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Chattering Analysis
Arie Levant, Member, IEEE

Abstract—A formal mathematical definition of chattering
is proposed. Chattering phenomena are classified into three
types. In particular, the first type is harmless and cannot be
avoided. Chattering properties of various control approaches
are considered. The dangerous second and third types of chat-
tering phenomena are proved to be removable by proper use
of high-order sliding-modes (HOSM). Fast stable actuators and
sensors only generate the first type of chattering in HOSM sys-
tems and practically never affect the sliding motion. Computer
simulation confirms the theoretical results.

Index Terms—Chattering effect, high-order sliding mode
(HOSM), homogeneity, variable structure systems.

I. INTRODUCTION

U NCERTAINTY of the mathematical model remains one
of the main challenges of modern control theory. High-

gain feedback and sliding-mode control [10], [32], [33] are often
applied in that case. Also finite-time convergent nonlinear con-
trol systems [1] might be considered as belonging to this class,
since they feature infinite feedback derivatives at the operational
point. In reality sampling noises, unaccounted-for fast dynamics
of sensors and actuators, delays, discretization and hysteresis
effects might cause dangerous vibrations in such systems. In
sliding-mode control systems these effects are well-known as
the chattering effect. The idea of the sliding-mode control ap-
proach is to react immediately to any deviation of the system
from some properly chosen constraint, steering it back by a suf-
ficiently energetic effort. Sliding mode is accurate and insensi-
tive to disturbances, and much research was devoted to the anal-
ysis of chattering and its avoidance [2]–[4], [6]–[12], [14], [15],
[17], [19], [21]–[34].

Sliding-mode control chattering is caused by the high, the-
oretically infinite, frequency of control switching and reveals
itself as high-frequency dangerous vibrations of the whole
system. Unfortunately, the generally accepted understanding
of the chattering effect ends at this point. There is no formal
mathematical definition of chattering, which would enable the
estimation of its threat to a system. Indeed, any real system
inevitably undergoes infinitesimal high-frequency vibrations,
most of which are harmless. Therefore, some kinds of chat-
tering are negligible. On the other hand, as a result of high
control gains, even classical linear control systems may un-
dergo harmful vibrations in the presence of small measurement
noises. This paper is probably the first attempt to formalize the
chattering notion mathematically. “Mathematical chattering”
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is considered in finite-dimensional dynamic systems. That
approach does not deal with complicated physical phenomena
associated with real-system chattering.

The author agrees in advance that the proposed concept is
arguable, and welcomes any alternative approaches and defini-
tions. While the presented results have been proved mathemat-
ically, the practical interpretation of the theorems might be de-
batable.

In the paper, it is shown for the first time that the well-known
chattering attenuation procedure [3], [4], [11], [12], [19], [25],
[29]–[31] indeed removes dangerous types of chattering. More-
over, it is proved that the inclusion of fast stable sensors and
actuators into the mathematical model of the closed system pre-
serves real (approximate) sliding modes and only produces non-
harmful chattering of the plant. Therefore such sensors and ac-
tuators can be ignored at initial design stages. Simulation con-
firms the theoretical results.

In order to avoid complicated notation, some of the variables
have different meaning in the different parts of the paper.

II. DEFINITIONS OF CHATTERING

A. Chattering of a Single Signal

The notion of chattering inevitably depends on the time and
coordinate scales. For example, consider the temperature mea-
sured at some fixed place in London. It obviously does not fluc-
tuate much in one hour, but if the time is measured in years, then
the chattering is very apparent. At the same time, compared with
the temperature on Mercury, these vibrations are negligible. It
is also obvious that any linear function of time does not chatter.
Thus, the chattering of a signal is to be considered with respect
to some nominal signal, which is known from the context.

Consider an absolutely continuous scalar signal ,
. Also let be an absolutely continuous nominal

signal, such that is considered as its disturbance. Let
, and introduce virtual dry (Coloumb) friction, which is a

force of constant magnitude directed against the motion vector
. Its work (“heat release”) during an infinitesimal time in-

crement equals . Define the
-chattering of the signal with respect to as the en-

ergy required to overcome such friction with , i.e.

