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Abstract— A simple method of single-input-single-output
(SISO) homogeneous control design is proposed which does
not employ Lyapunov technique and allows immediate easy
construction of infinitely many homogeneous control forms for
all relative and homogeneity degrees (HDs). In accordance
with the HD the controllers feature finite-time or asymptotic
stability, and fixed-time convergence to any vicinity of zero
for positive HDs. Many known homogeneous sliding-mode
controllers and finite-time stabilizers are obtained as particular
cases. Computer simulation illustrates the theoretical results.

I. INTRODUCTION

The classical output-regulation problem is to make the
system output y track a real-time command signal yc(t), i.e.
to make σ = y − yc vanish.

Consider an uncertain single-input single-output (SISO)
system of a constant relative degree r. Its output dynamics is
described by an integrator chain (Brunowsky system) σ(r) =
h(t, x) + g(t, x)u, b 6= 0, with uncertain functions h and g
depending on the time t and the state x [16].

Denote ~σr−1 = (σ, σ̇, ..., σ(r−1)). A natural approach is
to replace the unknown functions h, g with some known sets
H(~σr−1), G(~σr−1), h ∈ H , g ∈ G. It reduces the problem to
stabilizing the differential inclusion (DI) σ(r) ∈ H(~σr−1) +
G(~σr−1)u. Any stabilizer u = u(~σr−1) is then equivalently
effective for the whole class of uncertain systems featuring
the same relative degree r and set functions H,G.

The problem can be solved in finite time (FT), or asymp-
totically, or only approximately due to the presence of noises
and time delays. The control design method is often based
on the homogeneity theory, whereas the homogeneity is
provided by the appropriate choice of H,G and the feedback
u(~σr−1). The homogeneity degree (HD) of the DI becomes
the main classification parameter.

If H(0) 6= {0} the control u(~σr−1) is to be discontinuous
at ~σr−1 = 0. It corresponds to negative HDs and FT
stabilization by means of sliding-mode (SM) control for
H,G being constant segments. The case r = 1 corresponds
to the classical (first order) SM [25], [10], whereas r > 1
corresponds to rth-order SMs (r-SMs) [4], [13], [7], [9],
[14], [17], [18]. The well-known continuous controllers [15]
FT stabilize power-integrator chains, and feature H = {0}
and G = {1} in the considered case of pure integrator chains.

Practical stabilization is said to be in fixed time (FxT)
[23], if the transient time is uniformly bounded for all initial
conditions of ~σr−1. Positive HDs are employed if the FxT
convergence of system trajectories to a vicinity of zero
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is required [1], [8], [2], [24], [23], [24]. Classical linear
controllers correspond to the HD 0, H = {0} and G = {1}.
Classical SM control of linear systems [25] also produces
systems of the HD 0 for H = I||~σr−1||, where I and G are
some segments.

Whereas most controllers are represented by some formu-
las (often recursive), the implicit-Lyapunov-function method
[24] provides not a control formula, but a numeric procedure
for calculating the control at each sampling step.

Each class of controllers usually has at least one paper
devoted to it. Formula-based controllers often require com-
plicated design of a Lyapunov function.

The alternative approach [17], [18] involves direct con-
vergence proof. Each control formula u = u(~σr−1) has a
number of parameters to be defined. Usually all parameters
except the control magnitude gain can be fixed forever for
each predefined r = 1, 2, .... In practice r > 4 almost never
appears, and the cases r = 1, 2 are very simple. Thus the
number of needed parameters varies from 1 to 3.

Even if the Lyapunov analysis is available, the calculation
of these parameters is cumbersome and often leads to exces-
sively large numbers (thousands instead of tens). Therefore,
the main practical method of determining the parameters is
by numeric simulation.

The non-Lyapunov-based methods [9], [19], [22] are ex-
tended in this paper to allow easy construction of infinitely
many new controller forms/templates for any relative and
homogeneity degrees. In particular, many known homoge-
neous controllers of the form u = u(~σr−1) are obtained. The
lacking parameters’ values are to be found by simulation.

The method is presented for the perturbed integrator
chains, but is easily extendible to the power-integrator chains
as well. Simulation shows the method effectiveness.

