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Practical relative degree approach in sliding-
mode control

Arie Levant

Abstract The high-order sliding-mode approach offers a robust way to solve nu-
merous output-regulation problems when the system relative degree is known. Still
the difficult cases remain when the relative degree does not exist, is very high, or
the mathematical model is not reliable. The notion of practical relative degree is
proposed, which generalizes the standard relative-degree notion for the cases of un-
certain systems lacking certain mathematical model. Practical output regulation is
ensured. Computer simulation and practical results confirm the theoretical approach.

1 Introduction

Control under heavy uncertainty conditions is one of the main subjects of the mod-
ern control theory, and the main idea to deal with such problems is to single out
and keep properly chosen constraints successively lowering the system dimension.
Sliding-mode (SM) or high-gain control are the corresponding methods [12, 20, 42].
The simplest problem of such kind is to make the output ¢ of a single-input single-
output (SISO) “black-box” system vanish.

Sliding mode is accurate and insensitive to disturbances [12, 42]. The informal
definition of the relative degree (RD) [18] is the least order of the total output deriva-
tive, which explicitly contains the control. While standard SMs are applicable to
make a sliding variable vanish, if its RD is 1 [12, 40, 42], high-order sliding modes
(HOSMs) [2, 3, 8, 9, 11, 14, 22, 24, 36, 37, 39, 41, 44] are capable of keeping
constraints of higher RDs. One of the main reasons for their application is the pos-
sibility [2, 22, 28] to effectively attenuate the so-called chattering effect [7, 15, 16]
caused by the high control-switching frequency.

Establishing the needed constraint o = 0 requires the stabilization of the sliding
variable o at zero. The corresponding dynamics of o is of the order of the RD and is

Arie Levant
Tel-Aviv University, 69978 Tel-Aviv, Israel e-mail: levant@post.tau.ac.il



2 Arie Levant

typically uncertain. Theoretically it also allows feedback linearization [18], though
the uncertainty prevents its direct application. Finite-time stabilization is preferable,
since it provides for higher robustness, simpler overall performance analysis, and
higher accuracy in the presence of small sampling noises and delays. With the RD 1
such finite-time stabilization is easily obtained by means of the relay control, which
is widely used in the standard sliding-mode control. With higher RDs the problem
is much more complicated and corresponds to the HOSM approach [22, 24].

HOSM actually is a motion on the discontinuity set of a dynamic system under-
stood in Filippov’s sense [13]. The sliding order characterizes the dynamics smooth-
ness degree in the vicinity of the mode. Let the task be to make some smooth scalar
function ¢ vanish, keeping it at zero afterwards. Then successively differentiating
o along trajectories, a discontinuity will be encountered sooner or later in the gen-
eral case. Thus, a sliding mode o = 0 may be classified by the number r of the first
successive total time derivative ") which is not a continuous function of the state
space variables or does not exist due to some reason, like trajectory nonuniqueness.
That number is called the sliding order [22, 24], and the motion o = 0 is said to
be in rth-order sliding (r-sliding) mode. If o is a vector, also the sliding order is a
vector.

Thus, with the RD r a discontinuous control providing for ¢ = 0, inevitably gen-
erates an r-sliding mode. In order to attenuate the chattering, the control derivative
is used as a new discontinuous control [22, 2, 28]. The RD with respect to the new
control turns to be ¥+ 1 and an (r + 1)-SM is to be established.

The main result of the HOSM control theory probably is the list of universal
SISO controllers corresponding to each RD [24, 26, 33]. Only a few parameters
(usually the control magnitude and one differentiator parameter) are to be adjusted
to make the “black-box” output exactly vanish in finite time. Thus, the RD turns to
be the main needed system information, and it is typically assumed to be known.

Recent results [31, 28] show that fast stable actuators [31] and sensors [28],
which can be considered as singular perturbations [20], as well as any small sys-
tem perturbations affecting the RD [27], only partially destroy the performance of
homogeneous SM controllers. Thus, the system RD actually becomes a design pa-
rameter. When developing a mathematical model of a controlled process, one can
deliberately neglect some dynamics, in order to simplify the model and the corre-
sponding controller.

Unfortunately, the available model can be very complicated, and sometimes it
is difficult to present it as a simple low-order system with negligible slow and sta-
ble singular disturbances. Moreover, the very existence of the system RD is rather
restrictive. It requires the system to be described by a smooth ordinary differential
equation linear in control. Hence, a designed controller critically depends on the
chosen model form, even if the model is considered unreliable.

The question arises, whether it is possible to treat a system as a “black box”,
avoiding any dependence on the model. Some recent practical results [17] show
that it is possible. An attempt is made in this paper to mathematically justify such
approach. The corresponding notion, called practical relative degree (PRD), is for-
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mally introduced. It also admits experimental identification by simulation or real
life tests.