In other words, -chattering is the distance between and
in the -metric, or the variation of the signal difference .
Similarly, considering virtual viscous friction proportional to

, obtain
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where mathematical instinct requires the power 1/2 to appear.
Other power models of friction produce -chattering, ,
which is defined in the obvious way. If the nominal signal
is not defined, the linear signal is
naturally used for the comparison. The three last arguments of
the chattering function may be omitted in the sequel, if they are
known from the context.

Let , , be an absolutely continuous
vector function, and be some positive-definite contin-
uous symmetric matrix with the determinant separated from 0.
The chattering of the trajectory with respect to is de-
fined as

The matrix is introduced here to take into account a local
metric. Note that with the -chattering is the length of
the curve .

B. Chattering Family

The notions introduced depend on the time scale and the
space coordinates. The following notions are free of this draw-
back.

Consider a family of absolutely continuous trajectories (sig-
nals) , , . The family chat-
tering parameters measure some imperfections and tend to
zero. Define the nominal trajectory (signal) as the limit trajec-
tory (signal) . Chattering is not
defined in the case when the limit trajectory does not exist
or is not absolutely continuous.

-chattering is classified as infinitesimal, if the “heat re-
lease” is infinitesimal, i.e.

-chattering is classified as bounded if

-chattering is classified as unbounded if the “heat release”
is not bounded, i.e.

The last two chattering types are to be considered as poten-
tially destructive.

Proposition 1: If the chattering is infinitesimal in the
-sense, then it is infinitesimal also in the -sense,

. Similarly, if it is unbounded (bounded) in the
-sense, , it is unbounded (bounded or unbounded)

also in the -sense.
Proof: The proof, indeed, follows from the inequality [5]

which holds for any function .

Obviously, if -chattering is infinitesimal, the length of the
trajectory tends to the length of . The chattering is
bounded or unbounded iff the length of is respectively
bounded or unbounded when .

Proposition 2: Let uniformly tend to with .
Then the above classification of chattering is invariant with re-
spect to smooth transformations of time and coordinates, and
to the choice of a continuous positive-definite symmetric ma-
trix

Proof: Indeed, it follows from the uniform convergence
that the trajectories are confined to a compact region. The propo-
sition now follows from the boundedness from above and from
below of the norm of the Jacobi matrix of the transformation.

Proposition 3: Let uniformly tend to with .
Then the chattering is infinitesimal, iff the chattering of all coor-
dinates of is infinitesimal. The chattering is unbounded
iff the projection to some subset of the coordinates has un-
bounded chattering. The chattering is bounded iff it is not un-
bounded, and the projection to some subset of the coordinates
has bounded chattering.

Proof: This is a simple consequence of Proposition 2.
Suppose now that the mathematical model of a closed-loop

control system is decoupled into two subsystems

where is a chattering parameter. Consider any local chattering
family of that system. Then, similarly to Proposition 2, the
above classification of the chattering of the vector coordinate
does not depend on any smooth state coordinate transformation
of the form .

Assume that the chattering of the vector coordinate of the
first subsystem is considered dangerous, while the chattering of
the second subsystem is not important for some practical reason.
In particular, this can be the case when the vector coordinate
of the second subsystem corresponds to some internal computer
variables. In the following, the first subsystem is called main
and may contain the models of any chattering-sensitive devices
including actuators and sensors; the second subsystem is called
auxiliary.

It is said that there is infinitesimal ( -)chattering in
a closed-loop control system depending on a small vector
chattering parameter if any local chattering family of the
main-subsystem trajectories features infinitesimal chattering.
The chattering is called unbounded if there exists a local
chattering family of the main subsystem with unbounded chat-
tering. The chattering is called bounded if it is not unbounded
and there exists a local chattering family of the main subsystem
with bounded chattering.

The least possible chattering in this classification is the infin-
itesimal one. In other words, infinitesimal chattering is present
in any control system, as a result of infinitesimal disturbances
of a different nature.