Notation. A binary operation � of two sets is defined as
A�B = {a� b| a ∈ A, b ∈ B}. A function of a set is the set
of function values on this set. The norm ||x|| stays for the
standard Euclidian norm of x, Bε = {x | ||x|| ≤ ε}; ||x||h
is a homogeneous norm; baeb = |a|b sign a, bae0 = sign a.

II. COORDINATE HOMOGENEITY BASICS

Recall that solutions of the DI

ẋ ∈ F (x), F (x) ⊂ TxRn, (1)

are defined as locally absolutely continuous functions x(t),
satisfying the DI for almost all t. Here TxRn denotes the
space of tangent vectors to Rn at the point x.

We call the DI (1) Filippov DI, if the vector-set field
F (x) ⊂ TxRn is non-empty, compact and convex for any



x, and F is an upper-semicontinuous set function. The latter
means that the maximal distance of the points of F (x) from
the set F (y) tends to zero, as x→ y.

Filippov DIs feature most standard properties (existence,
extendability of solutions, etc.), but not the uniqueness of
solutions [12]. DI (1) appears if an uncertain dynamic system
ẋ = f̂(t, x) is considered, f̂(t, x) ∈ F (x). Also solutions of
the differential equation (DE)

ẋ = f(x), f : Rn → TRn, (2)

are defined as solutions of the Filippov DI corresponding to
the discontinuous vector field f(x) [12].

A. Homogeneity notions

Introduce the weights m1, ...,mn > 0 of the coordinates
x1, ..., xn in Rn, deg xi = mi, and the dilation [3]

dκ : (x1, x2, ..., xn) 7→ (κm1x1, κ
m2x2, ..., κ

mnxn),

where κ ≥ 0. Recall [3] that a function g : Rn → Rm is said
to have the HD (weight) q ∈ R, deg g = q, if the identity
g(x) = κ−qg(dκx) holds for any x ∈ Rn and κ > 0.

We distinguish a vector function f : Rn → Rn, f : x 7→
f(x) ∈ Rn, and a vector field f : Rn → TRn, f : x 7→
f(x) ∈ TxRn. The vector field f(x) ∈ TxRn (vector-set
field F (x) ⊂ TxRn) does not in fact differ from the DE (2)
(DI (1)).

Contrary to the case of a function, DI (1) (set field
F ) implicitly involves time in the derivative. Consider the
combined time-coordinate transformation

(t, x) 7→ (κ−qt, dκx), κ > 0, (3)

where the number −q ∈ R might naturally be considered
as the weight of t. The DI ẋ ∈ F (x) and the vector-set
field F (x) are called homogeneous of the HD q, if the DI
is invariant with respect to (3).

The respective homogeneity property can be rewritten as
ẋ ∈ F (x) ⇔ d(dκx)

d(κ−qt) ∈ F (dκx). Thus we come to the
equivalent formal definition.

Definition 1: [18] A vector-set field F (x) ⊂ TxRn (DI
ẋ ∈ F (x)), x ∈ Rn, is called homogeneous of the degree
q ∈ R, if the identity F (x) = κ−qd−1κ F (dκx) holds for any
x and κ > 0.

The DE (2), ẋi = fi(x), is a particular case of DI,
when the set F (x) contains only one vector f(x). Then
the above definition is reduced to the standard definition
deg ẋi = deg xi − deg t = mi + q = deg fi [3]. Note that
if f is discontinuous, (2) is equivalent to the corresponding
homogeneous Filippov DI (1).

The identity κmixi = (κ1/γ)miγxi, γ > 0, shows that the
weights −q, m1, ...,mn are defined up to proportionality. In
particular, the non-zero HD q of a vector-set field can always
be scaled to ±1 by an appropriate proportional change of the
weights m1, ...,mn. The sign of the HD determines many
properties of DIs.

Any continuous positive-definite function of the HD 1 is
called a homogeneous norm. We denote it ||x||h. A function
which is a homogeneous norm for the weight vector m ∈ Rn

is not a homogeneous norm under another equivalent weight
distribution γm, γ 6= 1, γ > 0. The homogeneous norm

||x||h$ =
(∑

i |xi|
$
mi

) 1
$
, $ > 0. (4)

is continuously differentiable for x 6= 0 if $ > maxmi.
Note that each two homogeneous norms || · ||h1

, || · ||h2
are

equivalent in the sense that there exist γ1 ≥ γ2 > 0, such
that γ2||x||h1 ≤ ||x||h2 ≤ γ1||x||h1 .

