
 
 

 

  

Abstract— Any finite-time convergent homogeneous sliding-
mode controller can be transformed into a fixed-time 
convergent one, featuring an upper bound of convergence time, 
which does not depend on initial conditions. Output feedback 
controller is optional. Continuity of the convergence time 
functions of homogeneous differential inclusions is studied. 
Feasibility of fixed-time-stable systems is considered. 

I. INTRODUCTION 
ONTROL under heavy uncertainty conditions is one of the 
main subjects of the modern control theory, and the 
main idea to deal with such problems is to single out 

and keep properly chosen constraints successively killing the 
system dimensions. Sliding-mode (SM) or high-gain control 
are the corresponding methods [8,22].  

Sliding mode is accurate and insensitive to disturbances 
[8,22]. While standard SMs are applicable to nullify sliding 
variables of the relative degree (RD) 1, higher order sliding 
modes (HOSMs) [3,4,6,10,14-16,19,23] are used to keep 
constraints of higher RD. One of the main reasons for their 
application is the possibility [2,11] to effectively attenuate 
the so-called chattering effect [8,12,17,22] caused by the 
high control-switching frequency.  

 Sometimes the uncertain system structure significantly 
changes at some discrete time instants, whereas the time 
period between the switches is never less than some positive 
constant known in advance. That situation is typical in 
control of switched and hybrid systems [18]. Since the 
system dynamics lacks uncertainty in the sliding mode, it is 
crucially important to provide for the convergence to SM in 
finite time, which does not depend on initial conditions.  

There are a few options to solve the problem. Since in the 
practice the operational region is always bounded, traditional 
control methods can be applied. In the case when the 
operational region is unknown, a theoretical problem arises 
with unbounded operational region. It was recently found 
that HOSM controllers exist, that feature convergence time 
uniformly bounded in the whole state space. The 
corresponding convergence and stability are called fixed-
time ones [20]. In particular fixed-time observers [1,7] were 
developed. Fixed-time HOSM controllers were proposed for 
controllable LTI systems with matched uncertainties [20]. 
Note that in the latter paper the matrix of control coefficients 
is assumed constant and known. No output-feedback results 
were proposed, for observation of the resulting extremely 
fast processes is very difficult. 

It is proved in this paper that the minimal and maximal 
convergence-time functions of any finite-time-stable 
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homogeneous Filippov differential inclusion are respectively 
upper- and lower-semicontinuous functions, taking its values 
on some inclusion solutions.  

It is shown that any finite-time stable HOSM controller 
can be transformed into a fixed-time one by means of a 
discrete dynamic extension. Output-feedback version is also 
available. It is shown that for any compact set of initial 
conditions with sufficiently small sampling interval the 
system demonstrates the standard robustness features of 
homogeneous sliding modes. 

 Robustness issues of fixed-time stable systems are studied. 
It is shown that such systems always feature Euler solutions 
which tend to infinity faster than any exponent, provided 
they start sufficiently far away.  

II. PROBLEM STATEMENT AND PRELIMINARIES 

A. Problem statement 
Following is the standard problem of HOSM control [14-16]. 
Consider a SISO dynamic system of the form 

      x&  = a(t,x) + b(t,x)u,    σ = σ(t, x),       (1) 

where x ∈ Rn, u ∈ R is the control, a, b and σ: Rn+1 → R are 
unknown smooth functions, n can be also uncertain. The 
output σ is measured in real time. The task is to make σ 
vanish and to keep σ ≡ 0 afterwards. The convergence time 
of σ to zero is to be bounded by a predefined constant Tmax > 
0. In the following the standard approach is represented, 
which only provides for the finite-time convergence, with the 
convergence time strongly depending on initial  conditions. 