The prefix - is omitted in the cases when the corresponding
statement on chattering does not depend on . This is true
everywhere in the sequel.
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C. Chattering in Mechanical Systems

One of the most devastating effects caused by chattering is
extensive heat emission, which can be estimated by energy os-
cillation. It is shown here that infinitesimal chattering excludes
dangerous heat emission in mechanical systems.

Consider some closed-loop system. Let the main subsystem
be a mechanical system described by the Lagrange equation

(1)

Here is the vector of generalized coordinates, the
smooth function is the kinetic energy, and the smooth
function is the vector of generalized forces produced by the
auxiliary subsystem

(2)

Assume that the forces and the initial values of , at the
time are bounded. Let the control provide for the uniform
convergence of the main-subsystem trajectories to some
smooth limit trajectory with , .

The kinetic energy has the form

(3)

where , , are some smooth matrix functions of the
corresponding dimensions, and is symmetrical and positive
definite.

It is easy to see that the uniform convergence of to
also implies the uniform convergence of to with

. Indeed, (1), (3) imply the boundedness of
which, in turn, imply the boundedness of . The uniform
convergence of to now follows from the bounded-
ness of (for example, see Lemma 1 in [20]).

The energy of the system takes the form

(4)

where the first two terms come from (3). Any small decrease in
energy corresponds to possible heat emission, which does not
exceed the absolute value of the energy decrease. Introducing
the function

obtain that the integral heat emission is evaluated as

(5)

where is the energy difference taken with
respect to the energy , calculated along the limit trajectory

. The last term characterizes the maximal heat emis-
sion along the limit trajectory, and is supposed to be practically
acceptable. Using (4) and obtain

(6)

Now suppose that the chattering is infinitesimal. This
means that . It follows from (5), (6) that also

is infinitesimally small. Thus, also the addi-
tional heat emission is negligible.

Note that the above calculation does not take into account any
possible heat emission in the devices yielding the generalized
forces , i.e., the chattering of the auxiliary subsystem (2) (the
actuator model). Including the actuator dynamics into the main
subsystem might require smoothing the control.

III. EXAMPLES

Consider a smooth dynamic system

(7)

, . Let , , be a vector
constraint to be kept in the standard sliding mode. Its physical
meaning can be a tracking deviation, for example. Let the vector
relative degree of be , which means that

(8)

with some smooth , and det . Taking

(9)

obtain the local first-order sliding mode . Consider
any regularization parameter having the physical sense of
switching imperfections, such as switching delays, small mea-
surement errors, hysteresis etc., which vanish when .

Proposition 4: Variable Structure System (VSS) (7)–(9) fea-
tures bounded chattering.

Proof: Fix any initial conditions. Then with the
trajectories uniformly converge to the Filippov solution [13],
consisting of a transient part and a sliding-mode motion with

. Taking as a part of new coordinates according to
Proposition 2, obtain that during the approximate sliding motion
the difference between the family trajectory and the ideal
sliding-mode motion satisfies the inequality

. Thus, due to Proposition 3, the
chattering is bounded in any -sense.

Similarly, the optimal control problems featuring sliding-
mode trajectories [16] reveal bounded chattering.

Proposition 5: Let system (7) be closed by some continuous
feedback , and be the maximal magnitude of the
measurement noise and control delays. Then only infinitesimal
chattering is present in the system.

The proof immediately follows from the continuous depen-
dence of the solutions on the right-hand side of differential equa-
tions (the uniqueness of the solutions is not required).

Now let (7) be a Single-Input Single-Output (SISO) system,
, , and let the relative degree be , which means

that the system can be rewritten in the form [18]

(10)

(11)

where , and, without any loss of gen-
erality, the function is assumed positive. Suppose that be
uniformly bounded in any bounded region of the space , and
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(11) features the Bounded-Input-Bounded-State (BIBS) prop-
erty with considered as the input.

In the case when the functions and are uncertain, a high-
gain feedback is applied

(12)

where is a Hurwitz polyno-
mial. It can be shown that, provided is sufficiently large, such
feedback provides for the semiglobal convergence into a set

, .
According to Proposition 4 system (10)–(12) features infini-

tesimal chattering with any fixed and small noises. In order to
improve the performance, one needs to increase . It is easy to
show that with the chattering parameter , a system
with infinitesimal chattering is obtained in the absence of noise.
Now introduce some infinitesimal noise of the magnitude
in the measurements of the function .