A function f(x) is called quasi-continuous [19] if it is
continuous everywhere except possibly at x = 0.

B. Stability of homogeneous inclusions

Let the DI (1) be an asymptotically stable (AS) homoge-
neous Filippov DI. In particular, it implies that mi+q ≥ 0 for
all i = 1, ..., n [21]. In the following the DI has equilibrium
at zero, and only the strong stability of zero is studied.

DI (1) is called finite-time stable (FTS) if it is AS, and
each solution converges to zero in FT. DI (1) is called fixed-
time (FxT) attracted [23], [24] to some vicinity Ω of zero, if
each solution converges into Ω in FT, and the transient times
posses a common finite upper bound.

Definition 2 ([18]): A set D ⊂ Rn is called dilation
retractable if ∀κ ∈ [0, 1] dκD ⊂ D. A homogeneous DI (1)
is called contractive, if there exist two nonempty compact
sets D1, D2 and T > 0 satisfying the following conditions.
The set D1 is dilation retractable, D2 lies in the interior of
D1, and each solution which starts in D1 at time t = 0 is in
D2 at t = T .

Note that any ball BR = {x ∈ Rn, ||x|| ≤ R} is dilation
retractable. The following Theorem [20] summarizes stability
features of DIs with arbitrary homogeneous degrees.

Theorem 1: A homogeneous Filippov DI (1) is AS iff it
is contractive. Moreover:

1) If the HD is negative, asymptotic stability is equivalent
to FT stability.

2) If the HD is zero, asymptotic stability is exponential.
3) If the HD is positive, any open vicinity of zero attracts

solutions in FxT. The convergence to zero is slower
than exponential.

The following theorem [20] establishes the method of local
homogeneous approximations [1], [3].

Theorem 2: Let ẋ ∈ F̃ (x) be any other homogeneous
Filippov DI with the same HD and dilation. Then for any
homogeneous norm || · ||h there exists such δ > 0 that the
inclusion F̃ (x) ⊂ F (x) + Bδ on ||x||h = 1 necessarily
implies the asymptotic stability of the DI ẋ ∈ F̃ (x).

III. HOMOGENEOUS SISO CONTROL DESIGN

A. Problem statement

Consider a dynamic system of the form

ẋ = a(t, x) + b(t, x)u, σ = σ(t, x), (5)

where x ∈ Rn, a : Rn+1 → Rn, b : Rn+1 → Rn×m and
σ : Rn+1 → R are uncertain smooth functions, u ∈ R
is the control. The output function σ can be considered
as a tracking deviation. For simplicity we assume that any



solution of (5) is forward complete, i.e. indefinitely extended
in time, provided the control remains bounded along the
solution trajectory.

The system is assumed to have the known relative degree
r [16]. Respectively,

σ(r) = h(t, x) + g(t, x)u, (6)

holds, where g 6= 0 [16]. The functions h(t, x) and g(t, x)
are unknown and smooth.

Denote ~σk = (σ, σ̇, . . . , σ(k)) ∈ Rk+1. The task is to
establish and keep σ ≡ 0 by means of a feedback control

u = u∗(~σr−1) ∈ U(~σr−1), (7)

where u∗ is a Lebesgue-measurable locally bounded func-
tion, and U(·) is the corresponding Filippov set-function
[12]. Recall that U(~σr−1) ⊂ T~σr−1

Rr is nonempty, convex,
compact and U(·) is upper semi-continuous.

Let deg σ(i) = mi > 0, the system HD q ∈ R and the
corresponding dilation be as follows:

mi = 1 + iq, mr = 1 + rq ≥ 0, i = 0, 1, ..., r,
dκ~σr−1 = (κm0σ, κm1 σ̇, ..., κmr−1σ(r−1)).

