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Abstract

Sliding Mode (SM) Control (SMC) is used to control systems under tough un-
certainty conditions by properly choosing and exactly keeping a constraint in-
volving system outputs and their derivatives. The constraint relative degree
turns out to be the main approach parameter. Modern SMC establishes the
constraint in finite time and uses high-order real-time robust and exact output
differentiation. Closed-loop SMC systems are robust to the unaccounted-for
dynamics of actuators and sensors, as well as to noises and discrete sampling.
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Notation. A binary operation ¢ of two sets is defined as Ao B = {aob| a €
A,b € B}, ao B = {a} o B. A function of a set is the set of function values on

this set. Ry = [0,00); |a]” = |a|’signa, [a]° = signa.

1. Introduction

Sliding mode control (SMC) systems, often also called variable-structure
systems, have appeared as a theoretical and practical response to the challenge of
control under heavy uncertainty conditions. SMC has already celebrated its half-
century active-development milestone [19, 20, 14, 59, 58, 18, 56, 57, 28], though
first controls using SMC technique appeared as early as in 1930s. This article
presents some of the main SMC methods and is a modified and significantly
extended version of [39].

Consider stabilizing a simple uncertain system

i=alt,z, )+ b(t,z,i)u, z,u € R, |a| <1, be[1,2).

Email address: levant@tauex.tau.ac.il (Arie Levant!)

Preprint June 17, 2021



The idea of the SMC approach is very intuitive. Any line in the phase plane z, &
also has the meaning of a differential equation. Thus, keeping the trajectory on
the line 0 = & + = = 0 asymptotically stabilizes the system. The corresponding
control u = —(2 + ||) sign(& + ) is the classical SMC (Fig. 1a, [20, 59]). The
motion on the line ¢ = 0 is called SM. Since the relative degree of o is 1 (i.e.
the control appears already in ¢), it is called the 1st-order SM (1-SM) keeping
c=z2+z=0.
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a. Classic SMC b. 2nd-order SMC

Figure 1: Trajectories of a. classic SMC, b. quasicontinuous second-order SMC.

Note that keeping & + | x| /2 = 0 would provide for the finite-time (FT) sta-

bilization. The corresponding control u = —2sign(& + | ] Y %) directly provides
for the FT establishment of 0 = = 0 [49], [30]. Since the relative degree of
o =z is 2 (i.e. for the first time the control appears in &), the corresponding
SM at the point x = & = 0 is called the second-order SM (2-SM). Note that
T+ ] 172 is not smooth and does not have a relative degree at the origin.
[£]%+a
22 +af *
o =z =0in FT, but it remains continuous till the very entrance into the 2-SM
at the origin. Correspondingly it is called a quasi-continuous (QC) 2-SMC (Fig.
1b, [34, 56]).

Thus, the system uncertainty has been completely removed, but for the price
of the control discontinuity. The corresponding solutions cannot be understood
in the standard or the Caratheodory sense [21]. One also needs a differentiator
to obtain a high-accuracy real-time estimation of .

Realization of SMC generates undesired system vibrations, called chattering
[59, 22, 35]. The chattering effect is considered to be the main drawback of
SMC systems [59, 5, 25, 57, 9, 22].

The traditional way to overcome the chattering effect is to introduce a
switching regularization, making the control continuous. In particular, the re-
lay function sign o is often replaced by a “sigmoid” function, like s/(|s| + €) or
2 arctan(o/e), 0 < e << 1 [57], [28]. Unfortunately, in that case the system
remains sensitive to uncertainties for finite 1/¢, and hard chattering is generated
by small high-frequency sampling noises for small € [35].

Another option is to apply the control v = —2 It also provides for



The chattering is significantly diminished by inserting an integrator in the
controller [30], [6], [56], provided o and its derivatives are kept close to zero [35].

In the following text we provide the reader with the main SMC notions and
tools for the simplest case of the single-input single-output (SISO) control.

2. Basic notions

Filippov definition. Consider a differential equation & = v(t,z), x € R"=,
where v is a locally-essentially-bounded Lebesgue-measurable function. It is said
to be understood in the Filippov sense [21], if it is replaced by the differential
inclusion & € Kp[v], where

Kpl(t,z) = N N cov(t,Os(x)\N). (1)

§>0 u N=0

Here p, is the Lebesgue measure, Og(x) is the d-vicinity of x, and oM denotes
the convex closure of M, (1) introduces the celebrated Filippov procedure.

Thus, a solution is defined as any locally absolutely-continuous function z(t)
which satisfies # € Kp[v](¢,z) almost everywhere.