Theorem 1: Let possible noises be any smooth functions of
time of the magnitude . Then the chattering in system(10)–(12)
is unbounded with the chattering parameters and

.
Note that this result applies also to the estimation of the chat-

tering of multi-input multi-output (MIMO) systems. Indeed, it
is sufficient to fix all feedback components except one in order
to prove the possibility of unbounded chattering.

Proof: The relative degree of the auxiliary output is 1.
Hence, in some new coordinates the system has the form

(13)

where , are smooth bounded functions, and is the mea-
surement noise, , . Since the
consideration is local, all functions and their partial derivatives
are bounded.

It is easy to see that the relation is estab-
lished in the time . Thus, the trajectories con-
verge to a discontinuous vector-function, if at the initial
moment. Therefore, only chattering families with initial condi-
tions on make sense. In such a case the limit trajectory
satisfies the zero-dynamics [18] equations

Introduce a new time , and denote
. Then (13) takes the form

Hence, , and also the full derivatives and
are of the same order.
Differentiate once more, and obtain that

or, equivalently

This means that in finite -time starts to track with the
accuracy . Let ,

. Then . Take , then with
small enough, is kept whenever .

This means that is kept during the constant part
of each -period of . The -period

equals
Now return to the original time , and take .

The -period of the chosen noise equals .
Thus, with sufficiently large , the inequality

is kept during of the -length of the
considered trajectories. Therefore, the -chattering of the co-
ordinate satisfies the relations

which proves the Theorem according to Proposition 2.
Note that the introduction of control saturation in (12) re-

moves the unbounded chattering. Indeed, as follows from (10),
becomes uniformly bounded, implying the boundedness

of the chattering functions. Such control can be considered as
a regularization of the relay control sign and corre-
sponds to the standard method [32] of the sliding-mode chat-
tering attenuation. Unfortunately, the bounded chattering of the
coordinate is still inevitable. Indeed, it is sufficient to choose
the measurement noise sign , where is
the control saturation threshold and is a sufficiently small con-
stant. As a result the control will remain at the saturation value
during a certain part of the time, causing bounded chattering of
the coordinate . Thus, this chattering attenuation method
is not effective, if one uses large to prevent significant loss of
the sliding mode accuracy.

It can also be shown similarly that the fast coordinates of sin-
gularly perturbed systems demonstrate unbounded chattering.
This does not necessarily mean the unbounded chattering of the
whole system, if these coordinates are internal coordinates of
some auxiliary unit which can be excluded from the main sub-
system. In particular, the chattering of the internal sensor vari-
ables can often be ignored; in the case of computer-based con-
trol some coordinates might lack physical sense. Note that the
main-subsystem chattering still accounts for the influence of the
excluded unit.

IV. CHATTERING OF HIGH-ORDER SLIDING MODES

Consider a smooth dynamic system with a smooth output
function . Let the system be closed by some possibly dynamic
discontinuous feedback and be understood in the Filippov sense
[13]. Then, provided that successive total time derivatives ,

are continuous functions of the closed-system
state-space variables, and the set
is a non-empty integral set, the motion on the set is said to be
in -sliding ( th-order sliding) mode [19], [22]. The standard
sliding mode, used in the most variable structure systems, is of
the first order ( is continuous, and is discontinuous).

Consider once more the uncertain SISO dynamic system (2)
with the output , which was considered in Theorem
1. Let , and : be unknown smooth functions.
Assume that and possibly a number of its derivatives are mea-
sured in real time; can also be uncertain. The relative degree
of the system is assumed to be constant and known, and, as pre-
viously, the task is to provide for . It is also supposed that
the functions , in (10) are bounded in the operational region,
so that and .
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Some bounded -sliding control is
applied, providing for the finite-time stability of the differential
inclusion

(14)

It is assumed to be -sliding homogeneous [23], which means
that the identity

(15)

is kept for any . Most known high-order sliding-mode con-
trollers [2]–[4], [11], [12], [19], [22]–[31] satisfy this assump-
tion. It can be shown that the function is inevitably discontin-
uous at least at .

