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Control problems 
 

The task is to make a process behave as we want. 
 
Mathematical control appears only when we 
succeed to quantify the problem. 
 
Mathematical control theory usually requires a 
mathematical model of the process. 
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Contr. problems which cannot be addressed here 
Control of war and peace, geopolitics, 
Long-term climate control, 
Public opinion control 
Contr. problems which maybe can be addressed  

Finances: Macro-economic control by state bank, 
Taxes control, etc 
Short-term climate control (?) 
Contr. problems which are addressed 

Air condition, auto-pilots, keeping bicycle balance, 
targeting, tracking, orientation, hormonal levels in 
blood, etc. 
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General Control Problem  
as Black-Box control 
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Tracking deviation: ( )cy y tσ = −   

The goal: 0σ =  
 

We need some PSEUDO-MODEL 
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Main "principles" 
 

System model is a mathematical model which 
adequately describes the input-output relations. 
Whatever it means … No model is exact. 
 
The control goal is to make the output σ satisfy 
some requirements by a proper choice of the control 
u in real time.  

 
Any solution of the problem should be feasible and 

robust. 
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Models & approaches to "Black Box" 
 
1.  Sliding-Mode Control (here): 

( ) ( )
r
r

d
dt

h t g t uσ = +  ,   

r ∈¥, [ , ],   [ , ]m Mh C C g K K∈ − ∈   
 
2.  Model-free control (Fliess, Join, Lafont, et al) 
       "Ultra-local model" 

r
r

d
dt

F Kuσ = +  ,   1,2r =  , ,F K const=   

       PID (proportional, integral, derivative) control 
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Some names and notation 
 

( ) ( )
r
r

d
dt

h t g t uσ = +  

r is called the relative degree  
( )r

r
rd

dt
σ = σ ,  d

dt σ = σ&  

[ , ]x a b a x b∈ ⇔ ≤ ≤   
 

( )Oσ = ε  of the order of ε, 
i.e. roughly proportional 
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In order to control a Black Box 
( ) [ , ] [ , ]r

m MC C K K uσ ∈ − +  
one should at least identify r.  

 
r is called the Practical Relative Degree (PRD) 

 
In the framework by Fliess 1,2r =  

 
We also want some nice features:  

smooth / Lipschitzian bounded control
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Start with control of a smooth system 

( , , )x f t x u=& ,  ( , )t xσ = σ   

,   ,nx u∈ σ ∈R R  
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Systems non-affine in control 
&x  = f(t,x,u),  x∈Rn, 

output σ(t,x) (tracking error), input  u ∈Rl 

The goal: σ ≡ 0 
Nonlinearity in control and its discontinuity ⇒ 

v = &u   is taken as a new control, 
( , , ) 0

0
x f t x u

v
u I

     
= +     

     

&
&

 

The new system is affine in control,  
u(t) is differentiable. 
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From that moment the system is  
( , ) ( , )x a t x b t x u= +& ,  ( , )t xσ = σ   

, , ,   ,   , ( , )na b C x u t x∞σ∈ ∈ σ ∈R R  

 



 
13

Relative Degree (RD) 
( , ) ( , )x a t x b t x u= +& , x∈Rn, σ, u ∈R 

 
Informally: RD is the number r of the first total 
derivative of σ where the control explicitly appears 
with a not-vanishing coefficient.  

( ) ( , ) ( , )r h t x g t x uσ = + , g ≠ 0 
 

Newton law: 1
mx F=&&  , RD=2 
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In my practice the relative degrees   

 r = 2, 3, 4, 5  
mechanical systems, Newton law, integrators 

 
But the solution will be valid for any r. 
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Increasing the relative degree 
Black-Box Control problem: σ → 0 

 
( ) ( , ) ( , )r h t x g t x uσ = +  

( 1) ( , ) ( , ) ( , )r h t x g t x u g t x u+σ = + +% % & 
( 1)

1 1,   [ , ] [ , ]r
m Mv u C C K K v+= σ ∈ − +&  

Remark: u is to be kept bounded …
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Any relative degree is possible 
 (example by Isidori) 

J1 1q&&+F1 1q& -K
N

(q2- 1q
N

) = u, 

J2 2q&& +F2 2q& +K(q2- 1q
N

)+mgd cos q2 = 0 

 