In the most usual case, when v is continuous almost everywhere, the pro-
cedure results in taking the convex closure Kp[v](t,x) of the set of all possible
limit values of v(¢,y) at a given point (¢, z), obtained when its continuity point
(t,y) tends to (¢,x). Values of v on sets of the measure 0 do not influence the
solutions. Filippov differential equations posses all standard features of the so-
lutions of ordinary differential equations, in particular existence and extension
properties, but do not feature the solution uniqueness [21].

Relative degree. In the autonomous case the following definition is equivalent
to the standard one based on Lie derivatives [27] provided one adds the fictitious
equation f = 1. Consider a smooth SISO system

& =a(t,x) +b(t,x)u, o =o(t,x), (2)

where x € R"* | a, b, and o are smooth functions, u,o(t,z) € R.

The relative degree of o with respect to u at the point (tg,zo) is defined
as the natural number r that satisfies two requirements: 1. it is the lowest
total-derivative order of the output s which contains control,

o™ = n(t,z) + g(t, z)u, (3)

with the functional coefficient g, which locally differs from identical zero; 2.
g(t,x) does not vanish in some vicinity of the point (tg, zg).

It is easy to prove that the gradients of ¢, 0,5, ...,0"=1) are linearly inde-
pendent, and, therefore, r < n,. Note that the relative degree may not exist.
The zero dynamics corresponds to the motion on the manifold o0 = ¢ = ... =
o("=1) = 0 described by equation (2) for u = —h/g.

The vector relative degree is defined along the same lines in the multi-input
multi-otput (MIMO) case [27]. For the simplicity in the following we restrict
ourselves to the SISO case.



It is important to mark that the calculation of relative degree is usually
very simple, and is done orally. One only needs to track the shortest way of
differentiation in which the control is to appear.

Real systems are often built in such a way that their mathematical models

posses well-defined relative degrees and stable zero dynamics. Moreover, almost
always r = 2,3,4, for the engineer needs a simple model. Correspondingly,
significant parts of a real system are voluntarily removed to actuators or sensors,
or are simply ignored as insignificant functional and singular perturbations.
Sliding mode. Any Filippov solution lying on the discontinuity surface/set
of a differential equation is said to be in SM if the set of Filippov velocities
contains at least two vectors. If a constraint ¢ = 0 is kept, the notation SM
o =0 is used, o is called the sliding variable.
SM order. Suppose that the equality ¢ = 0 is kept on the SM solutions of
a closed-loop system. Let o be a scalar function. Then the sliding order k is
defined as the lowest integer k, such that the kth-order total time derivative
o) is not a continuous function of the state variables and time [30, 32]. The
corresponding motion ¢ = 0 is called the kth-order SM, or k-sliding mode (k-
SM). In the case of a vector sliding variable o also the sliding order is a vector.
Connection to the relative degree. Consider system (2) with a scalar sliding
variable o and the relative degree r. Then, o, &, ..., ¢"™Y are continuous
functions of ¢, x, i.e. the sliding order k is never less than r.

In the usual case of the control discontinuity obtain & = r. In that case the
SM motion coincides with the system zero dynamics. The function ue, = —h/g
found from the equation o™ = 0 is traditionally called the equivalent control
[59]. The classic SMs [18, 59] (Fig. 1la) correspond to r = 1 and the 1-SM ¢ = 0.

SMC is known to completely remove matched disturbances. Indeed, let (2)

have the form & = a + b(u + §) where ¢ is a disturbance. Then the SM motion
(the zero dynamics) does not depend on &.
Chattering attenuation by HOSMs. High-Order SMs (HOSMs) were his-
torically proposed to overcome the chattering-effect problem. Suppose the slid-
ing order is r. In order to diminish the chattering one inserts [ integrators in the
feedback. Then the virtual discontinuous control u(¥) is applied to establish the
(r +1)-SM. Correspondingly, u, 1, ..., u"~1) are formally included in the system
state.

Note that the chattering reduction is not due to the continuity of the result-
ing actual control u(t), but due to simultaneously keeping o, &, ..., o+~ at
zero [35], while only o, 4, ..., o("=1 are the physical plant coordinates. Nothing
theoretically prevents using any number of integrators, shifting the dangerous
chattering deeper into a computer chip numerically producing the control.

HOSMs are also typically characterized by high accuracy in the presence of
discrete sampling, small switching imperfections and noises [30, 33].