The PRD is informally defined as the order of the output derivative, which is
explicitly affected by control step-function. It can involve system delays and output
noises, and it does not require a system mathematical description. In particular, if
the system RD exists, it is also a system PRD, but the system can also have a few
lower PRDs. A homogeneous SM control designed for a certain RD is shown to
be applicable also with the same PRD. The accuracy of the corresponding output
regulation is determined by the output reaction delay value.

Even if the RD exists and is known, while theoretically providing for the exact
output regulation, a corresponding HOSM controller can be practically impossible
to realize due to high information or energy demand. In such a case the PRD ap-
proach turns to be a real alternative. Moreover, one can try to apply a number of
simple controllers corresponding to lower RDs, without real detection of a PRD.
The natural application of such approach lies in the field of artificial-intelligence
research.

Computer simulation and recent practical results of blood glucose control [17]
demonstrate the feasibility of the suggested approach.

2 Homogeneous sliding mode control.

2.1 Standard SISO Regulation Problem

Definition 1. Consider a discontinuous differential equation x = f(x) (Filippov dif-
ferential inclusion x € F(x) [13, 25]) with a smooth output function ¢ = o(x), and
let it be understood in the Filippov sense. Then, provided that

1. successive total time derivatives o, 0, ..., 1) are continuous functions of X,
2. the set

c=6=...=c"" V=0 (1)

is a non-empty integral set,
3. the Filippov set of admissible velocities at the r-sliding points (1) contains more
than one vector,

the motion on set (1) is said to exist in r-sliding (rth-order sliding) mode [22, 24].
In the non-autonomous case the additional coordinate 7 is formally added, i = 1.

Consider a dynamic system of the form
x=a(t,x)+b(t,x)u, c = o(t,x), (2)

where x € R", a, b and 6: R"*! — R are unknown smooth functions, u € R, the
dimension n might be also uncertain. Only measurements of ¢ are available in real
time. The task is to provide in finite time for exactly keeping o = 0.
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The relative degree r of the system is assumed to be constant and known. In other
words, for the first time the control explicitly appears in the rth total time derivative
of o and

o) = h(r,x)+g(t,x)u, (3)

where (t,x) = ¢(") X g(t,x) = (%0'(’) # 0. It is supposed that

u=

0< K, < io“) <Ky, |o®

3 <C “

u:O‘

holds for some K, Ky, C > 0. It is always true at least in compact operation re-
gions. Trajectories of (2) are assumed infinitely extendible in time for any Lebesgue-
measurable bounded control u(z, x).

Finite-time stabilization of smooth systems at an equilibrium point by means of
continuous control is considered in [1, 6]. In our case any continuous control

u=¢(c,6,...,cU" ), 5)

providing for o = 0, should satisfy the equality ¢(0,0,...,0) = —h(t,x)/g(z,x),
whenever (1) holds. Since the problem uncertainty prevents it, the control has to
be discontinuous at least on the set (1). Hence, the r-sliding mode ¢ = 0 is to be
established.

As follows from (3), (4)

o) € [~C,C)+ K, Kn]u. (6)

The obtained inclusion does not “remember” anything on system (2) except the
constants r, C, K,,, Kj;. Thus, provided (4) holds, the finite-time stabilization of (6)
at the origin simultaneously solves the stated problem for all systems (2).

Note that the realization of this plan requires real-time differentiation of the out-
put. The controllers, which are further designed, are r-sliding homogeneous [25].
The corresponding notion is introduced below.

2.2 Homogeneous sliding modes

Definition 2. A function f: R* — R (respectively a vector-set field F(x) C R” (see
[25]), x € R", or a vector field f: R” — R") is called homogeneous of the degree
q € R with the dilation [1]

dic : (x1,%0, 0y %) = (K™ xp, K™x0, .., K™ x),

where my, ..., m, are some positive numbers (weights), if for any k¥ > 0 the
identity f(x) = k~9f(dxx) holds (respectively F(x) = kK 9d'F(dyx), or f(x) =
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k~9d ' f(dyx)). The non-zero homogeneity degree ¢ of a vector field can always
be scaled to 1 by an appropriate proportional change of the weights my, ..., m,,.

The homogeneity of a vector field f(x) (a vector-set field F(x)) can equivalently
be defined as the invariance of the differential equation x= f(x) (differential inclusion
x€ F(x)) with respect to the combined time-coordinate transformation

G : (t,x) = (KPt,dx),

where p, p = - g, might naturally be considered as the weight of 7. Indeed, the ho-
mogeneity condition can be rewritten as

d(dgx)

XEF(x) & d(xrr)

€ F(dgx).