 The relative degree r of system (1) is assumed to be 
constant and known. That means [13] that  

    σ
(r) = h(t,x) + g(t,x)u,          (2) 

where h(t,x),  g(t,x) ≠ 0 are some unknown smooth functions 
which can be expressed via Lie derivatives. It is supposed 
that  

    0 < Km ≤ g(t,x) ≤ KM, | h(t,x)| ≤ C           (3) 

for some Km, KM, C > 0. It is also assumed that trajectories of 
(2) are infinitely extendible in time for any Lebesgue-
measurable bounded control u(t).  

 Usually in practice the operation region of any plant is 
inevitably bounded. Then the boundedness condition (3) 
turns out to be local and not restrictive. Nevertheless for the 
fixed-time convergence the condition is needed to be global. 
It will be further shown that it can be somewhat weakened.  
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 Obviously, (2), (3) imply the differential inclusion 

      σ
(r) ∈ [-C, C] + [Km, KM]u.       (4) 

The problem is usually solved by a bounded control 

     u = ϕ(σ, σ& , ...,  σ(r-1)),         (5) 

making all trajectories of (4), (5) converge in finite time to 
the origin σ = σ& = ... = σ(r-1) = 0 of the r-sliding phase space 
σ, σ& , ..., σ

(r-1). The closed-loop inclusion is minimally 
extended at the discontinuity points of (5) so that a compact 
convex non-empty and upper-semicontinuous inclusion is 
produced (Filippov inclusion [9,15]). 

The function ϕ is assumed to be a locally-bounded Borel-
measurable function. Thus, substituting any Lebesgue-
measurable estimations of σ, σ& , ...,  σ(r-1) obtain a Lebesgue-
measurable control.  At the next step the lacking derivatives 
are real-time evaluated, producing an output-feedback 
controller. 

 It is easy to see that control (5) is to be discontinuous at 
the set σ = σ& = ... = σ

(r-1) = 0 [15,16], which is called r-
sliding set. The corresponding solutions σ ≡ 0 are said to 
exist in r-sliding (rth order sliding) mode [14].  

B. Homogeneous sliding modes 
A function f: Rn → R (respectively a vector-set field    

F(x) ⊂ Rn, x ∈ Rn, or a vector field f: Rn → Rn) is called 
homogeneous of the degree q ∈ R with the dilation  

       dκ: (x1, x2, ..., xn) a ),...,,( 21
21

n
mmm xxx nκκκ ,   

and the weights deg xi = mi > 0, if for any κ > 0 the identity 
f(x) = κ

-q f(dκx) holds (respectively F(x) = κ
-qdκ

-1F(dκx), or   
f(x) = κ-qdκ

-1f(dκx)). The non-zero homogeneity degree q of a 
vector field can always be scaled to ±1 by an appropriate 
proportional change of the weights m1, ..., mn.  

Note that the homogeneity of a vector field f(x) (a vector-
set field F(x)) can equivalently be defined as the invariance 
of the differential equation x& = f(x) (differential inclusion 
x& ∈ F(x)) with respect to the combined time-coordinate 
transformation  

                Gκ : (t, x) a (κ p t, dκ x),    

where p, p = - q, might naturally be considered as the weight 
of t. Indeed, the homogeneity condition can be rewritten as  

          x& ∈ F(x) ⇔ )(
)(
)( xdF

td
xdd

p κ
κ ∈

κ
. 

Suppose that feedback (5) imparts homogeneity properties 
to the closed-loop inclusion (4), (5). Due to the presence of 
the term [-C, C], with C ≠ 0 the right-hand side of (4) can 
only have the homogeneity degree 0. Thus, deg σ

(r) =  
deg σ

(r-1) – p = deg σ
(r-1) + q =0.  

 Scaling the system homogeneity degree q to -1, achieve 
that the homogeneity weights of t, σ, σ& , ...,   σ(r-1) are 1, r,   

r - 1, ..., 1 respectively. This homogeneity is called the         
r-sliding homogeneity [15]. The inclusion (4), (5) is r-sliding 
homogeneous, if for any κ > 0 the combined time-coordinate 
transformation  

      Gκ: (t, σ, σ& , ..., σ(r-1)) a ( κt, κr
σ, κr-1

σ& , ..., κσ
(r-1))  (6) 

preserves the closed-loop inclusion (4), (5).  