All noises considered further in this paper are bounded
Lebesgue-measurable functions of time of any nature. No
additional requirements are needed.

Suppose that , , is measured with noises
of the magnitudes , and variable delays not exceeding

, where , are some positive constants. It is proved [23]
that the accuracy

is established in finite time with some positive constants
independent of . The result does not change

when only is measured and all its derivatives are estimated by
means of an th order robust differentiator [22] based on
2-sliding modes.

Note that with the exact -sliding mode is
established. The above connection between the measurement
noise magnitudes and delays is not restrictive, since in reality
there are concrete noises and delays, which can be considered
as samples of a virtual family indexed by in a non-unique way.
Moreover, actual noise magnitudes can be lower, preserving the
same upper estimations and the worst-case asymptotics.

Following from the above result, there is no unbounded chat-
tering in the system (2), (15). Indeed, after the coordinates are
chosen as in (10), (11), it is obvious that the only coordinate
which can reveal bounded or unbounded chattering is .
Its chattering function is bounded due to the boundedness of

. Thus, unbounded chattering is impossible. Actually, the
author can prove that there is bounded chattering in most cases
of the well-known 2-sliding controllers [3]–[6], [11], [12], [25],
[29], or in the case of nested sliding-mode controllers [22]

. The situation is more complicated in the case of
quasi-continuous controllers [24], which are continuous every-
where except . Simulation reveals bounded chattering
also in that case.

The chattering attenuation procedure [3]–[6], [11], [12],
[19]–[31] is based on treating the derivative as a
new control. As a result, the relative degree is artificially
increased to , and , are in-
cluded in the set of coordinates. Global
[25] or semiglobal [27] convergence is ensured for the

-sliding mode. The above result provides for the accu-
racies with
time delays of the order of and the measurement errors of

being . Thus, only infinitesimal chattering takes

place in that case. Moreover, chattering functions of the plant
trajectories are of the order . These results are trivially
extended to the MIMO case with a vector relative degree and a
vector sliding order.

Consider now the influence of unaccounted-for fast stable
actuators and sensors, when the -sliding mode is the
limit operational mode. The following consideration can also
be extended to the MIMO case, provided the relative degree is
well-defined and the control matrix coefficient is known. Let
time belong to a segment , and belong to
some compact regions , . Suppose that the initial condi-
tions belong to some smaller compact set . This
results in

(16)

The sliding-mode equalities
define the values of in a unique way. Thus, with
sufficiently small , , some inclusion of the form

(17)
is valid in the considered vicinity of the -sliding mode

. Introduce the functions
, ,

. They can be expressed by means of Lie deriva-
tives, and can be supplemented up to the local coordinates [18].

Let now the output of an actuator be substituted for

(18)

The mathematical model of the actuator is described by the
equations

(19)

where is the control and the input of the
actuator, is a continuous output function, the time constant

is a small parameter, and is some small determin-
istic Lebesgue-measurable noise of magnitude . Both and

are infinitesimal chattering family parameters. Note that the
functions are no longer equal to the derivatives

, for now depends on the noisy actuator
output .

As previously, the new control is determined by the
-sliding homogeneous feedback

(20)

(21)

where is a function continuous almost everywhere, bounded
by some constant , , in its absolute value, and are
some real-time estimations of to be defined below. Being
applied to (16) with

(22)
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it provides for the finite-time convergence to the -sliding
mode . Let the constraint function have the sense of a
tracking error, i.e.

where is a smooth function available in real time with an
a-priori bounded th derivative, and is a smooth
function.

Now let an estimate of be obtained as the noisy output
of a sensor with the model

(23)

Here , , are continuous functions, and is a
noise whose magnitude also tends to zero with . The
estimates , are obtained as the outputs of
the th-order differentiator [22], which is denoted by

(24)

Assumption 1: The actuator with and the sensor with
feature the BIBS property. Initial values of , belong

to some compact sets , .
Since , this provides for , belonging to some

compact regions , independent of , .
Indeed, (respectively, ) can be excluded by the time trans-
formation (respectively ). This assumption
also causes the actuator output to be bounded in its absolute
value by some constant .