The output :  q2, The input: u. The relative degree r = 4 

         u v=&   
The output :  q2, The input: v. The relative degree r = 4+1=5 

Any relative degree can be got in such a way.
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Inevitable BAD subproblem 
0 1 1 2 2 1

1 0

,  ,  ..., ,
,   output:  

r r

r

z z z z z z
z u y z

− −

−

= = =
= =

& & &
&

 

The goal: ( ) ( ) 0y t f tσ = − =    
( ) ( ) ( )r rf t uσ = +  compare ( ) [ , ] [ , ]r

m MC C K K uσ ∈ − +  
Let ( )| ( ) |rf t C≤  

If 0σ ≡  then ( ) ( )i
iz f t=  , 0,1,..., 1i r= −   

Exact differentiation is included!
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Main idea 
Black-Box Control problem: σ → 0 

 
( ) ( , ( )) ( , ( ))r h t x t g t x t uσ = +  

is replaced with 
( ) [ , ] [ , ]r

m MC C K K uσ ∈ − +  

Assumptions [ , ], [ , ]m Mh C C g K K∈ − ∈   
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Solution method 
( ) [ , ] [ , ]r

m MC C K K uσ ∈ − +  
( 1)( , ,..., )r

ru U −= α σ σ σ&   

or  ( 1)
1 1[ , ] [ , ]r

m MC C K K u+σ ∈ − + & 
( )

1 1( , ,..., )r
ru U += α σ σ σ&&   

Continuous control cannot solve the problem 

1,r rU U +  are discontinuous, but bounded 
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Sliding mode (SM) 

(not a math. definition) 
Any system motion mode existing due to high-
frequency (theoretically infinite-frequency) control 
switching is called SM. 
 

rth-order sliding mode (r-SM) 
(not a math. definition) 

r-SM is a SM keeping 0σ ≡  for RD = r by means 
of high(infinite)-frequency switching of u. 
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Some abbreviations till now 
 

SM - sliding mode,  
r-SM – rth order SM 

SMC – sliding mode control 
RD – relative  degree 

PRD – practical relative degree 
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Preliminary conclusions 
SMC theoretically "almost" solves the classical 
Black-Box control problem. 

 
It includes exact robust differentiation of any order 

and robustness to small sampling/model noises, delays 
and disturbances (also singular). 
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Special power functions 
(standard notation) 

signs s s sγ γγ  = @  
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The following controllers exactly 
robustly and in finite time provide for  

0σ ≡   
for the simplest model 

 
( ) [ , ] [ , ]r

m MC C K K uσ ∈ − +  
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Simplest r-SM controllers 
(Ding, Levant, Li, Automatica 2016) 

§ ¨ signs s sγ γ@ ,      0d∀ > , 0 2,..., 0n−∃β β >   
 

Relay-polynomial homogeneous r-SMC 

§ ¨( 1) ( 2)1 22 0sig n r r
d

rn

d d
u − −

−

 
 = −α σ + β σ + + β σ
  

© ¬ª ­«
¬ L­« ® ®

©ª  

Quasi-continuous polynomial homogeneous r-SMC 

§ ¨( 1) ( 2)1 22 0

( 1) ( 2)1 22 0

 

d d d
r

r r
n

r r
d d

rn

du
− −

−

− −
−

σ +β σ + +β σ

+ +β σσβ +σ

= −α
© ¬ª ­« ®

© ¬ Lª ­« ®

L
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Quasi-continuous control 
 

( 1)( , ,..., )ru U −= σ σ σ&   
is called quasi-continuous (quasi-smooth), provided 
it remains a continuous (smooth) function whenever  

( 1)( , ,..., ) (0,0,...,0)r−σ σ σ ≠&   
 

Example: 
§ ¨( 1) ( 2)1 22 0

( 1) ( 2)1 22 0

 

d d d
r

r r
n

r r
d d

rn

du
− −

−

− −
−

σ +β σ + +β σ

+ +β σσβ +σ

= −α
© ¬ª ­« ®

© ¬ Lª ­« ®

L

 

d kr>  ⇒ quasi k-smooth 
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List of controllers, d = r 
r = 1,2,3,4,5 

1. sign u = −α σ,  
2. § ¨2sign ), (u = −α σ + σ&   

3. § ¨3
23( sign )u = −α σ + σ + σ&& & , 

4. § ¨ § ¨ § ¨4
34 2sign( 2 2 )u = −α σ + σ + σ + σ&&& && & , 

5. § ¨ § ¨ § ¨5 5 5
2 3 4

5(4)sign( 6 5 3 )u = −α σ + σ + σ + σ + σ© ¬ &&& && &ª ­« ® . 
  