Transformation (6) transfers (4), (5) into  

σ
(r) = r

rr

td
d

)(
)(

κ

σκ ∈ [-C, C] + [Km,KM] ϕ(κr
σ,κr-1

σ& ,...,κσ
(r-1)). (7) 

Hence, the r-sliding homogeneity condition (7) requires  

   ϕ(κr
σ, κr-1

σ& , ..., κσ
(r-1)) ≡ ϕ(σ, σ& , ..., σ(r-1)).        (8) 

Controller (5) is called r-sliding homogeneous if the identity 
(8) holds for any positive κ and any arguments. Also the 
corresponding r-sliding mode σ ≡ 0 is called homogeneous 
in that case. Thus, the relay control u= -α sign σ is 1-sliding 
homogeneous, as well as the corresponding sliding mode. 

 Control (5) is assumed being r-sliding homogeneous. 
Being locally bounded, due to (8) it is also globally bounded.  

 A number of such sliding mode controllers is known [14-
16]. Only the control amplitude α is to be adjusted in order 
to control any system (1), (3) of the corresponding relative 
degree. The following controllers are called quasi-
continuous, for they produce control continuous everywhere 
except the r-sliding set σ = σ& = ... = σ

(r-1) = 0 [16]. The 
controllers with r ≤ 4 and valid parameters are listed below: 

1. u = - α sign σ, 

2. u = - α ( σ& + |σ|1/2sign σ) / (| σ& |+ |σ|1/2), 

3. u = - α [ σ&& + 2 (| σ& |+ |σ|2/3
)

-1/2( σ& + |σ|2/3sign σ ) ] /  
              [| σ&& |+ 2 (| σ& |+ |σ|2/3

)
1/2], 

4. M = σ&&& + 3[ σ&& +(| σ& |+0.5|σ|3/4)-1/3( σ& +0.5 |σ|3/4sign σ)]   
                       [| σ&& |+(| σ& |+0.5|σ|3/4)2/3] 1/2, 

     N = | σ&&& | + 3 [| σ&& |+(| σ& |+0.5|σ|3/4)2/3]1/2, u = - α M /N. 

 An r-sliding homogeneous norm is any continuous 
positive-definite function of the coordinates σ, σ& , ...,  σ(r-1) 
of the weight 1. In particular, denote ( 1)( , ,..., )r −σ = σ σ σ

r & ,  

1/ 1/( 1) ( 1)|| || | | | | ... | |r r r
h

− −σ = σ + σ + + σ
r & .  

Note that, contrary to its name, it is not a norm. This 
homogeneous norm is used in the sequel. 

C. Output-feedback homogeneous control 
Any r-sliding homogeneous controller can be 

complemented by an (r-1)th order differentiator [14] 
producing an output-feedback controller and preserving the 
exactness, finite-time stability and the corresponding 
asymptotic accuracies [15]. Its application is possible due to 
the uniform boundedness of σ

(r) provided by the 



 
 

 

boundedness of the feedback function ϕ in (5).  

 Let ω(t), |ω(k+1)| ≤ L, be the signal to be differentiated in 
real time, L > 0 is a known constant. Following is the kth-
order robust finite-time-convergent exact homogeneous 
differentiator [14]:  

0ϖ&  = υ0, υ0= - λ r-1L
1/(k+1) |ϖ0 -ω(t)| 1/(k+1) sign(ϖ0 - ω(t)) + ϖ1,  

1ϖ&  = υ1, υ1 = - λ r-2 L
1/k |ϖ1 - υ0|

 (k-1)/k  sign(ϖ1 - υ0) + ϖ2, 
           ...              (9) 

1−ϖk& = υk-1, υk-1 = -λ1 L
1/2|ϖk-1 - υk-2|

 1/2sign(ϖk-1 - υk-2)+ ϖk, 

kϖ& = -λ0 L sign(ϖk - υk-1). 