Assumption 2: The actuator and the sensor are assumed exact
in the following sense. With and any constant
value of (respectively ), the output uniformly tends to
(respectively, uniformly tends to ). That means that for any

, there exists such that with any , ,
, (respectively constant and

), the inequality (respectively ) is kept,
starting from the moment .

Note that any linear actuator with the transfer function
satisfies Assumptions 1, 2, provided deg

, is a Hurwitz polynomial, .
Similar conditions can also be formulated for a linear sensor,

and .
Theorem 2: Let and Assumptions 1, 2 hold. Then

with any the sliding accuracy , ,
is established with sufficiently small , , , .

The differentiator errors are also arbitrarily small, .
Theorem 2 is true also in the case . It corresponds

to the discontinuous operator input, and is considered in an-
other paper [28]. The results presented are valid for general
finite-time stable controllers (2), (21). Therefore, in order to
avoid the consideration of specific convergence dynamics,
only chattering families, approximating the -sliding
mode from the very beginning, are considered. Such fam-
ilies are further called sliding chattering families. Thus,
the chattering family features initial conditions satisfying

. The additional
coordinates (and respectively )

are excluded from the main-subsystem coordinates. Note that
most probably reveals bounded chattering.

Theorem 3: Under Assumptions 1 and 2 with any
sliding chattering family of the system(18)–(21), (23), (24) re-
veals only infinitesimal chattering when , , , .

Proof of Theorem 2: Assumptions 1 and 2 imply the fol-
lowing important features of the system.

Lemma 1: Under Assumptions 1 and 2 let the input
of the actuator(19) be a Lipschitz function of time with

some fixed Lipschitz constant, being corrupted by a noise
with the magnitude . Then for any , with sufficiently
small , the inequality is established in time
and is kept afterwards.

Lemma 2: Under Assumptions 1 and 2 let the input
of the sensor (23) be a Lipschitz vector function of time
with some fixed Lipschitz constant, being corrupted by a

vector noise with the magnitude . Then for any ,
with sufficiently small , the inequality is

established in time and is kept afterwards.
Proofs of Lemmas 1 and 2 are very similar, therefore, only

the first one is presented.
Proof of Lemma 1: Let the Lipschitz constant of be

. Consider the time transformation . Then (19)
takes the form

The function is also Lipschitzian, but with the Lipschitz
constant . Fix some initial value of time corresponding to

. Let be the -time needed to establish the in-
equality with any constant , .
Take . With sufficiently small and
the change of is arbitrarily small during the -time 2 .
Thus, since the functions and are uniformly continuous in
their arguments, and due to the continuous dependence of the so-
lution on the right-hand side, the inequality
is established in the -time , and is kept during
the next -interval of the same length . Applying the same rea-
soning from the moment and taking the new value

, obtain that holds
also during the third -interval of the length . Continuing this
reasoning, obtain that is kept forever. Returning to
the original time obtain the statement of the Lemma.

It follows from (20) and the boundedness of that the con-
ditions of Lemma 2 are automatically satisfied, and the sensor
produces an estimate of with infinitesimal errors. Therefore,
mathematically the robust finite-time convergent exact differ-
entiator [22] can be considered as an additional virtual sensor
producing noisy estimates of the derivatives of . The differen-
tiator transient can be made arbitrarily short by the choice of the
initial conditions, and/or differentiator parameters.

Lemma 3: The differentiator produces estimates of
. For any with sufficiently small

, , , , the inequalities are established and
kept afterwards.

Proof: According to Lemmas 1 and 2 the differences
and can be made arbitrarily small. Let ,
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. Thus, differentiating the functions and substituting for ,
when appears as a result of differentiating with respect to
(15), obtain that

(25)

Here denotes any function with uniformly
bounded for all trajectories. Recall that the differentiator has
the form

Introducing notation , and assuming that
, obtain

where is an appropriate constant. This is a disturbed finite-
time stable homogeneous differential inclusion with a negative
homogeneity degree [23]. Therefore, it has an invariant region
around the origin, attracting trajectories in finite time [23]. That
attracting region retracts to zero with .