α is to be taken sufficiently large. 
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Quasi-continuous controllers, d = r 
1. sign u = −α σ,  

2. § ¨2

2 | |
 u σ +σ

σ + σ
= −α

&

&
, 

3. § ¨
33 2

3
3 2| | | | | |

 u σ + σ +σ

σ + σ + σ
= −α

&& &

&& &
, 

4. § ¨ § ¨ § ¨44 2 3
4

4 2 3

2 2

2 2 | |
u σ + σ + σ +σ

σ + σ + σ + σ
= −α

&&& && &

&&& && &
, 

5. 
§ ¨ § ¨ § ¨

5 5 5 5(4) 2 3 4

55 5
(4) 5 32 4

6 5 3

| 6| | 5| | 3| | | |
u

σ + σ + σ + σ +σ

σ + σ + σ + σ + σ

= −α
© ¬ &&& && &ª ­« ®

&&& && &
. 
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Another family (Levant 2005) 
 

quasi-continuous controller   r = 2 

u = - 2/1

2/1

||||
sign||

σ+σ
σσ+σ

α
&

&  
 
 

quasi-continuous controller   r = 3 

u = - 2/13/2
)|||(|

)sign||(

)|||(|2||

2 2/13/2

3/2

σ+σ+σ

+σ
α σ+σ

σσ+σ

&&&

&&
&

&
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Discontinuous Differential Equations 
Filippov Definition 
x& = f(x)  ⇔ x&  ∈ F(x) 

x(t) is an absolutely continuous function 

0 0
( ) convex_closure  ( ( ) \ )

N
F x f O x Nε

ε> µ =

= ∩ ∩  

Filippov DI:  F(x) is non-empty, convex, compact,  
upper-semicontinuous.   

Theorem (Filippov 1960-1970): ⇒ Solutions exist for Filippov 
DIs, and for any locally bounded Lebesgue-measurable f(x). 
 
Non-autonomous case: 1t =&  is added. 
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Discontinuous Differential Equations 
Filippov Definition 

 
 

When switching imperfections (delays, sampling 
errors, etc) tend to zero usual solutions 

uniformly converge to Filippov solutions 
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2-sliding mode 
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Robust differentiation problem 
 

  Unbounded derivatives    
 
  Bounded 1st derivatives   
     ˆ| |f L≤&   
  Bounded 2nd derivatives  
     ˆ| |f L≤&&  
 
Arzela Theorem: Bounded functions with bounded 
derivative of the order k constitute a compact set in C. 
"Solution": Take the closest function ˆ ( )f t  !  
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Landau-Kolmogorov inequalities 
Landau: k = 1, +¡ , 1912;    Kolmogorov: k > 1, 1935 
There exist such constants  

1jkβ ≥  , k = 1,2,…, j = 0,1,…,k+1, 0 1, 1k k k+β = β =  
that for any function ϕ 

:ϕ →¡ ¡ (or : +ϕ →¡ ¡), :   | ( ) |t t∀ ϕ ≤ ε;  
( ) ( )k tϕ  is a Lipschitz function, i.e. a.e. ( 1)| ( ) |k t L+ϕ ≤  

implies 
1

1 1( ):   | ( ) |
j k j

k kj
jkt t L

+ −
+ +∀ ϕ ≤ β ε  

jkβ  cannot be decreased and are realizable. 
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Kolmogorov constants 
:ϕ →¡ ¡  | ( ) |tϕ ≤ ε; ( 1)| ( ) |k t L+ϕ ≤  

( ) /( 1) ( 1 )/( 1):   | ( ) |j j k k j k
jkt t L + + − +∀ ϕ ≤ β ε  

         1 / 2jk≤ β < π     
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kth-Order Differentiation Problem 
 

