^{(r)} \in [-C, C] + [K_m, K_M]u$ $u = -\alpha \Psi_{\nu}(z),$ $z = D_{r-1}(z, \sigma, L)$ $L \ge C + \alpha K_M$, α is sufficiently large Accuracy: $|noise| \le \varepsilon$, sampling step $\le \tau$ $|\sigma^{(j)}| \le v_i \rho^{n+1-j}, \ \rho = \max(\tau^r, |\varepsilon|^{\frac{1}{n+1}}),$ $\tau = \varepsilon = 0 \Longrightarrow \sigma \equiv 0$ in finite time 41

EXAMPLES

5th-order differentiator, $|f^{(6)}| \le L$.

$$V = const = 10 \text{ m/s} = 36 \text{ km/h}, l = 5 \text{ m},$$

 $x = y = \varphi = \theta = 0 \text{ at } t = 0$

Solution: $\sigma = y - g(x), r = 3$ 3-sliding controller ($N^{\circ}3$), $\alpha = 2, L = 100$

3-sliding car control

 $\sigma = y - g(x).$

Simulation: $g(x) = 10 \sin(0.05x) + 5$, $x = y = \varphi = \theta = 0$ at t = 0. u = 0, $0 \le t \le 1$,

The controller:

$$u = -2 \frac{s_2 + 2 \frac{(s_1 + |s|^{2/3} \operatorname{sign} s)}{(|s_1| + |s|^{2/3})^{1/2}}}{|s_2| + 2(|s_1| + |s|^{2/3})^{1/2}} , t \ge 1$$

Differentiator:

$$\dot{s}_0 = -9.28 [[s_0 - \sigma]]^{\frac{2}{3}} + s_1,$$

$$\dot{s} = D_2(s, \sigma, 100), \ L = 100; \ \dot{s}_1 = -15 [[s_1 - \dot{s}_0]]^{\frac{1}{2}} + s_2,$$

$$\dot{s}_2 = -110 \operatorname{sign}(s_2 - \dot{s}_1)$$

Practical Relative Degree PRD

NO MODEL AT ALL

Practical Relative Degree Definition Nothing is known on the system. $r \in \mathbb{N}$ is called the PRD, if $\exists \lambda_{\sigma} = 1$ or -1: $\exists \varepsilon, \delta_t, \alpha_M, \alpha_m, L, L_m > 0, \alpha_m \leq \alpha_M, L_m \leq L$ 1. For any (measurable) u(t), $|u-u_0| \le U_M$: Output: $\tilde{\sigma} = \sigma + \eta$, $|\eta| \leq \varepsilon$, $\sigma^{(r-1)} \in \operatorname{Lip}(L)$ 2. For $\omega = \lambda_{\sigma} \sigma$: If $\forall t \geq t_0$ $\alpha_M \geq u(t) - u_0 \geq \alpha_m \quad (-\alpha_M \leq u(t) - u_0 \leq -\alpha_m),$ then $\forall t \ge t_0 + \delta_t$: $\omega^{(r)} \ge L_m \quad (\omega^{(r)} \le -L_m)$

Naming

 u_0 is the *reference input*,

in the following $u_0 = 0$

 λ_{σ} is the *influence direction* parameter, in the following $\lambda_{\sigma} = 1$

 δ_t is the *delay* parameter

ε is the *approximation* parameter.

Local Practical Relative Degree Definition

 $\exists t_1, t_2, T, t_1 < t_2, \delta_t < T$, such that requirement 1 is true over the time interval $[t_1, t_2 + T]$; requirement 2 is true for each $t_0 \in [t_1, t_2]$ over $[t_0, t_0 + T]$.

Graphical interpretation – 2

Remarks

The function σ does not necessarily need to have any real meaning. It can be just an output of some smoothing filter, in particular, of a tracking differentiator.

Local practical relative degree is used for temporary output regulation.

Keeping $\sigma \equiv 0$ is not possible under these conditions.