Here ϖi is the estimation of ω
(i), and parameters λi of  

differentiator (9) are chosen in advance for each k. An 
infinite sequence of parameters λi can be built, valid for all k 
[14]. In particular, one can choose λ 0 = 1.1, λ 1 = 1.5, λ 2 = 
2, λ 3 = 3, λ 4 = 5, λ 5 = 8 [16], which is enough for 1 ≤ k ≤ 5.  

 In the absence of noises the equalities ϖi = ω
(i) are 

established in finite time. In the presence of a Lebesgue-
measurable sampling noise with the magnitude γ the 
accuracy |ϖi - ω

(i)| = O(γi/(k+1)) is obtained, and this 
asymptotics cannot be improved [14]. 

 In the sequel differentiator (9) is symbolically denoted as 
( , , )kD Lϖ = ω λ , ( , , )j

j kD Lϖ = ω λ , 0,1,...,j k= . 

D. Convergence-time functions of homogeneous 
differential inclusions 
It was erroneously stated in [15] that the maximal 

convergence time of a finite-time stable homogeneous 
differential inclusion is a continuous function of initial 
conditions. The following proposition corrects the statement. 

Proposition 1. Consider any finite-time stable homogeneous 
Filippov differential inclusion  

( )x F x∈& , nx ∈ R ,        (10) 

 of the negative homogeneity degree q. Then the maximal 
convergence time * ( )T x  is an upper semicontinuous 
function of initial conditions, whereas the minimal 
convergence time * ( )T x  is a lower semicontinuous function. 
Both functions are homogeneous of the weight -q. 

Proof.  It follows from [5] that the inclusion is uniformly  
asymptotically stable [15]. Thus it is uniformly finite-time 
stable, which means that the convergence times of the 
trajectories starting at a fixed point x  are bounded from 
above and from below by the homogeneous norms with some 
fixed coefficients.  

 In particular, it means that irrespectively of a point x the 
supremum * ( )T x  and the infimum * ( )T x of the convergence 
times satisfy the inequality  

* *
* *|| || ( ) ( ) | ||h hc x T x T x c x≤ ≤ ≤       (11) 

for some fixed *
*0 c c< ≤ .  

Thus, having been taken over a sufficiently large closed 
convergence time segment, the trajectories constitute a 
compact set in the C-metric [9]. Recall also that a uniform 
limit of solutions is also a solution [9]. Prove that * ( )T x  is 
realized on some trajectory, i.e. is a maximum. Indeed there 
is a sequence of trajectories ( )kx t  starting at x, whose 
convergence times tend to * ( )T x , and which uniformly 
converge to some solution * ( )x t  of (10). Then due to (11) 
the convergence time of * ( )x t  cannot be larger than * ( )T x . 
On the other hand, due to the same inequality, if * ( )x t  
converges to 0 in some time *

0 ( )T T x< , then also the upper 
limit of the convergence times of ( )kx t  cannot exceed 0T , 
which leads to contradiction.  

Similarly also * ( )T x  is realized on some trajectory. Both 
functions are obviously homogeneous of the weight q. 

Consider now the trajectories ( )kx t  of the maximal 
convergence time * ( (0))kT x , which start at points (0)kx , 

0(0)kx x→ . Due to the continuous dependence on initial 
conditions [9] get *

0( ( )) 0kx T x → . It follows now from (11) 
that * *

0lim sup ( (0)) ( )kT x T x≤ , which exactly corresponds 
to the upper semicontinuity. 