Parameters of the problem:  k ∈ ¥, L > 0 
 

Measured input: f(t) = f0(t) + η(t),    | η | < ε 
f0 ,η, ε are unknown,   

η(t) - Lebesgue-measurable function, 
known:     |f0

(k+1)(t)| ≤ L 
(or |Lipschitz constant of f0

(k)| ≤ L ) 
The goal: 
  real-time estimation of  0f& (t), 0f&& (t), ..., f0

(k)(t) 
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Best worst differentiation error 
Suppose both f(t) , f0(t) satisfy:   |f0

(k+1)(t)|, |f0
(k+1)(t)| ≤ L 

Then ( 1)| ( ) | 2k t L+η ≤  , | ( ) |tη ≤ ε, ∀η is possible 

 

The worst possible error in the jth derivative is not 

less than 
1

1 1 1( )  sup | ( ) | 2
j j k j

k k kj
jkt L

+ −
+ + +η ≤ β ε  

 

In particular for 1n j= =  get  11 2β =   

1 1
2 2

0 sup | ( ) ( ) | 2f t f t L− ≤ ε& &  
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Differentiator (Levant 1998, 2003) 

( , ( ), )kz D z f t L=& ,     ( 1)| |kf L+ ≤   

§ ¨
§ ¨

§ ¨

1
1 1

1 1

1 1
2 2

0 0 1

1 1 1 0 2

1 1 1 2
( )

0 1

( ) ,

,
...

,

( ),   

 

 

 

sign    0.

k
k k

k
k k

k

k

k k k k
i

k k k i

z L z f t z

z L z z z

z L z z z

z L z z z f

+ +

−

−

− − −

−

= −λ − +

= −λ − +

= −λ − +

= −λ − − →

&

& &

& &

& &  

λ0 = 1.1, λ1 = 1.5, λ2 = 2,  λ3 = 3, λ4 = 5,  λ5 = 8, … 
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The differentiation accuracy 
ε = 0 (no noise)  ⇒  in a finite time ( )i

iz f≡ , i = 0,...,k 
 

In the presence of the noise with the magnitude ε, 
and sampling with the step τ:      1j∃µ ≥  

( )
1

1( ) 1 1
0   | | , max( , ),

k j
kj k j k j

j j Lz f L
+ −

++ − + − ε− ≤ µ ρ ρ = τ   

The asymptotics with respect to noise cannot be 
improved!  (Kolmogorov, ≈ 1935) 

0τ =  ⇒ 
1

1 1( )| |
j k j

k kj
j kjz f L

+ −
+ +− ≤ µ ε , 12

j
k

kj
+µ ≥   
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In particular the kth derivative has  
the worst-case accuracy  

 
1

1 1( )| |
k

k kk
k kkz f L + +− ≤ µ ε  

For  5,6,... :    3kkk = µ ≥  
6 (5)5,  1,  10 ,  error of  0.3k L f−= = ε = >  

Digital round up: 165 10−ε = ⋅  
5 :  error 0.01;   6 :  error 0.02k k= =∼ ∼  

It is bad, but it cannot be improved! 



 
41

Universal controller for any RD r 
( ) [ , ] [ , ]r

m MC C K K uσ ∈ − +  

1

( ),
( , , )
r

r

u z
z D z L−

= −αΨ
= σ

  

ML C K≥ + α , α is sufficiently large 

 Accuracy: |noise| ≤ ε, sampling step ≤ τ 
1

1( ) 1| | , max( ,| | )  

0 0        in finit

,

e time

nj n j r
j

++ −

τ = ε = ⇒

σ ≤ ν ρ ρ = τ ε

σ ≡
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EXAMPLES 
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5th-order differentiator, | f (6)|≤ L. 