It was proved in [25] that if & € F(x) is a homogeneous Filippov inclusion with a
negative homogeneous degree -p, then uniform finite-time stability, uniform asymp-
totic stability and the contractivity feature [25] are equivalent and the maximal set-
tling time is a continuous homogeneous function of the initial conditions of the
degree p. Furthermore it was proved there that in the presence of variable delays of
the order 77, and sampling noises of x; of the order 7" the trajectories converge in
finite-time into a region featuring x; = O(t™). Finite-time stability of homogeneous
discontinuous differential equations was also considered in [38].

Suppose that feedback (5) imparts homogeneity properties to the closed-loop
inclusion (5), (6). Due to the term [-C, C], the right-hand side of (5) can only have
the homogeneity degree 0 with C # 0. Thus, the homogeneity degree of 61 is to
be opposite to the degree of the whole system, i.e. dego 1) = degr = —q.

Scaling the system homogeneity degree to -1, achieve that the homogeneity
weights of ¢, 0, O, ..., o1 are 1, r, r- 1, ..., 1 respectively. This homogeneity
is further called the r-sliding homogeneity. The inclusion (5), (6) is called r-sliding
homogeneous if for any k > 0 the combined time-coordinate transformation

Ge:(t,0,6,....,6"" N (kt, k0, k" '6,... ,ka") )

preserves the closed-loop inclusion (5), (6).
Transformation (7) transfers (5), (6) into

d"(x"o)

(Y € [~C,Cl+ [Km,Knlo(x'o, k" '&,... ka1,

Obviously, (5), (6) is r-sliding homogeneous if degp = 0, i.e.

o(k'c, k7 '6,... . ke V) =9(0,5,...,6U ). (8)
Definition 3. Controller (5) is called r-sliding homogeneous (rth order sliding ho-
mogeneous) if (8) holds for any (c,6,...,6" D) and x > 0. The corresponding
sliding mode is also called homogeneous (if exists).



6 Arie Levant

Such a homogeneous controller is inevitably discontinuous at the origin (0, ..., 0),
unless ¢ is a constant function. Most known r-sliding controllers, » > 2, are based on
r-sliding homogeneous controllers. An important exception is the terminal 2-sliding
controller maintaining 1-sliding mode & + foP =0, where p = (2k+1)/(2m+ 1),
B >0, k < m, and k, m are natural numbers [36, 44]. Indeed, the homogeneity
requires p = 1/2 and o > 0.

2.3 Arbitrary order sliding mode controllers

Following is one of the most known r-sliding controller families [24, 26, 33] called
quasi-continuous. The controllers of the form

u:_aqlrfl,r(cada"'ac(ril)% (9)

are defined by recursive procedures, have the magnitude o > 0, and solve the gen-
eral output regulation problem from Section 2.1 with the relative degree r. Quasi-
continuous r-sliding controller is a feedback function of o, &, ..., o1 being con-
tinuous everywhere except the manifold 6 = 6 = ... = 61 = 0 of the r-sliding
mode. In the presence of errors in evaluation of o and its derivatives, these equali-
ties never take place simultaneously with r > 1 . Therefore, control practically turns
to be a continuous function of time.

The parameters of the controllers can be chosen in advance for each r. Only
the magnitude o is to be adjusted for any fixed C, K,,, Ky, most conveniently
by computer simulation, avoiding complicated and redundantly large estimations.
Obviously, o is to be taken negative with (3/du)c) < 0 . In the following
Bi,...,Br—1 > 0 are the controller parameters, and i = 1,..., r-1.The following pro-
cedure defines a family of such controllers [26]:

O = 6, Nos = 10, ¥, = g0 /No, = signo,
(Pi,r = G(i) —I—ﬁiNi(iI_’ir)/(riH_])%fl,m
Nip= ‘G(i>| +ﬁiN<r7i)/<r7i+l), lH,r — (Pi,r/Ni,ryu _ *alPr—l,r-

i—1,r

Note that while enlarging o increases the class (4) of systems, to which the con-
troller is applicable, parameters f3; are tuned to provide for the needed convergence
rate [32]. Asymptotic accuracies of these controllers are readily obtained from their
homogeneity properties. In particular ) = O(t"~7), i =0, 1, ..., r-1, if the mea-
surements are performed with the sampling interval 7.