Now let the accuracy of the differentiator (Lemma 3) and the
actuator (Lemma 1) be of the order of . Then (25) can be
rewritten as the differential inclusion

(26)

Here is another appropriate constant. Thus, (26) can be
considered as a disturbed finite-time stable homogeneous inclu-
sion with a negative homogeneity degree. Hence, it has an in-
variant region attracting trajectories in finite time and retracting
to zero with .

The proof of Theorem 3 is a simple consequence of The-
orem 2 and (26) with .

V. SIMULATION

A. High Order Sliding Mode Control

An already traditional example of the kinematic car model

is chosen. Here and are Cartesian coordinates of the rear-
axle middle point, is the orientation angle, is the longitudinal
velocity, is the length between the two axles, is the steering
angle, and is the actuator output. The task is to steer the
car from a given initial position to the trajectory with

and measured in real time. Define . Let

The relative degree of the system is 3. The plant coordinates
, , , are to be analyzed for chattering. The actuator co-

ordinates are assumed excluded from the main-subsystem co-
ordinates. As follows from the previous section, the chattering
of , and , which is small with small , and , is
to be considered. The relative degree is artificially increased to
4, treating as a new (discontinuous) control. Following the
main idea of the high-order sliding mode control [22]–[25],
the controller is known in advance; only one gain is adjusted
here. The 4-sliding homogeneous quasi-continuous controller
[24] was applied, as shown in the equation at the bottom of the
page. The estimates of the derivatives are obtained as the
result of the real-time differentiation of the sensor output by
the third-order differentiator

with

with
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Fig. 1. 4-sliding car control in the presence of actuator and sensor.

In its turn is produced by means of a sensor with the linear
model

The initial values , , were taken.
The control , which is defined above by its derivative, has the
initial value 0, and enters the plant through an actuator with the
nonlinear model

The actuator coordinates have zero initial conditions.
The simulation results are demonstrated in Fig. 1. The

4-sliding accuracies , , ,
were obtained with the sensor and actuator

time constants . The accuracies changed to
, , , with the

sensor and actuator time constants . Hence, the
simulation shows that the lower , , the less the chattering.

Now introduce a noise at the output of the sensor of the mag-
nitude . The system reveals high sensitivity to such noises due
to the presence of the third-order differentiator, i.e., the corre-
sponding coefficients are large. Note that in practice additional
sensors would probably be introduced. Alternatively, a simpler
and more robust 3-sliding controller can be used here with the
second-order differentiator [22].

The accuracies , , ,
were obtained with . The accuracies

, , , and
, , , were

obtained with and
respectively. These asymptotical accuracies correspond to the
accuracies , which would be obtained in

Fig. 2. Infinitesimal chattering in the presence of actuator, sensor and noise.

the absence of sensors and actuators [22]–[24]. The tracking
remains practically ideal.

The chattering is infinitesimal here, since , , vanish with
, , (Fig. 2). In particular, the integral of charac-

terizes the chattering of the plant coordinate , chattering of ,
, corresponds to the integrals of and . The results are

almost independent of the features of the noise.

B. Aircraft Pitch Control

The chattering of a mechanical actuator is demonstrated here.
A practical aircraft control problem [21] is to get the pitch angle

of a flying platform to track some signal given in real time.
The actual nonlinear dynamic system is given by its linear 5-di-
mensional approximations, calculated for 42 equilibrium points
within the Altitude—Mach flight envelope and containing sig-
nificant uncertainties. The relative degree is 2. Details are pre-
sented in [21]. The actuator (stepper motor servo) output is
to follow the input . The output changes its value 512 times
per second with a step of , or remains the same. It gets
the input 64 times per second and stops to react for 1/32 s each
time, when sign changes. The actuator output has the
physical meaning of the horizontal stabilizer angle, and its sig-
nificant chattering is not acceptable.