§ ¨
§ ¨
§ ¨
§ ¨

§ ¨

5
6 6

4
5 5

3
4 4

2
3 3

1
2 2

1

1

1

1

1

2 2 1 3

3 3 2 4

4 4 3 5

5 5 4

0 0 1

1 1 0 2

12

8

                     ( ) ,

           ,

       5 ,5 4
3 3 ,2

1
    

      ,
1.1 si
1

gn
.5

( )

z L z f t z

z L z z z

z L z z z

z L z z z

z L z z z
z L z z

= − − +

= − − +

= − − +

= − − +

= − − +
= −



 
 
  

 
− 

&

& &

& &

& &

& &
& &



 
 
 
 
 
 
 
      
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5th-order differentiation 
f(t) = sin 0.5t + cos 0.5t,   L =1 
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Example:   car control 
x&  = V cos ϕ, y&  = V sin ϕ,  
ϕ& = (V/l)tan θ, 
θ&= u   
RD = 3 
x, y are measured. 
The task: real-time tracking  y = g(x) 

 

V = const = 10 m/s = 36 km/h, l = 5 m, 
x = y = ϕ = θ = 0 at t = 0 
 
Solution: σ = y - g(x), r = 3 
3-sliding controller (N°3), α = 2, L = 100 
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3-sliding car control 
σ = y - g(x).   
Simulation: g(x) = 10 sin(0.05x) + 5,  x = y = ϕ = θ = 0 at t = 0. 

The controller:        2/3
1

2/3 1/2
1

( | | sign )
2 (| | | | )

2/3 1/2
2 1

0,    0 t<1,

2
2  ,  t 1

| | 2(| | | | )

s s s
s s

u

s
u

s s s

+

+

= ≤

+
= − ≥

+ +

 

Differentiator:        

2( , ,100)s D s= σ& , L = 100:  
§ ¨

§ ¨

2
3

1
2

0 0 1

1 1 0 2

2 2 1

9.28 ,

15 ,
110sign( )

s s s

s s s s
s s s

= − − σ +

= − − +

= − −

&

& &
& &
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3-sliding car 
control  

 
 
 
 
 
 
 
 
 
 
 
 

    
    τ = 10-4 ⇒   |σ| ≤ 5.4⋅10-7,   |σ& | ≤ 2.5⋅10-4, |σ&& | ≤ 0.04 
    τ = 10-5 ⇒   |σ| ≤ 5.6⋅10-10,  |σ& | ≤ 1.4⋅10-5, |σ&& | ≤ 0.004 
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Practical Relative Degree 
PRD 

 
 

NO MODEL AT ALL 
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Practical Relative Degree Definition 
Nothing is known on the system.  

r ∈ ¥ is called the  PRD, if ∃λσ = 1 or -1: 
 

ε, δt, αM, αm, L, Lm > 0, αm ≤ αM, Lm ≤ L,: 
1. For any (measurable) u(t), |u-u0|≤ UM: 

    Output: σ%  = σ + η, |η| ≤ ε,  
       σ(r-1)∈Lip(L) 
2. ω λσ σ:  
If t ≥ t0  

αM ≥ u(t) - u0 ≥ αm    (-αM ≤ u(t) - u0 ≤ -αm), 
 then t ≥ t0+ δt:   
      ω(r) ≥ Lm    (ω(r) ≤ -Lm) 
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Naming  
 
u0 is the reference input,  

in the following u0 = 0 
λσ is the influence direction parameter,  

in the following λσ = 1 
δt is the delay parameter  
ε is the approximation parameter.  

Local Practical Relative Degree Definition 
∃ t1, t2, T, t1 < t2, δt < T, such that  

requirement 1 is true over the time interval [t1, t2 + T]; 
requirement 2 is true for each t0 ∈ [t1, t2] over [t0, t0 + T]. 
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Graphical interpretation - 1 
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Graphical interpretation – 2 
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Remarks 
 
  The function σ does not necessarily need to have 
any real meaning. It can be just an output of some 
smoothing filter, in particular, of a tracking 
differentiator.  
  Local practical relative degree is used for temporary 
output regulation.  
  Keeping σ ≡ 0 is not possible under these 
conditions. 
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Control 
 

1( ),   ( , , )r ru z z D z L−= −αΨ = σ& ,  

m Mα ≤ α ≤ α  

  

Differentiator parameters λi  are properly chosen  
 
Theorem.  β1, …, βr-1 (coefficients of the r-SM 
homogeneous controller): 
 

Accuracy:  σ  = O(max[ε, δt
r])    
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Important remark 
 

The differentiator is the just a dynamic part of the 
controller. Its outputs do not have any physical 
meaning, because PRD ≠ RD. 
 