A controller providing for the time-optimal stabilization of the inclusion (6) un-
der the restriction |u|< a was proposed in [8]. Such controllers are also r-sliding
homogeneous providing for the same asymptotic accuracy. Unfortunately, in prac-
tice they are only available for » < 3.
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Controller adjustment. The magnitude of the controllers [24, 26] can be increased
without loss of the convergence. The corresponding controller gets the form

= —a®(t,0)¥ 1,(0,6,...,6" ), (10)

where a > 0, and ¥,_; , were introduced above. Note that controller (10) is not
homogeneous. While the function @ can be chosen large to control exploding sys-
tems, it is also reasonable to make the function @ decrease and even vanish, when
approaching the system operational point, therefore reducing the chattering [32].

It follows from [33] that the parameters fi,..., 3, | can be chosen one-by-one
by means of relatively simple simulation of concrete differential equations ¢; , = 0,
all of which are to be finite-time stable. The controller with the resulting parameters
formally provides for the universal solution of the stated problem. Nevertheless,
in practice one often needs to adjust the convergence rate, either to slow it down
relaxing the requirements to actuators, or to accelerate it in order to meet some
system requirements. In that context note that redundantly enlarging the magnitude
ad of controller (9) does not accelerate the convergence, but only increases the
chattering, while its reduction may lead to the convergence loss.

The main procedure is to take the controller

Y a1 ,(0,6/7,....,6" VY, y>0,

instead of (9), providing for the approximately ¥ times reduction of the convergence
time [32]. With 0 < y < 1 the convergence is slowed down.

In the case of quasi-continuous controllers the form of the controller is preserved.
The new parameters f1, ..., B,_1, & are calculated according to the formulas f§; =
yBi1, By = 7/ VB, .. ﬁr | = y"/2B,_1, & = y"a. The larger ¥ the faster the
convergence. Following are the resulting quasi-continuous controllers with r < 4,
simulation-tested 3; and a general gain function @:

1. u=—yadsigno,

2.u= —Pad (6 +7yio|signs) /(6] +vlo]'/2),

3.u=—Pad[6+277(|6] +1lo) )6 + vlo P sign o))/

[6]1+272(|6|+vla|*)' /)],

4. ¢34 =S+3716+7(|6]|+0.57[a[*) 1P (6+0.57) |0 *signo)]

[6]1+7(|6]+0.5yl0*)>3] 12,
N3 = 6]+ 37(18]+ 77 (161405012,
= Y adp34/Ns4.

Chattering attenuation. The standard chattering attenuation procedure is to con-
sider the control derivative as a new control input, increasing the relative degree
and the sliding order by one [22, 1, 28]. It was many times successfully applied in



8 Arie Levant

practice (for example see [3]), though formally the convergence is only locally en-
sured in some vicinity of the (r + 1)-sliding mode o = 0. Global convergence can
be easily obtained in the case of the transition from the relative degree 1 to 2 [22];
semi-global convergence can be assured with higher relative degrees using integral
(r + 1)-sliding modes [30].

3 Arbitrary Order Robust Exact Differentiation.

Any r-sliding homogeneous controller can be complemented by an (r-1)th order dif-
ferentiator [4, 41, 43] producing an output-feedback controller. In order to preserve
the demonstrated exactness, finite-time stability and the corresponding asymptotic
properties, the natural way is to calculate &, ..., o1 in real time by means of a
robust finite-time convergent exact homogeneous differentiator [23, 24]. Its applica-
tion is possible due to the boundedness of 6(") provided by the boundedness of the
feedback function ¢ in (5).

3.1 Standard arbitrary-order robust exact differentiator

Let the input signal f(#) be a function defined on [0, o) and consisting of a
bounded Lebesgue-measurable noise with unknown features, and of an unknown
base signal fo(7), whose kth derivative has a known Lipschitz constant L > 0. The
problem of finding real-time robust estimations of fo(£), fo(), ... .f" (1) being exact
in the absence of measurement noises is solved by the differentiator [24]

20 =vo,v0 = — ALY V|20 — £ (1) " Dsign(z — £ (1)) + 21,

21 = vi,v = — A1 Lz —vol % D/ksign(z —vo) + 22,

(1)
Gt = Vi1, Vi1 = — M LY ey — o |V sign(zio 1 — vi-2) +
& = —AoLsign(zx —vi_1).

The parameters A, A1, ..., Ax > 0 being properly chosen, the following equalities
are true in the absence of input noises after a finite time of the transient process:

w=rH); a=via=£", i=1,.k

Note that the differentiator has a recursive structure. Once the parameters Ay, A1,
..., Ak_1 are properly chosen for the (k - 1)th order differentiator with the Lipschitz
constant L, only one parameter A; is needed to be tuned for the kth order differentia-
tor with the same Lipschitz constant. The parameter Ay is just to be taken sufficiently
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large. Any Ay > 1 can be used to start this process. Such differentiator can be used
in any output feedback.