3. FT output regulation

Consider an uncertain smooth nonlinear SISO system of the form & =
f(t,x,u), x € R" @ € R, with a smooth output o(¢t,z) € R. Let o be the



difference between some system output and a command signal available in real
time. Thus, o is the tracking error to be zeroed in FT and kept at zero after-
wards.

The relative degree of ¢ is not defined for systems nonlinear in control.
Moreover, in that case SM motions can be non-unique, and even generate non-
Filippov solutions [59, 7]. Introduction of an integrator immediately resolves all
these issues. Indeed, introducing the auxiliary control, % = u, obtain the affine-
in-control system of the form (2). See [40, 17] for the concrete SMC design
details.

SMC problem. Consider now system (2) of the relative degree r, and assume
that (3) holds with

[h(t,2)] < C, 0< K, < g(t,z) < K. (4)

Such bounds are true at least for any compact operational region. The case
0> —K,, > g(t,x) > —Kjs is reduced to (4) by the control transformation
U= —u.

Any solution of (2) is assumed infinitely extendable in time, provided o, its
derivatives &, ...,0"=1 and u remain bounded along the solution.

We search for a feedback control v = u(&), & = (0,5, ..., c"~1). Due to
the uncertainty of the functions g,k in (3) one needs a discontinuous control u
[33]. In other words, the stated problem is to establish the »-SM ¢ = 0.

The uncertain dynamics (3) can be replaced by the concrete differential
inclusion

o e [-C,C) + [Kpm, Kulu. (5)

Most 7-SM controllers are build as controllers for (5) making & vanish in finite
time. Though inevitably discontinuous at & = 0, the control u = u(&) can be
continuous for any & # 0. Such control is called quasi-continuous (QC) and
features significantly less chattering.

8.1. Homogeneous SMC

There are many known controllers solving the stated problem. Probably the
simplest QC controller has the form [10, 16]

(o0 4,0 ] Bblo] ¥

=, w>0. 6
lo=D|T +6,_ 50— |2 +._+o|o| T (6)

u=—a¥,.(0) = -«

The theorem says that for any w > 0 there exist such By, ..., 8r—2 > 0 that
controller (6) stabilizes o in FT for any sufficiently large o > 0 only depending
on K,,, Kj,C.

Functions W,.(#) are invariant with respect to the transformation o(?) s
koW, k>0,i=0,1,...,r—1. Such controllers are called r~-SM homogeneous
[33, 56]. It is easy to see that ¥, (&) are continuous everywhere accept & = 0
and |U,.(&)| <1, ie. |ul <a.



The following are valid QC controllers (6) for r =1,2,3,4,5, w =1:

r=1. w= —asigno,
_ — _lelPto

r=2. u= az’r?+|a|73
3 o1 a3

r=23. u:—aif'fzbﬂgﬂf ,
lFlP+2l]z o] (7)
erd o 512 o) g d

r=4. y=—qlf1l 12l +2£‘ﬂd+”

442524265 +o| .

|o@]7+6[ 672 +5(5713 +3[611 +0

r=5. u=-—«

5 5 5 .
o @[5-+6]'6 3 +5]5| 5 +3]6] 1 +]o]

Parameter « is usually found by simulation.
Note that in the case g < 0 in (3), and g¢(t,z) € [-Ku, — K], one
has to take o < 0.

8.2. Differentiation and filtering

Let Lip,,(L) be the set of all functions Ry — R, whose nth derivative has
the Lipschitz constant L > 0.

Let the input signal f(¢), f(t) = fo(t) +n(t), consist of a bounded Lebesgue-
measurable noise 7(¢) and an unknown basic signal fo(t), fo € Lip, (L). The
noise 7 is bounded, || < €p. The number £y > 0 is unknown.

Differentiation problem [82]. The problem is to evaluate the derivatives fél) (t),
i = 0,1,...,n, in real time by some functions z;(¢). The estimation is to be
exact in the absence of noises after some FT transient, z; = féz). The maximal
steady-state errors are to continuously depend on €.

Asymptotically optimal differentiation. It is proved that any differentia-
tor exact on noise-free inputs fo, f1 € Lip,,(L) has the worst-case steady-state

accuracy sup |z; — fé’)| = 2THK,L7¢L#H€% for some fy and n = f1 — fo
[45]. Here K, ; € [1,7/2] are the Kolmogorov constants [29, 45]. For example,
Kii=V2.