(8)

The weight m0 = 1 is taken fixed, since the weights are
defined up to proportionality. Obviously mi > 0 for i < r.
The HD q ∈ R is the design parameter, q ≥ −1/r.

Fix some homogeneous norm || · ||h. Assume that

|h(t, x)| ≤ C||~σr−1||mrh , C ≥ 0,
0 < Km ≤ g(t, x) ≤ KM .

(9)

Thus any solution of (5), (7), (9) satisfies the Filippov
differential inclusion

σ(r) ∈ [−C,C] ||~σr−1||mrh + [Km,KM ]U(~σr−1). (10)

According to Section II-A the closed-loop inclusion (10) is
homogeneous iff degU = mr, i.e. if

∀κ > 0 u∗(~σr−1) ≡ κ−mru∗(dκ~σr−1). (11)

The task is to construct homogeneous controllers (7), (11)
which asymptotically stabilize (10) and the output σ of the
system (5) as a result. Analysis, tuning and comparison of
the obtained controllers is out of the scope of this paper.

B. Design method

Obviously not all systems satisfy conditions (9) for some
q. It determines the applicability of the method to each
concrete problem.

In particular mr = 0 corresponds to q = −1/r <
0, deg u = 0 and boundedness of h. The corresponding
controllers are inevitably discontinuous at ~σr−1 = 0 for any
C > 0, respectively DI (10) is stabilized in FT [19]. The
motion of (5) on the set ~σr−1 = 0 is called rth-order SM (r-
SM), and the controllers are called r-sliding homogeneous
[18]. Conditions (9) hold at least locally for any smooth
system (5), (6). Derivatives ~σr−1 are optionally calculated
in FT by homogeneous robust exact differentiator [17].

The case mr > 0, i.e. q > −1/r, usually requires that the
output dynamics be separated from the rest of the system.

Otherwise conditions (9) become unrealistic. The method
is applicable for stabilization of feedback-linearizable SISO
systems [16] at their equilibria by continuous control. Note
that neither the system nor the corresponding linearizing
transformation are to be known exactly, since at least locally
derivatives ~σ can be exactly calculated in real time [17].

The case −1/r ≤ q < 0 is used to get the FT stability [1],
[6], [15]. The choice q = 0 also includes the classical linear
control theory methods and implies exponential convergence,
q > 0 ensures asymptotic stability and the FxT convergence
to any vicinity of the equilibrium [1], [23], [5], [24].

There are a number of homogeneous SM controllers
solving the problem in the case mr = 0, q = −1/r <
0, deg u = 0. The recently established powerful method
[7] exploits the knowledge of a concrete control Lyapunov
function for the system σ(r) = u to generate a number of r-
SM controllers. Synthesis of new control Lyapunov functions
becomes the initial non-trivial step.

The alternative method [22], [9] starts from the knowledge
of a homogeneous AS DE. It removes any control differen-
tiability conditions and respectively yields more controllers.
The corresponding AS DEs are constructed below for any r
and q in a simple way.

1) Control construction: Consider an AS homogeneous
DE

σ(r−1) + ϕ̃(~σ(r−2)) = 0, (12)

where ϕ̃ is a continuous function, deg ϕ̃ = mr−1. Let it be
”algebraically” equivalent to the homogeneous DE

ϕ(~σr−1) = 0, degϕ = ks≥0, (13)

which means that (13) and (12) define the same set in
the space ~σr−1 ∈ Rr\{0}. Also assume that ϕ is quasi-
continuous, and ϕ(~σr−1) > 0⇔ σ(r−1) + ϕ̃(~σr−2) > 0.

Theorem 3: Let N(~σr−1) be any positive-definite con-
tinuous homogeneous function, degN = 1 (i.e. N is a
homogeneous norm). Consider the homogeneous controls

u = −α[N(~σr−1)]mr−degϕϕ(~σr−1), (14)
u = −α[N(~σr−1)]mr signϕ(~σr−1). (15)

Then under conditions (8), (9) DI (10) is homogeneous, and
controllers (14), (15) asymptotically stabilize DI (10) for any
sufficiently large α > 0. The output σ of system (5) closed
by these controls is asymptotically stabilized.

Controller (14) is continuous for q > −1/r. For
q = −1/r it is quasi-continuous (i.e. discontinuous only at
~σr−1 = 0).