Following are unpublished simulation results (1994) re-
vealing the chattering features of a linear dynamic control
based on the approach and a 3-sliding-mode control
practically applied afterwards in the operational system (1997).
In order to produce a Lipschitzian control, the 3-sliding-mode
controller was constructed according to the above chattering
attenuation procedure. The comparison of the performances is
shown in Fig. 3. The control switches from the linear control
to the 3-sliding-mode control at . The chattering is
caused by the inevitably relatively large linear-control gain.
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Fig. 3. Chattering of the aircraft horizontal stabilizer: a switch from a linear
control to a 3-sliding one.

Fig. 4. Tracking performance of the high-gain pendulum controller.

C. High-Gain and Sliding-Mode Controls

Now consider a simple rigid-pendulum control problem

where is the angle deviation from the vertical position, the
length and the mass of the pendulum equal 1. The control
is the torque applied to the pendulum. The task is to track the
“unknown-in-advance” signal . The high-gain controller

is applied, where is the considered “measurement noise”. The
initial values of system coordinates and are zeroed.

The high-gain controller demonstrates ideal performance in
the absence of noises with . In that case
there is no chattering in the system (Fig. 4(a)). The tracking
precision deteriorates only slightly in the presence of the noise
with , (Fig. 4(b)).

The chattering in the system is characterized by the integrals
of the absolute values of and . The chattering of is in-
finitesimal, for is infinitesimal, as follows from Fig. 4. The
graphs of are demonstrated in Fig. 5(a) and (b). It is seen from
the comparison with , , [Fig. 5(a)]
that the chattering grows significantly with the growth of and

and the reduction of . This corresponds to the unbounded
chattering of and of the whole system (Theorem 1).

Now consider the controller with saturation

and the relay controller

Fig. 5. Unbounded chattering of the high-gain controller, and bounded chat-
tering of the saturation-based and relay controllers (the chattering is estimated
by the integral of ����).

with . The noise parameters and remain the same. The
tracking graphs do not differ significantly from Fig. 4(b) and
are not shown. It is seen from the graphs in Fig. 5(c) and (d)
that both controllers feature bounded chattering and practically
identical performance.

VI. CONCLUSION

Formal definitions of the chattering in mathematical control
systems were proposed. The chattering can be classified as infin-
itesimal, bounded and unbounded. The infinitesimal chattering
cannot be avoided. Smooth systems feature such chattering with
continuous control.

Standard (first-order) sliding-mode systems feature bounded
(i.e., finite-energy) chattering. Their chattering does not depend
on the noise features, and can only be reduced by diminishing
the discontinuous control component. Also high-order sliding
modes feature bounded chattering, when directly applied to con-
trol systems with high relative degree.

Systems with high gains feature unbounded (i.e., unbounded
energy) chattering in the presence of small high-frequency sam-
pling noises. Thus, in certain cases, a standard sliding mode can
be preferable to a large-gain linear control, if the discontinuous
control component is relatively small. Saturation improves the
performance of the high-gain controllers, but does not remove
the bounded chattering.

High-order sliding mode excludes both dangerous kinds of
chattering, if the well-known chattering attenuation procedure
[3], [19] is used, when the control derivative is treated as a new
(discontinuous) control. The presence of small measurement er-
rors, delays and unaccounted-for fast stable actuators and sen-
sors only generates infinitesimal chattering.

The practical approach [21] is justified when fast stable ac-
tuators and sensors are ignored at the preliminary control de-
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sign stage, and are taken into account only during the simu-
lation-based parameter adjustment of high-order sliding-mode
controllers. It is proved that the faster the actuators and sen-
sors the less is their influence on the system. At the same time
the sliding controller parameters together with the plant deter-
mine whether the actuators and sensors can be considered really
fast. Indeed, faster controllers require faster actuator and sensor
responses.

An obvious drawback of the proposed approach is that the
worst-case noises and disturbances are considered. Thus, even
unbounded chattering may vanish with appropriate noises and
disturbances. At the same time such an approach leads to the
simplest chattering classification. Infinitesimal mathematical
chattering presumably corresponds to negligible chattering in
real systems.

The author did not consider theoretically discretization issues
and small delays, which can also produce dangerous chattering
in systems with large gains (Fig. 3). It follows from Section IV
that such imperfections do not produce additional chattering in
the systems with homogeneous discontinuous control.
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