 Consider the trajectories ( )kx t  of the minimal 
convergence time * ( (0))kT x  starting at points (0)kx , 

0(0)kx x→ . Choose a subsequence ( )
skx t  which uniformly 

converges to some solution * ( )x t , * 0(0)x x= , and features 

* *lim ( (0)) lim inf ( (0))
sk kT x T x= . Then, similarly to the 

above reasoning, the convergence time of * ( )x t  exactly 
equals the limit *lim inf ( (0))kT x . This implies 

* 0 *( ) lim inf ( (0))kT x T x≤ , which exactly corresponds to the 
lower semicontinuity. n 

 It follows from Proposition 1 that the function * ( )T x  
takes on its maximal value on any compact set of initial 
conditions. Similarly the function * ( )T x  takes on its 
minimum. Both functions are continuous at the origin. The 
author has used the continuity of the function * ( )T x  in a 
number of papers. The proved upper-semicontinuity of 

* ( )T x  provides for the validity of all results obtained there.  

III. CONTROL DESIGN 
Consider any r-sliding homogeneous finite-time stable 

controller (5). Let kR  be an arbitrary monotonously growing 
sequence, kR → ∞ , 0 0R = , 0,1, 2, ...k = . Let T

)
 be an 

upper estimation of the maximal time of convergence to zero 
from the homogeneous sphere || || 1hσ =

r . Note that such a 
number exists due to Proposition 1. Let ( )T R  be a 



 
 

 

monotonously increasing positive-definite function ( )T R , 
0R ≥ , (0) 0T = .  

Define the function 1( ) [ , )k kn s k s R R−= ⇔ ∈ . Obviously  
( ) 1n s ≥  for any 0s ≥ . Introduce an additional variable µ (t) 

that is left-hand continuous and features the dynamics 

( )

( ) ( )

( )
( )

1

( 0) max 1,min ( ), ,
( ) ( )

                                                        with    1;

1,   with    1.

h

h h

n

n n

h

h

R T
t t

T R T R

n

n

σ

σ σ −

  
  µ + = µ  −   

σ >

µ = σ =

r

r r

)

r

r
   (12) 

Obviously µ (t) is piece-wise continuous. Define the control 

 ( / )r ru = µ ϕ σ µ
r . (13) 

Theorem 1. Under the control (12), (13) the convergence 
time convT  of any trajectory starting at the point σ

r  satisfies 
the inequality 

( )h
conv n

T T R
σ

 ≤  
 

r .        (14) 

 Note that the fixed-time convergence is obtained with 
lim ( )
R

T R
→∞

< ∞ . The proof easily follows from the following 

simple Lemma. 

Lemma 1. Let the maximal stabilization time of the 
trajectories of (4), (5) starting || ||h Rσ ≤

r  be maxT , then with 
1µ ≥  the maximal convergence time to zero of the system 

(4), (13) from the same region does not exceed max /T µ . 

Proof. Note that with 1µ ≥  all solutions of (4), (13) satisfy  

( ) ( 1) 1[ , ] [ , ] ( , / ,..., / ).r r r r r
m MC C K K − −σ ∈ µ − + µ ϕ σ σ µ σ µ&  (15) 

Identity (8) is used here. Rewrite (15) in the form 

0 1 1 2 2 1

1 0 1 1

,  ,  ...,  ,

[ , ] [ , ] ( , ,..., ),

d d d
r rd t d t d t

d
r m M rd t

s s s s s s

s C C K K s s s
− −µ µ µ

− −µ

= = =

∈ − + ϕ
 

where 0s = σ , 1 /s = σ µ& , …, ( 1) 1
1 /r r

rs − −
− = σ µ . Thus, the 

convergence time to zero does not exceed max /T µ , provided 
( 1) 1|| , / ,..., / ||r r

h R− −σ σ µ σ µ ≤&  holds at the initial moment. 
The latter condition is automatically satisfied, provided 
|| ||h Rσ ≤

r . n 

Proof of the Theorem 1. It follows from Lemma 1 that with 
constant 1µ ≥  the trajectories of (4), (13) starting from the 
homogeneous ball || ||h kRσ ≤

r  stabilize at zero in time 

/kR T µ
)