Thus an infinite sequence of parameters A, can be built, valid for all k. In partic-
ular, one can choose Ag = 1.1, Ay = 1.5, 1, =2, A3 =3, A4 = 5, As = 8, which is
enough for k < 5. Another possible choice of the differentiator parameters with k <
Sisd=1.1,4=151=3,43=5 =28 4 =12[25].

The homogeneity features imply the asymptotic accuracy of the differentiator
[25]. Let the measurement noise be any Lebesgue-measurable function with the
magnitude not exceeding €. Then the accuracy |z;(r) - fo(!)(r)|= O(ek+1-1/(k+1) )
is obtained. That accuracy is shown to be the best possible [21, 23]. Differentiators
(11) with constant and variable parameters L have been already proved useful in
practical and theoretical observation [3, 5].

Due to the specific homogeneity features of the differentiator (11), its output-
feedback combination with controller (9) produces an r-sliding homogeneous con-
troller: when used in the feedback closure of (6) an r-sliding homogeneous differ-
ential inclusion is produced. Thus the asymptotic accuracy of the output-feedback
controller remains the same as of controller (9) with direct measurements.

3.2 Homogeneous tracking differentiator

The following construction is called a homogeneous tracking differentiator [29] of
the order k. As previously let the input be a function f(r) = fo(¢) + 1 (¢), fék+1)| <

L, |n| < e. Construct an auxiliary dynamic system wlk+1) = y rewritten as
Wo = Wi, -, Wil =W
Yo Ly Wkl k> (12)
Wi =V

with the input v, output wy and the measured signal f(¢) to be tracked. For the further
use rewrite differentiator (11) symbolically by the formula z = Dy ; ; (f). Now close
system (12) by the feedback

V= 7leIlk,k+] (Z)7

2= Dy 3. 5,.(Wo — f) (13

where @; > @ > 1. Here ¥ ;1 is the quasicontinuous controller introduced in
Section 2.3, but also any other (k+1)-sliding homogeneous controller can be used.
With sufficiently large @ obtain a system which starts to track the function fo(¢) in
finite time. That implies the following simple theorem.

Theorem 1. With sufficiently large @ > 1 and any ®) > ® tracking differentiator
(12), (13) provides for the finite-time convergence of w; to fél), i=0,1,....k. The
asymptotic accuracy of the tracking differentiator (12), (13) is exactly the same as of
the standard differentiator [24] (11). In particular, with continuous-time sampling
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the tracking accuracies |w; 7f0(i)| < L/ N gkt 1=0/(+1) gre obtained. The co-
efficients W; only depend on the tracking differentiator parameters.

The parameter @ > 1 can be chosen once and forever. The value @; > @ is adjusted
according to the circumstances, in particular, larger values are to be considered in the
presence of significant noises. It can be shown that also the digital-implementation
asymptotic accuracy of (12), (13) is exactly the same as of the standard differentia-
tor (11) [24]. Also its output-feedback combination with controller (9) produces an
r-sliding homogeneous controller which can be used for the solution of the prob-
lem from Section 2.1. Also here the asymptotic accuracy of the output-feedback
controller remains the same as of controller (9) with direct measurements.

The main advantage of the tracking differentiator is that its estimations w; of
the input derivatives fél), i=0,1,...,k— 1, are successive integrals of the kth-order
derivative estimation wy.

4 Practical relative degree concept.

4.1 Practical relative degree (PRD) definition

Consider a SISO system with a scalar input u € R (the control), and output & € R.
The output depends on the internal state of the system, which changes in time. The
control influences the state in some way. The nature of the state remains unknown.
The task is to keep the output & close to zero.

The input belongs to a certain class. For example, it should be Lebesgue-
measurable, or continuous, etc. It is assumed in the following that the system accepts
Lebesgue-measurable inputs, but the results do not change if inputs are required to
have any predefined smoothness.

Fig. 1 Reaction of a system with PRD r to a step function.
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Definition 4. A natural number r is called a practical relative degree (PRD) of the
SISO system with the input (control) € R, and output & € R, if there exist positive
€, 6, Oy, Opg, L, Ly, 04, < 0py, L <L, and ug € R, A; = £-1 such that

1. The system accepts any bounded input u(f), |u — up| < . The correspond-
ing output can be always represented as a sum of two components, &(¢) =
o(t) + n(t), where |h| < e. With r > 0 the function & is assumed r-1 times
differentiable with ¢ ~!) having a uniform Lipschitz constant L. Respectively
o) exists almost everywhere, o) <L.

2. Let w = A;0. For any time moment t, if starting from # the inequality ot >
u(t) —ug > oy (—oyy < u(t) —up < —aiy) is kept, then starting from the moment
to + O, the output satisfies wl) > L,, (respectively wl) < —Ly).