Control

$$u = -\alpha \Psi_r(z), \quad \dot{z} = D_{r-1}(z, \sigma, L),$$

$$\alpha_m \le \alpha \le \alpha_M$$

Differentiator parameters λ_i are properly chosen

Theorem. $\exists \beta_1, ..., \beta_{r-1}$ (coefficients of the *r*-SM homogeneous controller):

Accuracy:
$$\sigma = O(\max[\varepsilon, \delta_t^r])$$

Important remark

The differentiator is the just a dynamic part of the controller. Its outputs do not have any physical meaning, because PRD \neq RD.

Without the differentiator the controller loses its robustness. An attempt to replace the differentiator with any sensors or other observers is very dangerous!

Continuous controller based on quasi-continuous controller $u = -\alpha \Phi(||z||_h) \Psi_r(z)$ (SM regularization) $1 \text{ with } ||z||_{L} > \gamma \max[\varepsilon, \delta_{t}^{r}],$

$$\Phi(||z||_{h}) = \begin{cases} \frac{1}{\max[\varepsilon,\delta_{t}^{r}]} ||z||_{h}^{2} & \text{with } ||z||_{h} \leq \gamma \max[\varepsilon,\delta_{t}^{r}], \\ ||z||_{h}^{2} = z_{0}^{2/r} + z_{1}^{2/(r-1)} + \dots + z_{r-1}^{2} \\ \text{The accuracy is the same.} \end{cases}$$

Simulation

Perturbed car model

$$\dot{x} = V\cos\phi, \dot{y} = V\sin\phi,$$

$$\ddot{\phi} = -4\operatorname{sign}(\phi-\phi)-6\dot{\phi}, \implies \text{Rel. degree does not exist!}$$

$$\dot{\phi} = \frac{V}{\Delta}\tan\theta, \quad \dot{\theta} = \zeta_1,$$

Actuator: input *u*, output ζ_1 $\ddot{\zeta}_1 = -100(2 (\zeta_1 - u) + 0.01\dot{\zeta}_1)^3 - 100(\zeta_1 - u) - 2\dot{\zeta}_1,$ Sensor: $\tilde{\sigma} = \zeta_2 + 0.01\dot{\zeta}_2 - g(x) + \eta(t), \eta$ is a noise, $|\eta| \le 0.01.$ $\ddot{\zeta}_2 = -100(\zeta_2 - y) - 2\dot{\zeta}_2 - 0.02\ddot{\zeta}_2,$

$$\zeta_2 = -10, \dot{\zeta}_2 = 2000, \ddot{\zeta}_2 = -80000, \zeta_1 = \dot{\zeta}_1 = \phi = \dot{\phi} = 0 \text{ at } t = 0,$$

If the system were smooth the new RD were 10

Practical rel. degree = 3

Differentiator of the order 3 is used with L = 100.

System performance

APPLICATION Blood Glucose Control

High-Order Sliding-Mode Control of Blood Glucose Concentration via Practical Relative Degree Identification

CDC-ECC 2011

Ana Gabriela Gallardo Hernández, Leonid Fridman, Arie Levant, Yuri Shtessel, Ron Leder, Cristina Revilla Monsalve, Sergio Islas Andrade

> Universidad Nacional Autónoma de México Centro Médico Nacional Siglo XXI, IMSS Tel Aviv University University of Alabama in Huntsville

Body reaction to glucose concentration increase

Different models

Model	RD	No. States
Bergman	3	3
Candas-Radziuk	3	4
Cobelli	3	7
Hovorka	5	8
Dalla Man	5	8
Sorensen	5	18

- Output: blood glucose
 - Input: insulin

Table: Variables

Variable	Description
B_1	Blood glucose concentration (Output)
B_2	Effect of insulin on glucose uptake
B_3	Blood insulin concentration