. Thus, with 1/ ( ( ) ( ))k k kR T T R T R −µ = −
)

 the 
trajectories enter the ball 1|| ||h kR −σ ≤

r  in time 

1( ) ( )k kT R T R −− . Therefore the total convergence time of the 
controller (12), (13) is estimated from above by the sum 

1 1 1 1( ) ( ) ( ) ... ( ) ( ) ( )k k k kT R T R T R T R T R T R− −− + − − + = . n 

Include a differentiator of the form (9) to get an output 
feedback control. The differentiator needs to be initialized, 
so that it will provide for the exact derivative estimations. 
One way is to use a fixed-time convergent differentiator 
[1,7], and only after it has converged to apply the control 
(15). Another and maybe more practical way is to initialize it 
numerically, using finite differences as follows. A sampling 
time interval * 0t∆ >  is fixed, 0u =  is taken, and σ is 
sampled r times producing 0( )tσ , …, 1( )rt −σ . Denote 

0 ( )j jtδ = σ , 1 1
1 *( ) /k k k

j j j t− −
−δ = δ − δ ∆ , 1,..., 1k r= − . Then the 

differentiator is initialized by the values 

0 1
0 1 1 1 1 1( ) , , ( ) r

r r r r rz t z t −
− − − − −= δ = δ… ,      (16) 

and converges during the additional time **t∆ , 

1

1 1 **

0 1 **

( , , ) with  sup ,  
                                                   [ , )

0   with [ , ).

r M

r r

r

z D L L C K
t t t t

u t t t t

−

− −

−

= σ λ ≥ + ϕ
∈ + ∆

= ∈ + ∆
  (17) 

It is used here that any r-sliding homogeneous controller is 
bounded. Then denoting (12) symbolically as 

( 0) ( ( ), )t tµ + = Μ µ σ
r , define the output-feedback controller  

1 **

1

( 0) ( ( ), ) with ,

( / ),    ( , , ).
r

r r r
r

t t z t t t

u z z D L
−

−

µ + = Μ µ ≥ + ∆

= µ ϕ µ = σ λ µ
,.     (18) 

Theorem 2. Let **, , tδ γ ∆ be any fixed positive numbers. 
Assume that σ is measured with a Lebesgue-measurable 
noise which does not exceed ε > 0 in its absolute value. Let 

1/
*

rt∆ = γε , then with any ball of initial values and 
sufficiently small ε the  controller (16)-(18) provides for the 
accuracies |σ(i)| ≤ ηi max[δt

r-i,ε(r-i)/r] to be established in the 

time ( )( )1 **( )r hn t t
T R

−σ +∆
+ δr . Here the constants iη  only 

depend on the parameters of the differentiator (9) and the 
choice of the controller (5). 

The proof is straight-forward.  

IV. FEASIBILITY OF FIXED-TIME STABLE SYSTEMS 
 One of the most important stages of control system 
design is the computer simulation. It is usually assumed that 
a system that cannot be reliably simulated in computer 
probably cannot be realized at all.  

 Consider a Filippov differential inclusion (10). Its Euler 
solution is a solution of the differential equation 

    1,  ( ( )),  [ , ).k k k k kx F x t t t t += ξ ξ ∈ ∈&  



 
 

 

It is defined by an initial condition 0( )x t , a strictly 
monotonously increasing sequence kt  and the sequence kξ . 
The solution is further called τ-solution, if 10 k kt t+< − ≤ τ .  

Proposition 2. With kt → ∞  all τ-solutions of any r-sliding 
homogeneous finite-time stable inclusion (4), (5) in finite 
time converge into a small vicinity of the r-sliding mode 

( ) ( )i r iO −σ = τ . All τ-solutions of any asymptotically stable 
linear time-invariant system converge into a region, whose 
diameter is proportional to τ. 