Parameters ug, A;, 6 and € are respectively called the reference input, the input
influence direction, the delay and the approximation parameters.

In the following ug = 0, A, = 1 are assumed. The characteristic reaction of o
to the input step function is shown in Fig. 1.

Definition 5. A natural number r is called a local practical relative degree, if there
exist three time values 1, >, T, t; < 1o, & < T, such that requirement 2 of Definition
4 is fulfilled for each ty € [#1, t2] over the time interval of the length 7, and the first
requirement is true over the time interval [¢;, , + T].

Obviously, in general one cannot hope to keep o = 0 exactly. It should be stressed
that the function o does not necessarily has to have some real meaning. It can be
simply an output of some smoothing filter, in particular, of a tracking differentiator.
Though € and &, are naturally assumed small with respect to 7, f; - ¢ , it is not
formally required. Local practical relative degree is a temporary feature of a system,
usable for temporarily controlling its output.

The following Proposition is obvious.

Proposition 1. If system (1) satisfies the assumptions of Section 2.1 it also has the
practical relative degree r with € = 8 =0, ug =0, As = 1. If condition (4) is not
globally satisfied, but the relative degree still is r, then it has the local practical
relative degree r over any compact region of the extended state space t,x.

Indeed, one can choose any values oy > @, > C/Ky, L > C+ Ky, Ly, =
L — C — Ky oy, If condition (4) is only locally satisfied A; = sign g is taken (recall
that since the RD is r, the function g = %G(’) does never vanish).

Choose a controller for a system with the PRD r. The following construction is
valid for any r-sliding homogeneous controller [24, 25, 26, 33] of the form (10). Let

U= o — O As® (20,21, 12— 1) ¥ 15(20, 21/ Vs, 21 /YY), (14)
z=D, (20— 6). (15)

Here functions @, ‘¥, are described above, and meantime ¢ =1, D,_, ; ; is
the homogeneous (r-1)th order differentiator (11). Choose o so that control (10)
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provides for the finite-time stabilization of the simple system ¢") = u; and choose
¥ > 0 so that ¥ a < L,,. The differentiator parameter L > L is taken.

Theorem 2. With the parameters chosen as above, controller (14), (15) provides in
finite time for the accuracy ¢) < nymax[§/ 7, e"=0/"), 16| < flomax[8/, €], fio, Mi
being constants only depending on the parameters L, @y, L, of definition 4 and the
choice of the controller parameters L, 7.

Note that with € = &; = 0 exact output regulation is obtained, which, in particular,
extends the known HOSM control results to systems of any nature, for example to
possibly discontinuous systems nonlinear in control.

Idea of the proof. After the differentiator converges the arguments of the con-
troller (12) are close to the corresponding derivatives of ¢ with the errors described
in Section 3.1. Thus, in the additional time &; the state space with coordinates
(6,6,...,6 1) is divided in the two regions. The first region corresponds to the
points where respectively to the PRD definition the trajectories satisfy the differen-
tial inclusion

o e ~[Ln, L)% 1 ,(0,5,...,67V),

while in the second one any other values of ¢, (") € —[L,L], are possible. Con-
sider the homogeneity transformation

Gy:(t,8.€,0,6,...,6" V) (kt,k8, ke, Ko,k '6,....ka" V). (16)

The second region is proved to be described by homogeneous inequalities, which
are preserved by transformation (16). As the result the trajectories satisfy some ho-
mogeneous differential inclusion invariant with respect to (16). The further proof
follows the standard homogeneity technique [25]. O

Since under the conditions of the PRD definition exact keeping ¢ = 0 is impos-
sible with € > 0, one can use continuous control without compromising the system
accuracy. Indeed, it is enough to take the gain function @ equal to a homogeneous
norm of (6/¥/,6/7, ',...,6U"1 /y) saturated at 1 with a sufficiently large y; > 0
in (14).

4.2 PRD identification

One can identify a PRD using analytical methods developed in the sequel. Another
way is to experimentally identify a PRD by simulation or even by a real-life test. Ac-
cording to definition 4 the measured system output & () is to be the sum of a smooth
component and a bounded (preferably small) additional term, &(t) = o(r) + n(z).
Suppose that in fact also the function 6(") is absolutely continuous with its deriva-
tive almost everywhere bounded by some number L. Such additional smoothness
is usual due to the presence of sensors. Respectively call the PRD strong. Apply a
tracking differentiator to single out the smooth component o (¢):
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Wwo = W]a'N' S Wr—1 = Wy,
Wy = —0OLY,11(2), (17
2=D,; g,1(wo—8&)

Here @ > 1 is chosen in advance, and any ®; > @ fits. The following proposition
is an easy consequence of Theorem 1.