DI (10) is FT stable if q < 0, and exponentially stable
for q = 0. If q > 0 any open vicinity of ~σr−1 = 0 attracts
solutions in FxT.

In the case of controller (14), q > −1/r, mr − degϕ <
0, u(0) = 0 is assigned, which removes the discontinuity
at 0. Multiplication of controllers by any locally bounded
Lebesque-measurable function k(t, x) ≥ 1 does not interfere
with the convergence.

The proofs are provided in Section IV. Note that the
peculiarity of the quasi-continuous SM controller (14) (the



case q = −1/r, mr = 0) is that it features significantly
less chattering than other SM controllers, (15) in particular
[19]. Another remark is that although controller (15) looks
as a classical SM controller, in general it cannot establish
the SM ϕ(~σr−1) = 0 due to the non-smoothness and infinite
gradients of ϕ(~σr−1).

2) Recursion in r: An AS DE (12) is assumed known. Let
mr > 0, i.e. q > −1/r, otherwise no recursion is possible.

Choose two arbitrary homogeneous norms || · ||h1 , || · ||h2

and mϕ > 0. Let φ : R → R be any continuous strictly
growing function, φ(0) = 0. Then the following are some
possible simple options for choosing ϕ:

1. ϕ =
⌊
σ(r−1) + ϕ̃

⌉mϕ
, mϕ > 0,

2. ϕ =
⌊
σ(r−1)⌉mϕ + bϕ̃emϕ ,

3. ϕ = φ

(
bσ(r−1)+ϕ̃emϕ
||~σr−1||

mϕmr−1
h1

)
, degϕ = 0.

(16)

More options are available in (16), e.g. algebraic combina-
tions of 1-3 are possible, etc. Obviously the number of such
constructions is infinite at each recursion step for r ≥ 2.

Now, taking C = 0, Km = KM = 1 and sufficiently large
α > 0, due to Theorem 3 obtain the new homogeneous AS
DE of the order r

σ(r) + α||~σr−1||mr−degϕh2
ϕ(~σr−1) = 0 (17)

from equation (12) of the order r − 1,

C. Demonstration of recursive homogeneous control design
Start with r = 1 and any q ≥ −1. The weight deg σ = 1

is fixed in advance. If q = −1 then

σ̇ ∈ [−C,C] + [Km,KM ]u1, u1 = −α signσ, α > C
Km

,

is the only option. One can also take different values of α
for σ > 0 and σ < 0.

Let q > −1 then the only AS homogeneous DE is

σ̇ + βbσe1+q = 0, β > 0. (18)

It is FT stable for −1 < q < 0, exponentially stable for
q = 0 and AS for q > 0. In the latter case convergence into
any vicinity of 0 is in FxT. Also here one can take different
values of β for σ > 0 and σ < 0.

Provided q ≥ −0.5 the recursion (16), (17) is possible to
r = 2. In particular, for q = −0.5 Theorem 3 produces

u2 = −α||~σ1||1+2q
h sign(bσ̇e

1
1+q + β

1
1+q σ), q ≥ − 1

2 ,

from the FT stable DE (18). For this end one takes con-
troller (15) and option 2 from (16). Replacing the multiplier
||~σ1||1+2q

h with a non-vanishing function get the non-singular
terminal 2-SM control [11]. Note that (14) produces a quasi-
continuous 2-SM controller.

Some other possible continuous controllers for q > −0.5
and r = 2 are of the form

u2 = −α
⌊
bσ̇e

1
1+q + β0σ

⌉1+2q

,

u2 = −α(|σ|+ |σ̇|
1

1+q )q(σ̇ + β0bσe1+q),
u2 = −α(bσ̇e

1+2q
1+q + β0bσe1+2q

),

u2 = −α
⌊
bσ̇e

1+3q
1+q + β0bσe1+3q

⌉ 1+2q
1+3q

for q > − 1
3 ,

(19)

where β0 > 0 is any number, α > 0 is sufficiently large.
Using the third controller for C = 0, Km = KM = 1 get
the new AS DE

σ̈ + β̃1bσ̇e
1+2q
1+q + β̃0bσe1+2q

= 0, (20)

where β̃1 = α and β̃0 = αβ0. That is only one of many
possibilities.