Correspondingly, a differentiator is called asymptotically optimal [31, 32, 45,
47] if its steady-state accuracy satisfies

l2i(t) — fO(0)] < v LT ey | i=0,1,...,m, (8)

for some constant coefficients v; independent of the basic input fy € Lip,,(L),
the Lebesgue-measurable noise 7, |n| < ep, and L, q.

Introduce the number ny > 0 which is further called the differentiator fil-
tering order. The following differentiator [37], [47], [44] is called the filtering
differentiator :

- 1 ning
Wy = _An+nfL”+"f+1 Lw1‘| TERFFT 4,
~ ny—1 n+2 (9)
; — Tnpil T il
Wnp—1 = _)\nJrQL: i |_U)1~| T 4 W
f

~ n+1
Wn, = —Appr LM [y [T+ 20 — (1),



ny+1

~ n
20 — _AnLn«#nf«i»l Lw1'| n+nf+1 + Z17

i ) (10)
anl — _)\1Ln+nf+1 I_wl—‘ n+nf+1 + z'n,7

Z-:'n, = —5\0L Sign(wl)g |f0(n+1)‘ S L

In the case ny = 0 the equations (9) disappear, and w1 = zo — f(t) is formally
substituted in (10) yielding the well-known “standard” differentiator [32]. In
the case n = 0 only the equation for zp remains in the lower part.

Parameters \; are most easily calculated using the parameters Ag, ..., \,, of
the differentiator recursive form [32, 47]

1 n+nf
W1 = =Anpn, LW g [ A+ wg,
1 n+nf71
Wy = —Appn,—1 L™ [wy — iy ] " 4 ws,
(11)
Wny1 = =Ant2 L7 [wn, 1 — w”f*?-| "t wny,
Wny = —Ang1Lm2 Lwnf - wnf—l“ "z — f(1),
fo= Ao [0 £0) g 17 421
21 = _)\nflL% LZl — ZO—I no+ 22,
(12)
1
ne1 = ~MLE [ 2p-1 — 2n2]? + 2,

4 = —XoL sign(z, — 2n1), |f"TY| < L.
In the case ny = 0 one simply removes equations (11) and substitutes w,, = 0
in the first equation of (12).

An infinite sequence of parameters X = {Xo, A1, ...} is proved to exist for
any Ag > 1 [32], which is valid for any n +ny = 0,1,.... In particular, X =
{1.1,1.5,2,3,5,7,10,12,14,17, 20, 26, 32, ...} suffice for n + n; < 12 (up to 7
(43, 45]).

Table 1: Parameters 5\0, 5\1, ey /\n+nf of differentiator (9), (10) for n +mny =0,1,...,12

0 1.1

1 1.1 1.5

2 1.1 2.12 2

3 1.1 3.06 4.16 3

4 1.1 4.57 9.30 10.03 5

5 1.1 6.75 20.26 32.24 23.72 7

6 1.1 9.91 43.65 101.96 110.08 47.69 10

7 1.1 14.13 88.78 295.74 455.40 281.37 84.14 12

8 1.1 19.66 171.73 795.63 1703.9 1464.2 608.99 120.79 14

9 1.1 26.93 322.31 2045.8 6002.3 7066.2 4026.3 1094.1 173.72 17

10 1.1 36.34 586.78 5025.4 19895 31601 24296 8908 1908.5 251.99 20

11 1.1 48.86 1061.1 12220 65053 138954 143658 70830 20406 3623.1 386.7 26
12 1.1 65.22 1890.6 29064 206531 588869 812652 534837 205679 48747 6944.8 623.30 32

Successively substituting the derivative w; from the first equation into the

equation for ws, then ws into the equation for ws, etc., obtain that 5\0 = Ao,

Ao = Anyoand X = NALYTY G =~ 10 -2,

parameters A; are listed in Table 1.

,1. The corresponding




For example, the filtering differentiator of the order n = 0 and the filtering
order ny = 2 gets the form

wy = —2 L3 |[wi] ¥ + ws,

2 1
Wy = —2.12L5 w1 |® + 20 — f(1), (13)
%0 = —1.1Lsignwy, |fo| < L,

where the parameters 5\0 = 1.1,5\1 = 2.12,5\2 = 2 are taken from the row
n+ny = 2 of Table 1. Its output zg estimates the component fy of the noisy
signal f = fo 4+ n under the condition |fo| < L.

The differentiator of the order n = 1 and the filtering order ny = 0 (i.e. the
“standard” differentiator [32]) has the equations

So=—15L% |z — f(1)]? + 21, 14
z1 = —1.1Lsign(z0 — f(t)), |fol < L,

where the parameters 5\0 = 1.1,:\1 = 1.5 are taken from the row n +ny =1
of Table 1. Its output zg estimates the component fy of the noisy signal f, z;
estimates fo under the condition | fo\ < L.