Proposition 2. Let the system have a strong PRD r, |cU+V)| < L. Then observer (17)
provides for the accuracies \w(()l) — O'(i)| < ,Ll,-Zi/(’H)S(r’i'*'])/(’“), i=0,1,...,r es-
tablished in uniformly bounded time with W; > 1 being constants only depending on
the observer parameters. Thus, with Ly, > p,L"/ " De!/ 1) the function o (t) can
be redefined as wy in definition 4 with the corresponding change of other param-
eters. On the other hand, if after some transient the output wg of the differentiator
differs from the system output & by not more than some constant, and requirements
1, 2 of Definition 4 are satisfied for 6 = wy, then the system has the strong PRD r.

Note that, as follows from Theorem 1, if the component ¢ is already known from
the simulation context, the PRD itself can be identified by a bit simpler standard
differentiator of the form (11).

4.3 PRD features

In this subsection general examples and properties of the practical relative degree
are demonstrated. Consider a SISO system

szzfz(zvuz):vz:Vz0(2)+nz(t)7 (18)

where z € R, u; € R, |u;| < U, is the control and the input of the actuator, v,
is a continuous output function, g, > 0 is a time-constant parameter, and 7,(¢) is
some deterministic Lebesgue-measurable noise of the magnitude €;. The system
is understood in Filippov’s sense [13] and features the Bounded Input - Bounded
State property. The initial values z(0) are assumed belonging to a compact. Thus, z
forever belongs to a larger compact W,. The function f;(z,u;) is assumed piece-wise
continuous in the region z € W, |u,| < U, with a finite number of compact continuity
regions and continuity components extendible up to the region boundaries.

System (6) is further called a transmission unit, if the above conditions are sat-

isfied, and there is such k # O that with g, = 1 and any u, = const, the output v,
converges to ku, uniformly in u, and initial values of z. That means that for any
to, 6 > 0 there exists 7 > 0 such that with any z(#), u;, u; = const, the inequality
[v.0 —ku;| < 8 is kept, starting from the moment 7.
Examples. Any LTI stable system with the transfer function P(uw)/Q(u.w) is a
transmission unit, provided deg Q —deg P > 0, Q is a Hurwitz polynomial, P(0)/Q(0)
= k. With infinitesimally small u, traditional models of actuators and sensors are
produced. Another example: v, = —ocsign(v; — ku;) — Bv,, a,b >0,z = (v,,v;).
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Proposition 3. Transmission units have PRD equal to 0 with the approximation pa-
rameter &,

See [28, 31] for the proof. Note that the time constants of the units are not re-
quired to be infinitesimal. Low-pass filters also have zero PRD. In the following
Propositions the cascade connections are assumed to satisfy the obvious compli-
ance conditions of input and output bounds.

Proposition 4. Irrespectively of the connection order, a cascade connection of a
SISO system of the PRD r and another SISO system of the PRD 0 has the PRD
equal to r with the delay parameter being the sum of two delay parameters. The
new approximation parameter equals that parameter of the last system, i.e. of the
system at the output.

A cascade system considered in [28] with actuator and sensor also depending on
the middle-system internal state, has the PRD equal to the RD of the system in the
middle.

Proposition 5. A cascade connection of a SISO system of the practical relative de-
gree ry with the zero approximation parameter and a system of the form (1)-(3) of
the relative degree r with some bounded output noise forms a new SISO system of
the practical relative degree r| + ;.

Note that putting a system with regular RD before a system with PRD may even
lead to the loss of PRD. The above propositions allow constructing a lot of systems
with PRD. Similar results are also true with respect to the local PRD.

Obviously a system can have a few PRDs. For example, consider a cascade sys-
tem of successively connected smooth transmission units with RDs ry, r,, and a
SISO system (1)-(3) with the RD r between them. Let all approximation parameters
be zero. Then the resulting system has PRDs r| + r+rp, ri + r,r + rp, and r.

5 Simulation and applications

5.1 Disturbed-kinematic-car-model control

Consider a simple kinematic model of car control
. . . 4 ;
Xx=VcosQ, y=Vsing, ¢ = Ztane, 0=u,

where x and y are Cartesian coordinates of the rear-axle middle point, ¢ is the ori-
entation angle, V is the longitudinal velocity, A is the length between the two axles
and 0 is the steering angle (i.e. the real input), u is the system input (control). The
task is to steer the car from a given initial position to the trajectory y = g(x), where
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g(x) and y are assumed to be available in real time. The relative degree of the system
is 3.
Now consider a disturbed system.
i=Vcos¢, y=Vsing, ¢ = —4sign(¢ — @) —6¢,
\% R
p=—tanO, 6 ={.
¢ = tand, &
LetV =const=10m/s,A =5m,x=y=¢@=0=0att =0, g(x) = 10sin(0.05x) +

5. Introduce the actuator transmission unit

& = —100(2(& —u) +0.01&)% —100(&; —u) —2¢&;,

and the sensor transmission unit

$y=—100(& —y) —28 —0.028, 6 =8+0.018 —g(x), 6 = o +1(1),

which produces the noisy output & with ¢ being a smooth component. Here 1 is a
noise, |N| <0.01m; & = —10, § = 2000, §&, = —80000, §; = =9 =¢ =0 at
t=0.