Taking the last controller of (19) obtain for q > −1/3 the
AS DE σ̈+u2(~σ1) = 0. Then using the 2nd recursion option
of (16) with mϕ = (1 + 3q)/(1 + 2q) get

u3 = −α[bσ̈e
1+3q
1+2q + β1bσ̇e

1+3q
1+q + β0bσe1+3q

], (21)
...
σ + β̃2bσ̈e

1+3q
1+2q + β̃1bσ̇e

1+3q
1+q + β̃0bσe1+3q

= 0. (22)

Controller (21) generates AS DE (22) for q > −1/3, which
in its turn produces many more controllers, etc.

Asymptotic stabilizers of the form (21) (DE (22)) are
obtained for any r and q > −1/r. Note that in [6] they
are developed for q < 0 close to 0. Similarly the controller

u = −α
⌊⌊
σ(r−1)⌉ ω

1+(r−1)q +

βr−2
⌊
σ(r−2)⌉ ω

1+(r−2)q + ...+ β0bσeω
⌉ 1+rq

ω
(23)

is shown to be valid for any ω > 0. In the case q = −1/r
it becomes a relay discontinuous controller, whereas the
following is the quasi-continuous version for q = −1/r:

u =

−αbσ
(r−1)e

ω
1+(r−1)q +βr−2bσ(r−2)e

ω
1+(r−2)q +...+β0bσeω

|σ(r−1)|
ω

1+(r−1)q +βr−2|σ(r−2)|
ω

1+(r−2)q +...+β0|σ|ω
.

(24)
Similar results are obtained in [7], [9] for q < 0. In

particular, for r = 5, q = −0.2, ω = 0.2 obtain the following
quasi-continuous 5-SM controller (24) [9]:

u = −α σ(4) + 6b...σe
1
2 + 5σ̈

1
3 + 3bσ̇e

1
4 + σ

1
5

|σ(4)|+ 6|...σ | 12 + 5|σ̈| 13 + 3|σ̇| 14 + |σ| 15
.

The coefficients are found one by one by simulation
according to the design recursion steps. Once one valid
parametric set {βj} is found, the convergence rate is easily
regulated in a standard way by changing βj [9]. The accuracy
of the controllers for any q in the presence of noises and
discrete sampling is calculated in the recent paper [20].

IV. PROOF OF THEOREM 3
Due to the lack of place the proofs are concise. The

following lemmas are used in the proof of Theorem 3.
Lemma 1: In the notation of Section II let quasi-

continuous functions φ1(x), φ2(x) of the weight 0, deg φ1 =
deg φ2 = 0, have the same zero-set, φ1(x) = 0⇐⇒ φ2(x) =
0. Then for any δ > 0 there exists ε > 0 such that

{x ∈ Rn\{0}| |φ1(x)| ≤ ε} ⊂ {x ∈ Rn\{0}| |φ2(x)| ≤ δ}.
Proof. Suppose that such ε > 0 does not exist for some
δ > 0. Choose some homogeneous norm || · ||h, and consider
the homogeneous sphere Sh1 = {x ∈ Rn | ||x||h = 1}. Due
to the homogeneity functions φ1, φ2 take all their values on
Sh1.



Take some sequence εj → 0, εj > 0. According to our
assumption their exists a sequence xj ∈ Sh1, such that
|φ2(xj)| > δ and |φ1(xj)| ≤ εj . Since Sh1 is compact, there
exists a convergent subsequence xjl → x∗ ∈ Sh1. Obviously,
φ1(x∗) = 0 due to the continuity of φ1, and φ2(x∗) ≥ δ due
to the continuity of φ2. It contradicts the lemma condition.
�

Lemma 2: [9] Let B ≥ 0, |θ| ≤ 1, 0 ≤ ξ < 1. Then the
inequality |A+Bθ|

|A|+B ≤ ξ implies that |A+Bθ| ≤ 2ξ
1−ξB.