The differentiator of the orders n = ny = 0 has the simple equation

20 = —1.1Lsign(zo — f(t)), | fo| < L.

The differentiator of the order 2 and the filtering order 0 is the standard differ-
entiator )
20 =—2L% |20 — f(1)]® + 21,
2 1
4 = —2.12L% 20 — f(£)]5 + 20, (15)
Zo = —1.1Lsign(zo — f(t)), | fol < L.
Note the structure similarity of (13) and (15).
And here is the last example, differentiation order 2 and the filtering order
2, the coefficients are taken from row 2 + 2 = 4 of the table:

71)1 = —5 L% Lwﬂ% + wa,

s = —10.03L% [wi]? + 20 — f(1),

0= —9.30 L% [wy] + 21, (16)
5 = —45TL [un]* + 2,

Z9 = —1.1Lsignwy, | fo] < L.

Also see the discretization examples in (26), (29).
For brevity denote (9), (10) by

U.):Qn’nf(w,Z()ff,L), é:Dn,nf(wlava)a (17)

with the tracking difference zo(t) — f(t) singled out as the separate argument.



Extend the above conditions on the input by letting the noise have the form
n(t) = no(t) +n1(t) + ... + 1, (t), where each ng, k = 0,...,ny, is a Lebesgue-
measurable signal. For each k assume that there exists a uniformly bounded
solution & (t) of the equation £*) =y, |£] < e

Neither the expansion n = ng + ... + 1, nor o, ...,€,, are assumed to be
known. The expansion is also not unique. Components 71, ...,7,, are possibly
unbounded, but one can say that they are bounded (small) in the average.

Then [44] differentiator (17) in FT provides the accuracy

|ZZ(t) - éZ)(t)| < ﬂiLPn+17iv i1=0,1,...,n,

18
[ ()] < pros L+, 18)

p = max[(§) /(DL () et (19)

for some po, ..., fin, w1 > 0 only depending on the parameters Ao, ..., Anin,-
Magnitudes of ws, ..., w,, depend on the concrete noises.

Taking 71 = ... = 1, = 0, obtain that the filtering differentiator (9), (10)
is asymptotically optimal. Moreover, it is proved that the differentiator is also
applicable in the case when the multiple integrals of the noise components 7, are
only small over finite time intervals not exceeding some Ty > 0 in their length
[37, 38]. The error dynamics of the differentiator are homogeneous [37, 32, 33].

Let the input be sampled at the times tg,%1,..., 7; = tj41 —t;, 7, <7, 7 >0,
t; — o00. Also let the differentiator be applied as

W = Qpn (W, 20(tk) — f(tr), L), 2= Dy, (w1, 2, L) for t € [tg,tr1),

and once more let 7y + ... + 7,, = 0. Then the standard accuracy (18) is
maintained, but for
p = max(()/ D), 7). (20)
The case 7 = 0 formally corresponds here to continuous sampling.
The general case is more complicated, since, for example, a switching signal

+1 with small integral, can be sampled as +1 with large integral. Additional
theory and assumptions are employed [37, 38].

8.8. Homogeneous output feedback SMC
The stated SMC problem of the FT exact stabilization of ¢ is solved by the
output feedback SMC

w = Qrfl,nf(waZO — 0, L)a z= D'r‘fl,nf (w1»Z7L)7

u=—-a¥(z), L>C+ Ky« (21)

for any filtering order ny > 0. The proof is trivial, since the separation principle
[4] is trivial in our case, and o € Lip,_;(L).

Let the sliding variable be sampled in the same way and with the same noise
n(t) = no(t) +ni(t) + ... + 1, (t) as in Section 3.2. Then for any sufficiently
large @ > 0 control (21) in FT provides for the accuracy

“70 (

t
n(t) (22)

)|S/1 _i,i—O,l,...,r—l,
|§~ LprJrnf



for the corresponding parameter p as in (19) or (20), and for some fi;, fiy1 > 0
only depending on the parameters Ao, ..., A\pn;—1, L, o, C, Ky, Ky

Note that the bound L can be very rough (often 50 times larger than re-
quired), and the values of C, K,,, Kj; are not really needed, since the control
parameter « is usually adjusted by simulation.

3.4. Discretization

In reality the system evolves in the continuous time whereas the sampling
and the control input are performed and calculated at discrete times. The
closed-loop system is necessarily a hybrid one, and the internal dynamics of the
differentiator is replaced with some numeric integration of the corresponding
differential equations.