 Proposition 2 presents only two of many examples of 
systems, which can be reliably simulated by the Euler 
method. The proof of the first statement is similar to [15], 
while the proof of the second one is based on the successive 
scaling of linear time-invariant systems. The following 
Proposition is a trivial consequence of the uniform 
convergence of τ-solutions to the solutions of a differential 
inclusion over any closed time interval [9]. 

Proposition 3. Let inclusion (10) be fixed-time stable (or 
only practically fixed-time stable, which means that all 
solutions in finite time converge into some bounded region). 
Then, for any compact set of initial conditions, with 
sufficiently small 0τ > , all τ-solutions converge into an 
infinitesimal vicinity of the origin (converge into a bounded 
region).  

The following proposition demonstrates the difficulty of the 
realization of fixed-time stable systems. One cannot expect 
that with infinitesimally small sampling periods the behavior 
of the system be similar to its theoretical behavior. Indeed, 
one Euler step can be much incomparably larger than 
distance from the origin, even when the distance is large. 

Proposition 4. Let inclusion (10) be fixed-time stable or 
practically fixed-time stable. Then for any , 0τ γ >  and any 

0R >  there exist 0 0,x x& , 0|| ||x R≥ , 0 0( )x F x∈& , such that 

0 0|| || || ||x xτ ≥ γ& . 

 Let now ( )enterT R  be the supremum of the times needed 
for the solutions of (10) to enter the region || ||x R≤ . 
Obviously ( )enterT R  is a monotonously decreasing positive 
function. Therefore, lim ( ) 0enterR

T R
→∞

≥ . The equality 

lim ( ) 0enterR
T R

→∞
=  seems to hold for most known (practically) 

fixed-time stable systems. In particular, it holds for the 
systems homogeneous at the infinity with the positive 
homogeneity degree [1], systems with fixed-time stabilizing 
Lyapunov functions [20], and also for the controller (16)-
(18).  

Theorem 3. Let inclusion (10) be fixed-time stable or 
practically fixed-time stable, lim ( ) 0enterR

T R
→∞

= . Then for any 

0τ >  there exists such 0Rτ >  that for any initial condition 

0( )x t , 0|| ( ) ||x t Rτ≥ , there is a τ-solution, whose norm tends 
to infinity. Moreover, there are solutions that diverge faster 
than any predefined exponent.  

Proof. Define a sequence 2 kn
kR = , kn ∈¥ , 

( ) / ( 6)enter kT R k≤ τ + , 1,2,...k = .  

Let 12R Rτ = , obviously 2R Rτ ≤ . Any solution starting at 
some 2 0|| ( ) ||R x t Rτ≥ ≥  enters 1|| ||x R≤  in time which does 
not exceed / 7τ . Choose an Euler solution with sufficiently 
small sampling/integration intervals, so that the resulting 
solution be close to an ideal solution of (10).  This τ-solution 
enters 1|| ||x R≤  in time not exceeding / 7τ . Thus, at some 
moment 

1kt  the velocity value 
1 0|| ( ) || 3 || ( ) || /kx t x t≥ τ&  is to 

appear, while 
11 0|| ( ) || || ( ) ||kR x t x t≤ ≤ . At that moment, instead 

of continuing the τ-solution with small sampling intervals, 
apply the whole interval τ. As the result get that 

1 1 0|| ( ) || 2 || ( ) ||kx t x t+ ≥ , which is achieved in the time less than 

2τ . Continuing the process get 
2

2
1 0|| ( ) || 2 || ( ) ||kx t x t+ ≥  in 

time less than (2 2)+ τ , etc.  

 
Figure 1. Fixed-time stabilization. The Euler integration step is 10

-6
. 

 
Figure 2. The same initial values. The Euler integration step is 10

-5
. 