Sorensen model

$$\begin{split} \dot{S}_{1} &= \frac{1}{V_{H}^{G}} (-Q_{H}^{G}S_{1} + Q_{L}^{G}S_{2} + S_{7} - F_{RBGU}) \\ \dot{S}_{2} &= \frac{2}{V_{L}^{G}} (Q_{A}^{G}S_{1} + Q_{G}^{G}S_{6} - Q_{L}^{G}S_{2} + f_{HGP}S_{8} - f_{HGU}S_{3}) \\ \dot{S}_{3} &= \frac{1}{\tau_{1}} (2 \tanh(0.55S_{4}^{N}) - S_{3}) \\ \dot{S}_{4} &= \frac{2}{V_{L}^{I}} (Q_{A}^{I}S_{5} + Q_{G}^{I}S_{10} - Q_{L}^{I}S_{4} - F_{LIC}) \\ \dot{S}_{5} &= \frac{1}{V_{H}^{I}} (Q_{L}^{I}S_{4} - Q_{H}^{I}S_{5} + S_{9} + u(t)) \\ \dot{S}_{6} &= \frac{Q_{G}^{G}}{V_{G}^{G}} (S_{1} - S_{6}) + \frac{1}{V_{G}^{G}} (F_{MEAL} - R_{GGU}) \\ \dot{S}_{7} &= Q_{K}^{G}\dot{G}_{K} + G_{P}^{G}\dot{G}_{PV} + Q_{B}^{G}\dot{G}_{BV} \\ \dot{S}_{8} &= \frac{1}{\tau_{1}} (1.21 - 1.14 \tanh[1.66(S_{4}^{N} - 0.89)] - S_{8}) \\ \dot{S}_{9} &= Q_{B}^{I}\dot{I}_{B} + Q_{K}^{I}\dot{I}_{K} + Q_{P}^{I}\dot{I}_{PV} \\ \dot{S}_{10} &= \frac{Q_{G}^{I}}{V_{G}^{I}} (S_{5} - S_{10}) \\ \dot{S}_{11} &= \frac{1}{V_{C}} (F_{PCR} - F_{MCC}S_{11}^{N}) \end{split}$$

66

3-sliding QC control (BeM)

3-sliding QC control (SoM)

PID control (SoM)

Experiments on rats

Rat 1

Rat 2

Rat 3

Conclusions

In practice the system relative degree is a design parameter.

Systems of uncertain nature can be effectively controlled, provided their practical relative degree is identified.

A system can have a few generalized PRDs! That is why the considered control is universal.

Hypothesis

Humans (and animals) have universal controllers embodied for PRD ≤ 2 (3?).

Thank you very much!

Applications

Pitch Control

Problem statement. A non-linear process is given by a set of 42 linear approximations

 $\frac{d}{dt}(x,\theta,q)^{t} = G(x,\theta,q)^{t} + Hu, \ q = \dot{\theta},$ $x \in \mathbf{R}^{3}, \ \theta, \ q, \ u \in \mathbf{R},$

 x_1, x_2 -velocities, x_3 - altitude

The Task: $\theta \rightarrow \theta_{c}(t), \theta_{c}(t)$ is given in real time.

G and H are not known properly

Sampling Frequency: 64 Hz, Measurement noises

Actuator: delay and discretization.

 $d\theta/dt$ does not depend explicitly on *u* (relative degree 2)

Primary Statement:

Available: θ , θ_c , Dynamic Pressure and Mach.

Main Statement: also $\dot{\theta}$, $\dot{\theta}_{c}$ are measured

The idea: keeping $5(\theta - \theta_c) + (\dot{\theta} - \dot{\theta}_c) = 0$ in 2-sliding mode

(asymptotic 3-sliding)

Flight Experiments

 $\theta_{\rm C}(t), \, \theta(t)$

 $\dot{\theta}_c = q_c(t), \ \dot{\theta} = q(t)$

Example: practical pitch control

Actuator (server-stepper) output, Levant et al., 2000

Switch from Linear (H_{∞}) control to 3-SM control

On-line calculation of the angular motor velocity and acceleration (data from Volvo Ltd)

On-line 2nd order differentiation

Volvo: comparison with optimal spline approximation

Image Processing: Crack Elimination

Edge Detection

Lines 109 - 111. General view

3 successive lines of a grey image zoom

Edge Detection