Discretization of the output-feedback dynamic control (21) is performed by
the simplest one-step Euler discretization with the control and its internal state
kept constant over each sampling interval [t;,¢;41] of the length 7; = t;41 —¢t;.

Denote 6;¢ = ¢(tj41) — ¢(t;) for any ¢(t). Then the discrete version of (21)
gets the simplest form

Sjw = Q1,5 (w(t)), 20(¢5) — o (t;), L),
8jz= D10, (w (j)7z( i), L)1, L>C+ Ky, (23)

u(t) = —aW(z(t))), t € [tj:tj1)-

Here and further the short form o(¢;) is used instead of the complete formula
o(ty, z(t;))-

The realization preserves the same accuracy (22), (20) with possibly changed
coefficients fi;, fiwk, provided n;(t) + ... + My (t) =0, i.e. only the bounded noise
is present [41]. In the general case the formula is more complicated.

One can consider providing some time for the differentiator transient before
applying the control. Note that the system dynamics (2) are independent of the
system engineer, and, therefore, do not undergo discretization.

The stand alone application of the differentiator (17) can also employ the
simplest Euler scheme as above, but in that case the accuracy becomes propor-
tional to 7 in the absence of noises for constant steps 7; = 7, and is proportional
to lower powers of 7 for variable sampling intervals [48].

The proper discretization of (17) contains additional terms H,, with the
powers of 7; exceeding 1, and takes the form [44]

8100 =y, (w(ty), 20(t5) = £(8), L),
5 jZ = nnf(wl(tj)az(tj) L)Tj +H ( ( ) TJ)

( ( ) ) (HnOw" Hnn) ) Hnn 1 —Hn,n:07
Hy,;= 'sz( T+ -+ o Z),zn( )7t i =0,1,..,m = 2.

(24)

Also see (26) for example. The additional Taylor-like terms H,, are only needed
to restore accuracy (18) in the presence of very small noises [48]. Also here the
formula (18) remains true when only the noise 7 is present. The general formula
is more complicated. Large «, L naturally require small sampling/integration
intervals.
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4. Examples
Numeric differentiation is difficult. Consider the simple input signal
f(t) =0.8cost — sin(0.2t) + v(t),

where fo(t) = 0.8cost — sin(0.2¢), v is a noise. Obviously |f(§l)| <1 fori=
1,2,.... Let the sampling step be constant, 7; = 7. Consider the performance
of the most popular differentiation methods.

The simplest method is based on the standard MatLab divided differences.
Indeed, it has no transient and works quite well in the absence of noises. The
estimation f(§4) of f(§4) has the accuracy of about 0.01 for 7 = 1073 (Fig. 2a).
Unfortunately, in spite of the absence of noises that estimation explodes already
for 7 = 10~ due to the digital round-up errors (Fig. 2b). The error is already
of the order of 6 - 10° for 7 = 107°.

7Y =10

NVANVAYE
\/ \/ \15
v=_0 -60

a. Divided differences b. Divided differences

ALY 7
2 j)‘; ng ﬁ; ]g, _}g ﬁ

S —

-500
c. HGO: nonoise  d. HGO: veN(0, 0.001°)

Figure 2: Difficulty of numeric differentiation. a: The divided-differences’ estimation of fé4)
in the absence of noises, v = 0, for 7 = 1073; b. the same estimation for 7 = 10~%.
Differentiation by the HGO with the multiple eigenvalue —1000 for 7 = 10~5. The graphs are
cut from above and from below to remove the high transient values (up to 10'!). c: in the

absence of noises the accuracy is excellent; d: estimation fo(t) of fo (t) in the presence of the
Gaussian noise v € N(0,0.0012).

Another popular tool is the classical linear filter known as the high-gain
observer (HGO) [4] with the characteristic polynomial (p + 1000)®. Consider
the sampling period 7 = 107, In the absence of noises the HGO provides
for very high accuracy (Fig. 2c). Its best accuracy is obtained for 7 = 1075,

sup|z — £ < 2210715, 8510712, 1.2-107%, 9.8-1076, 4.3 - 103 for

11



i = 0,1,2,3,4 respectively. It remains practically the same for smaller 7 and
coincides with the best accuracy obtained further by the filtering differentiator.