We call a set homogeneous if it is invariant with respect
to the dilation. The inequality |Ψ(~σr−1)| ≤ δ, Ψ = ϕ/Nks ,
degϕ = ks, describes a homogeneous region in the ~σr−1
space and the Filippov DI of the order r − 1. Fix some
$ > 1 (see (4)).

Lemma 3: Under the conditions of Theorem 3 for any suf-
ficiently small δ > 0 the homogeneous region |Ψ(~σr−1)| ≤ δ
is a subset of another homogeneous region

|σ(r−1) + ϕ̃(~σr−2)| ≤M 2ε
1−ε ||~σr−2||

ks
h$, (25)

where ε = ε(δ), ε < 1, limδ→0 ε(δ) = 0, M > 0, and (25)
is a homogeneous AS DI in the space ~σr−2.
Proof. Let |ϕ̃(~σr−2)|/||~σr−2||ksh$ ≤ M . Such number M
exists, since ϕ̃(~σr−2)/||~σr−2||ksh$ is a function of the weight
0 continuous on any sphere. Denote N1(~σr−1) = |σ(r−1)|+
M ||~σr−2||ksh$. According to Lemma 1 the DI |Ψ(~σr−1)| ≤ δ
implies |σ(r−1) + ϕ̃(~σr−2)|/N1(~σr−1) ≤ ε. It in its turn
implies (25) (Lemma 2). DI (25) is FTS for ε = 0, therefore
it is also AS for any sufficiently small ε (Theorem 2). �

Fix such value of ε. We are still allowed to decrease δ
while preserving ε and the asymptotic stability of (25).

Since the boundaries of (25) are not smooth, (25) is
replaced with a smaller internal homogeneous region Ωε
having smooth boundaries with locally bounded gradients.

Lemma 4: Under the conditions of Lemma 3 the homo-
geneous region (25) contains another homogeneous set Ωε,

Ωε = {~σr−1| Φ−(~σr−2) ≤ σ(r−1) ≤ Φ+(~σr−2)},

where the homogeneous functions Φ+, Φ− are smooth
everywhere except 0. The region Ωε is forward invariant for
sufficiently large α and contains the set |Ψ(~σr−1)| ≤ δ for
any sufficiently small δ.
Proof. The proof is standard and follows [19], [22], [9].
The boundaries of the region (25) are continuous and are
approximated over the sphere ||~σr−2|| = 1 by smooth
functions Φ̃+, Φ̃− so that the needed inclusions are satisfied
over the sphere. Then the functions Φ̃+, Φ̃− are extended by
homogeneity to Φ+, Φ− over the whole space ~σr−1.

Outside of the region |Ψ(~σr−1)| ≤ δ the control can be
done large: control (15) satisfies u = ±α, whereas control
(14) satisfies |u| ≥ αδ.

Since boundaries of (25) are not smooth, (25) is replaced
with a smaller internal homogeneous region Ωε having
smooth boundaries with bounded gradients of the weight 0.
Then the trajectories are shown to cross the boundaries of Ωε
only into Ωε. Respectively, Ωε is an AS invariant attractor.
The value of δ is decreased to keep the set |Ψ(~σr−1)| ≤ δ
inside Ωε, whereas ε remains untouched, and α is increased

keeping a constant value u0 = αδ. Hence, |u| ≥ u0 holds
outside of Ωε. �
Proof of Theorem 3. Let BhR = {||~σr−1||h ≤ R} be the
homogeneous ball. Show the contractivity property of the
closed-loop DI.

Note that the region (25) corresponds to the AS DI
(Lemma 3). Moreover, the region Ωε is forward-time invari-
ant: no trajectory can leave it. The standard proof [19], [22],
[9] shows that for q < 0 the set Ωε is a FT attractor, which
would finish the proof in that case.

Consider the functions π+ = σ(r−1)−Φ+, π− = σ(r−1)−
Φ−. Due to the homogeneity |Φ̇+|, |Φ̇−| ≤ kNNmr for some
kN > 0. Consider the case π+ > 0. The case π− < 0 is
similar. Calculations show [9] that

π̇+ ≤ −(αδ − kN − γcC)Nmr (26)

holds outside of Ωε for some γc > 0. If π+ vanishes, the
trajectory enters Ωε and then converges to zero.