At some moment the solution will exceed 22R in its norm. 
From that time on by similar construction || ||x  will be 
multiplied at least by 3 during each 2τ interval, etc. n 

V. SIMULATION 
 Consider the academic example 

 cos(5 - - ) (2 sin(3 - )) ,
- sin(0.5 ) cos( ).

y t y y y t y y u
y t t

= + + + +
σ = +

&&& & && &&
 

The relative degree of the system is 3. The task is to make 
σ vanish in fixed time. Controller (16)-(18) is constructed as 
in Section III. The convergence time function 

1( ) 40 1
0.083 1

T R
R

 = − + 
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chosen. The quasi-continuous controller N# 3 with α = 10 
from the list in Section IIB is taken as the basic controller ϕ.  

Second-order differentiator (12) with the parameters λ 0 = 
1.1, λ 1 = 1.5, λ 2 = 2 is taken. Its parameter L = 30µ

r 
switches together with µ in (12), 0.8.T =

)
 Parameters 

* 0.001t∆ = , ** 1t∆ =  are taken for its initialization.  

Let the initial values be y = 60, y&  = -70, y&&  =  80. First 
demonstrate the fixed-time output-feedback convergence 
with sufficiently small sampling steps. The Euler step should 
be chosen so that the corresponding Euler step shift be small 
compared with the vector of the initial conditions. It is not 
trivial, since the control magnitude inevitably rapidly grows 
with the growth of the initial conditions’ vector. 

With the Euler step equal to 10-6 the fixed-time 
convergence is observed,  in correspondence with Theorem 
2. The graphs of the homogeneous norm of the solution and 
of the corresponding control are shown in Fig. 1. The 
convergence takes about 13 time units after the control is 
employed. The accuracy 14| | 4.6 10−σ ≤ ⋅ , 7| | 6.3 10−σ ≤ ⋅& , 

4| | 2.9 10−σ ≤ ⋅&& is maintained. The control drops fast from 
very large values. The steady state control magnitude is 
about 10. Further decreasing the Euler integration step does 
not change the graphs, but improves the accuracy. 

 Next demonstrate the lack of the controller robustness 
with respect to Euler approximation. Let now the Euler step 
be equal to 10-5. The system performance drastically 
changes. The convergence takes negligibly small time, the 
accuracies 7| | 8.9 10−σ ≤ ⋅ , 2| | 8.5 10−σ ≤ ⋅& , 3| | 5.3 10σ ≤ ⋅&&  are 
obtained. In the steady state the control takes on 
unsustainable values of 72.7 10± ⋅ . 

VI. CONCLUSIONS 
 Any homogeneous sliding mode controller can be 
transformed into a fixed-time convergent sliding-mode 
controller. Such controller provides for the transient time 
uniformly bounded by a constant independent of the initial 
conditions. Any convergence-time function given as a 
monotonous function of the homogeneous norm of the initial 
conditions can be approximated from below. The proposed 
controllers can be equipped with the differentiators 
producing fixed-time-convergent output-feedback 
controllers.  

 Computer realization of fixed-time stable systems was 
studied. It was shown that such realizations are not reliable. 
Indeed, it actually follows from the fact that, with any fixed 
sampling/integration period, sufficiently far from the origin 
any discretized system trajectory at each step performs 
enormous jumps, which are significantly larger than the 
distance from the point to the origin. Note that such 
phenomenon is impossible with linearly growing controls. It 
is proved that there are solutions that rapidly escape to 
infinity.  

At the same time such systems are realizable for any 
bounded region of initial conditions, provided the 

sampling/integration step is taken small enough. Thus, in 
practice the fixed-time convergence is useful, when the 
region of initial conditions is bounded, but large. Sampling 
step should be carefully chosen. One cannot expect robust 
performance of a fixed-time stable system over an 
unbounded set of initial conditions. 

Settling time functions of general finite-time stable 
homogeneous systems were studied. It was shown that the 
maximal and the minimal convergence-time functions are 
well defined and feature respectively upper and lower 
semicontinuity. 
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