18 G
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Fig. 2 PRD identification. PRD equals 3.
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Fig. 3 Performance of the “disturbed-car” control.
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Note that the disturbed system does not have a relative degree, for it is not
smooth. With ¢ = ¢, n = 0 the RD would be equal to 8. Propositions 2-5 show
that it has a local strong PRD equal to 3. The PRD identification results obtained by
means of the third-order differentiator z = D3 (1.1,1.523},100(&)

20 = vo, Vo = —9.49|z0 — & (¢)|¥/*sign(z0 — &(¢)) +z1,
z1=vy,vi = —9.28]z; —vo|**sign(z; —vo) + 22,

2 = vy, vy = —15|z0 — v | ?sign(zo —vi) + 23,

23 = —110sign(zz3 — v2).

of the form (11) are demonstrated in Fig. 2.
The applied control consists of the quasi-continuous 3-sliding controller

u=0, 0<r <1,
w=—2[sa+2(|s1| +1s0|*>) /2 (s1 + |so > signso)] /[Is2] +2(|s1| + |so|/*)"/?]
witht > 1;

and the second-order differentiator

S0 =v1,v1 = —9.28|s9 — &(1)|*/*sign(so — & (1)) + 51,
s =vi, vy = —15]s —v0|1/zsign(s1 —vo) + 52,

s = —110sign(sy —vy).

The tracking results are shown in the coordinates x, y of the “car” in Fig. 3. The
obtained accuracy is [y — g(x)| < 0.16m.

Model RD No. States
Bergman 3 3
Candas-Radziuk 3 4
Cobelli 3 7
Hovorka 5 8
Dalla Man 5 8
Sorensen 5 18

e Output: blood glucose

e Input: insulin

Fig. 4 Summary of different models for the dynamics of the blood glucose concentration.
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5.2 Practical control of glucose blood concentration

Consider now the practical problem of controlling the glucose concentration in the
human blood [10, 17, 19, 35]. The concentration is measured in real time once per
minute, and a pump injects insulin, when it is needed. A number of models are
available with the relative degrees changing from 3 to 5 and the number of variables
changing from 3 to 18 (Fig. 4, courtesy to A.G. Gallardo-Hernandez, [17]).

Computer simulation shows that most models have the PRD 3 [17] (not all mod-
els were checked). A controller of the same form, as for the above “car” control, was
applied. Negative values of the insulin injections were simply zeroed. The recent ex-
perimental results on live rats with the same control are shown in Fig. 5 (courtesy
to A.G. Gallardo-Hernandez, [17]).

6 Conclusions

A new concept of practical relative degree is introduced, which generalizes the stan-
dard relative degree notion to systems of arbitrary nature, not necessarily described
by ordinary differential equations. The results are new already for smooth dynamic
systems nonlinear in control.

A new homogeneous tracking differentiator is proposed featuring the same
asymptotic accuracy as the standard homogeneous differentiator [24], but at the
same time producing smooth estimations of the input derivatives, higher-order esti-
mations being exact derivatives of the lower order ones. It has found natural appli-
cation in identification of the practical relative degree.

Propositions 1, 2-5 provide many examples of systems with practical relative
degrees. One system can have a few practical relative degrees, which means that
controllers developed for different relative degrees can prove to be efficient for the
same system. The lowest practical relative degree is not always the best choice: a lot
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depends also on on the corresponding delay and approximation parameters. The new
concept significantly generalizes the previous results showing that one can neglect
fast stable actuators [31], fast stable sensors [28] and small perturbations changing
the relative degree [27].

Thus, actually a new class of systems is singled out. The further theoretical re-
search is to find various practical examples of systems with practical relative degrees
and estimation of their delay and approximation parameters, which actually can be
of no resemblance to real noises and delays. The notion can be probably extended
to multi-input multi-output case.

Another natural application is in the artificial intelligence research. In such a
case one can successively try universal HOSM controllers corresponding to lower
practical relative degrees 1, 2, 3, even without performing an attempt of the practical
relative degree identification.
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