Unfortunately, in the presence of a small Gaussian noise with the distribution
N(0,0.001%) the accuracy of the HGO deteriorates to sup |z; — fél)| <33
104, 0.58, 5.7-102, 2.8-10%, 5.6-107 for i = 0, 1,2, 3, 4 respectively for 7 = 1076
(Fig. 2d). Note [60] that reducing the eigenvalue one could get accuracies similar
to those of the SM-based differentiators in the presence of noises not exceeding
£0.002, but this requires the knowledge of the noise magnitude and deliberately
sacrifices the differentiator accuracy in the absence of noises.

SM-based numeric differentiation. Consider the sampled signal

F@) = fo(t) +n(t), fo(t) =0.5sint + 0.8 cos(0.8t), (25)

where n(t) is the noise. Let the sampling interval be constant, 7, = 7. The
filtering differentiator (24) of the differentiation order n = 5 and the filtering
order 2,

8w = [—12L% [w (t;)]"/"
§jwo = [—84.14L%/8 |wy (t;
5j20 = [—281.37L3/8 Lwl(t]‘ﬂs/g + 2z tj ]Tj,

(t)
-l-zz(t])%j + zg(tj)fg-i- Z4(tj);—{% + z5(t5) 172]407
§jz1 = [~455.40LY3 |wi (t)]Y® + 2a(t))]7; + 23(%‘)% + 24(%‘)%’3 + 25(t5) 54
§jz0 = [~295.74L%3 |wy (t;)1%% + z3(t)]7j + 2a(t;) 5 + 25(t;) 2,
123 = [~8B.T8LY/S [wy (8,1 + 2a(t))lr; + 2 (1)) %
§jza = [~14.13L7/ [wy (t)]"® + 25 (t))] 7,
6 z5 = [—1.1L sign(wn (¢;))]7j,

(26)
is applied with L = 1, 7 = 10~ and zero initial conditions, 2(0) = 0, w(0) = 0.
Obviously | féﬁ)| < L. The coeflicients are taken from Table 1 from line 7 = 5+2.

\U“
\\ ) | h ‘ ‘ “

20

i

‘ {
MRS PR AI R A ‘h\ M
IRSESSELES |

a. Differentiation without noise b. leferentlatlon under noise

Figure 3: Performance of the filtering differentiator (26) with n = 5, ny = 2, L =1 for
7 = 1075 and the input (25). a: There is no noise. b: performance for noisy sampling (27);
only estimations of fo, fo, fo are shown.
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Performance of the differentiator for n = 0 is demonstrated in Fig. 3a.
Denote |52 = (w1, |wel, |20 — fol, s |25 —f65)|). Then the accuracy of the fil-
tering differentiator for ¢ € [10, 20] is provided by the component-wise inequality
Y52 < (3.0-10723,2.4-107%°,1.3-1071%1.4-10712,1.2-1079,5.1- 1077, 1.1 -
107%,0.012). Note that this accuracy is practically the best possible because of
the digital round-up errors [48].

Now introduce the noise

n(t) = 3co0s(10000¢) — 6sin(20000¢) — 4 cos(70000t) + ne(t), (27)
ne € N(0,0.12),
where 7¢ is a random Gaussian signal with the standard deviation 0.1. The
performance of the differentiator is demonstrated in Fig. 3b. The accuracy is
provided by the component-wise inequality

1852 <(1.2-107°,1.8-1073,0.015,0.14,0.60, 1.4,1.9, 1.1).
Car control. Consider a simple “bicycle” kinematic car model [55]

i =Vcos(p), y = Vsin(p), ¢ = X tanf, 6= u, (28)

where x and y are the Cartesian coordinates of the middle point of the rear axle
(Fig. 4a), A = 5m is the distance between the two axles, ¢ is the orientation
angle, V' = 10m/s is the constant longitudinal velocity, # is the steering angle
(i.e. the actual input), and u =  is the control.

The goal is to move along some smooth trajectory (x(t),y(t)) = (z(t), g(t)),
whereas ¢(t),y(t) are sampled in real time. That is, the task is to make o =
y(t) — g(t) vanish. The sliding variable o is sampled with the time step 7 and
some noise 7(t). Let g(t) = 10sin(0.05z(t)) + 5.

Obviously, 9 contains sin ¢, §j contains cos@tan and ¥ contains
Thus, the relative degree is r = 3 for |p| < 7/2, |0] < 7/2.