It is easy to see that for any large α the trajectories starting
from the layer ||~σr−1||h ∈ [0.5, 1] remain uniformly bounded
and uniformly separated from zero during some time interval
T also independent of α. Indeed, if the trajectory enters Ωε,
the statement is trivial. Otherwise, for any large bounds and
large enough α the uniform boundedness of σr−1 follows
from (26) and π+ > 0.

Thus it follows from (26) that for sufficiently large α all
trajectories starting in the layer ||~σr−1||h ∈ [0.5, 1] enter
Ωε in the time T . Taking all trajectories’ segments starting
in the ball Bh1 over the time interval T and adding to it
Ω̄ε = Ωε ∩ BhR for sufficiently large R obtain a forward-
invariant compact dilation-retractable set D. Fix such α.

Due to the homogeneity of the DI also d1/2D is an
invariant set, d1/2D ⊂ D. Moreover all trajectories starting
in the layer ||~σr−1||h ∈ [0.25, 0.5] enter d1/2Ω̄ε in the time
2qT . Due to the asymptotic stability of (25) all solutions
starting in Ω̄ε concentrate in d1/2Ω̄ε in some time T0 [20].

Take T1 = max(T0, 2
qT, T ). Obviously all trajectories

starting in D at time t = 0 gather in d1/2D at the time
T1. It proves the contractivity property. �

V. SIMULATION RESULTS

Consider an academic example of the HD q

σ(r) = cos(11t)|σ|1+qr + (2 + sin(5t))u, (27)

which is understood in the Filippov sense [12]. The solutions
obviously satisfy the DI

σ(r) ∈ [−1, 1]||~σr−1||1+qrhω + [1, 3]u,

||~σr−1||hω =
(
|σ|ω + ...+ |σ(r−1)|

ω
1+(r−1)q

) 1
ω

,

ω = max[1, 1 + q(r − 1)].

(28)

The system satisfies assumptions of the Section III-A for
q ≥ −1/r. Choose the controller (23) for q > −1/r. In
the case q = −1/r the quasi-continuous SM control (24) is
chosen.

Let r = 3, β0 = 1, β1 = 2, α = 5 and ~σ2(0) =
(100, 100,−100). The Euler integration step is 10−4.



Fig. 1. Performance of (27), (23) for HDs q = 1
3
, 0,− 1

5
and (27), (24)

for r = 3 and q = − 1
3

. Projections of ~σ2 onto ~σ1 are shown on the right.

Performance of the resulting controllers

u = −5
⌊
σ̈ + 2bσ̇e

5
4 + σ

5
3

⌉ 6
5

for q = 1
3 ,

u = −5(σ̈ + 2σ̇ + σ) for q = 0,

u = −5
⌊
σ̈

5
3 + 2bσ̇e

5
4 + σ

⌉ 2
5

for q = − 1
5 ,

u = −5 σ̈
3+2bσ̇e2+σ
|σ̈|3+2σ̇2+|σ| for q = − 1

3

is shown in Fig. 1. Zooms of the graphs are provided for
some HDs.

The asymptotic convergence for q = 1/3 is very slow
near the origin, but very fast at large distances, |σ| ≤ 0.003
is maintained for t > 20.

The HD q = 0 yields ω = 1 and ||~σ2||hω = |σ|+ |σ̇|+ |σ̈|.
The resulting linear control keeps |σ| ≤ 0.0001 for t ≥ 20
and features the exponential convergence in spite of time-
variable “uncertainties”.

The system is FT stable for any q < 0. The accuracy
|σ| ≤ 10−17 is obtained for q = −1/5 and t ≥ 23. In the
case q = −1/3 the disturbances do not vanish at ~σ2 = 0,
the 3-SM control is quasi-continuous and bounded, |u| ≤ 5.
The resulting FT convergence is very slow at large distances,
|σ| ≤ 3 · 10−11 is kept for t ≥ 113.

VI. CONCLUSIONS

The proposed simple method creates infinite number of
homogeneous asymptotic stabilizers for all combinations of
relative and homogeneity degrees. The resulting controller
forms/templates already do not need stability proof. At the
same time each template contains a number of parameters to
be assigned by simulation or, possibly, Lyapunov analysis.
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