Without the differentiator the controller loses its 
robustness. An attempt to replace the differentiator 
with any sensors or other observers is very dangerous! 
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Continuous controller 
based on quasi-continuous controller  

u = - αΦ(||z||h)Ψr(z) 
(SM regularization) 

 

2

1 with || || max[ , ],  
(|| || ) 1 || ||  with || || max[ , ],

max[ , ]

r
h t

h r
h h tr

t

z
z

z z

> γ ε δ
Φ =  ≤ γ ε δ ε δ

 

2 2/ 2/ ( 1) 2
0 1 1|| || ...r r

h rz z z z−
−= + + +  

The accuracy is the same. 
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Simulation 
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Perturbed car model 
x&= Vcos φ, y&= Vsin φ, 
φ&& = -4sign(φ-ϕ)-6φ& ,   ⇒   Rel. degree does not exist! 
ϕ& = 

∆
V  tan θ,      θ&  = ζ1,  

Actuator: input u, output ζ1 
  1ζ&& = -100(2 (ζ1- u) +0.01 1ζ& )3 - 100( ζ1- u)- 2 1ζ& , 

Sensor: σ%  = ζ2+0.01 2ζ& - g(x) + η(t), η is a noise, |η| ≤ 0.01. 
  2ζ&&& = - 100(ζ2 - y) - 2 2ζ&  -0.02 2ζ&& ,    

ζ2= -10, 2ζ& = 2000, 2ζ&& = -80000, ζ1= 1ζ& = φ = φ&  = 0 at t = 0,  
 

If the system were smooth the new RD were 10 
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Practical rel. degree = 3 

 
Differentiator of the order 3 is used with L = 100. 
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System performance 

 
|σ| ≤ 0.16 
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APPLICATION 

Blood Glucose Control 
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Body reaction to glucose concentration increase  
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Different models 
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The simplest model 
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Sorensen model 

 



 
67

3-sliding QC control (BeM) 
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3-sliding QC control (SoM) 

 
The same parameters 
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PID control (SoM) 
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Experiments on rats 
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Rat 1 
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Rat 2 
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Rat 3 
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Conclusions  
In practice the system relative degree is 
a design parameter. 
Systems of uncertain nature can be 
effectively controlled, provided their 
practical relative degree is identified.  
A system can have a few generalized 
PRDs! That is why the considered 
control is universal. 
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Hypothesis 
 

 Humans (and animals) have universal 
controllers embodied for PRD ≤ 2 (3?). 
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Thank you very much! 
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Applications 
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Pitch Control 
 

Problem statement. A non-linear process is given by a 
set of 42 linear approximations  

d
dt (x,θ,q)t = G(x,θ,q)t + Hu, q = &θ, 

x∈R3, θ, q, u∈R,  
x1, x2 -velocities, x3 - altitude 

The Task:  θ → θc(t), θc(t) is given in real time. 
G and H are not known properly 
Sampling Frequency: 64 Hz, Measurement noises 
Actuator:  delay and discretization. 
dθ/dt does not depend explicitly on u (relative degree 2) 
Primary Statement: 
 Available: θ, θc, Dynamic Pressure and Mach. 
Main Statement: also &θ, &θc  are measured 

The idea: keeping 5(θ - θc) + (θ&  - cθ& ) = 0 in 2-sliding mode  
(asymptotic 3-sliding)
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Flight Experiments 
 

  
 

 θc(t), θ(t)      cθ&  = qc(t), θ&  = q(t) 
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Example: practical pitch control  
Actuator (server-stepper) output, Levant et al., 2000 

 
Switch from Linear (H∞) control to 3-SM control  
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On-line calculation 
of the angular motor velocity and acceleration  

(data from Volvo Ltd) 
 

  

Experimental data, τ = 0.004         1st derivative.  
           2nd order differentiation, L = 625 
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On-line 2nd order differentiation 
Volvo: comparison with optimal spline approximation 
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Image Processing: Crack Elimination 
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Edge Detection 

 
 

    3 successive lines of a grey image    zoom 
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Edge Detection  

                        