Starting from ¢ = 0 apply differentiator (24) of the differentiation order
r —1 = 2 and the filtering order ny = 2 to the sampled noisy signal 6(¢;) =
o(t;)+n(t;). From t =1 to t = 40 apply the standard 3-SM controller (21), (7)

cos
Cosz g U

2 (8)% 42121 (8013 +20(t;

|ZZ((tj))|3+2\izlztj;]%'Hzo((tj))‘, L€l by,

8wy = [~BLY5 [w (t,)]"® + wa(t;)]r,

bjwa = [~10.03L2/% [wn (t;)1%° + 20(t;) — (¢}, (29)
870 = [=9.30L3/5 |wi (t)1*/° + 21 ()] + T 2a(ty),

6521 = [~A5TLYS [wy ()17 + 2a(t;)]7;,
;2o = [—1.1Lsign(ws (t;))]7;.

U= —Q

Due to the homogeneity of the applied output-feedback control (29) the ad-
ditional term H, containing Tj2 can be omitted here while still preserving the
accuracy (22), (20) [41].

Parameters

a=0.5, L =50
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0 X
. v/ /300
-10
a. Car model " b. Trajectory
/6,0 0.5
IV 30 N
-1t/6 -0.5
c. Steering angle d.  Control

Figure 4: Performance of the 3-SM car control (21) for r = 3, ny = 2, L = 50, a = 0.5,
for the integration/sampling step 7 = 107°: a. car model; b. the required and the resulting
trajectories; c. steering angle; d. control.

are found by simulation. The integration of the closed-loop system is performed
by the Euler method with the time step 107°.

First consider the case of the “exact” measurements, n =0, 7; =7 = 1077,
The corresponding performance is shown in Fig. 4. The SM accuracy |o| <
1.1-1072m, |6] < 1.3-107°m/s, |5| < 0.002m/s? is maintained.

Now introduce the sampling noise (Fig. 5¢)

n(t) = 2¢cos(10000t) + na(t), ng € N(0,0.5%). (30)

The corresponding performance is shown in Fig. 5. The SM accuracy |o| <
0.041m, |6| < 0.67m/s, |5| < 5.2m/s? is maintained for the sampling step
7 =10""s (Fig. 5a). The accuracy deteriorates for the sampling step 7 = 0.01s
to |o] < 2.8m, |o] < 2.7m/s, |5| < 6.8m/s? (Fig. 5b,d). The performance is
still quite acceptable.

4.1. Choice of the filtering order

In general, the higher the filtering order ny the better accuracy asymptotics
of the differentiator (9), (10) one can expect in the presence of noises. In par-
ticular, differentiators of higher filtering orders significantly better filter out
high-frequency deterministic noises like cos(wt), since their ns-order integrals
decrease as w™"/. On the other hand ny > 1 has no advantage compared to
ns = 1 for stochastic noises with significant second moments.
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b. Trajectory for t = 10_2
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-1t/6
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Figure 5: Performance of the 3-SM car control (21) for r = 3, ny = 2, L = 50, o = 0.5, for
the noisy sampling with the step 7: a. trajectory for 7 = 10~%s; b. trajectory for 7 = 0.01s ;
c. noise (30); d. steering angle for 7 = 0.01s.

Also note that the accuracy of the filter (9), (10) in the absence of noises
slightly degrades for higher values of ny due to the natural discrete delay. It
results in a bit larger asymptotics coefficients.

5. Summary and Future Directions

Modern methods of SMC solve the SISO regulation problems exactly and
in FT, provided the relative degree exists and is known, and the zero dynamics
are practically stable. MIMO regulation problem is solvable provided some ap-
proximation of the high-frequency matrix is available [15, 46]. Further research
is needed to remove this requirement.

Modern SMC methods are easily incorporated in other control approaches
due to their accuracy, FT convergence and smoothness of the control. SM
observers based on the filtering differentiators are capable of replacing expensive
sensors in practical applications and signal processing.

SMC systems are proved to be robust with respect to noises, delays, singular
and regular perturbations, and even with respect to relative-degree fluctuations
[35, 23, 42]. The practical-relative-degree approach [36, 56] is expected to solve
numerous problems when the relative degree does not exist or is too large, and
even when a control process model is not available.

Lyapunov functions have been recently found for the main known SM con-
trollers and observers [11, 12]. New discretization methods are actively devel-
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oped. Bihomogeneous SMC allows fast and even fixed-time convergence of the
controllers and observers [3, 13, 50, 52, 53, 54]. Different SMC discretization
strategies are developed in order to minimize the chattering and improve the
accuracy [1, 2].

Discrete SMs have not been considered in this chapter. The readers are

referenced to [24, 8, 26] in that aspect. SMC of infinite-dimensional systems is
considered by [51].
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