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Abstract— The proposed nonlinear filtering differentiators
combine the features of linear filters capable of rejecting large
high-frequency signal components, with the exactness, finite-
time convergence and optimal accuracy asymptotics of the
sliding-mode-based observers and differentiators. New tracking
filtering differentiators are proposed. Discretization of the
filters is studied. Computer simulation illustrates the theoretical
results.

I. INTRODUCTION

Differentiation is the classic ill-posed problem, since pos-
sibly large derivatives of small noises require some voluntary
distinction to be made between a noise to be ignored and the
basic signal to be differentiated.

The classic filtering approach [1], [13], [30] distinguishes
the basic signal and the noise by their frequencies. All
high-frequency components are to be suppressed, and the
approximate differentiation is provided for the components
of a bounded frequency diapason. The resulting inaccuracy is
a decent price for the robustness and filtering out even large
high-frequency noises. Such observers are effectively used
for the output-feedback stabilization of smooth nonlinear
systems at their equilibria [1].

Sliding-mode (SM) control (SMC) [31], [10] features
higher observation requirements due to the inevitable small
high frequency system vibrations [15], [3]. An observer re-
jecting all high-frequency vibrations also wrongly estimates
the state and prevents the very entrance into the final SM.

High-order SMs (HOSMs) were especially proposed to
deal with high relative degrees of the outputs [4], [14], [5],
[7], [9], [16], [19], [20]. Exact differentiators play essential
part in the HOSMC theory [6], [8], [11], [19]. HOSM-
based differentiators converge in finite time (FT) and exactly
differentiate small high-frequency output components.

It is proved here that in the framework of the SMC one is
able to simultaneously get the asymptotically-optimal exact
robust differentiation and the filtering-out of unbounded
noises of small average values.

Contrary to the recent papers [28], [24] this paper studies
the discretization issues of filtering differentiation and for the
first time introduces tracking filtering differentiators yielding
smooth derivative estimations. Simulation shows the method
effectiveness.

Notation. A binary operation � of two sets is defined as
A � B = {a � b| a ∈ A, b ∈ B}. A function of a set is the
set of function values on this set. The norm ||x|| stays for
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the standard Euclidian norm of x, Bε = {x | ||x|| ≤ ε};
baeb = |a|b sign a, bae0 = sign a.

II. INTRODUCTION TO HOMOGENEOUS DIFFERENTIATION

Let Lipn(L) be the set of all scalar functions defined on
R+ = [0,∞), and featuring the Lipschitz constant L > 0 of
their nth derivative. Following [19] the differentiators are to
be exact on functions from Lipn(L).

Assumption 1: The input signal f(t), t ≥ 0 has the form
f(t) = f0(t) + η(t), where f0 is an unknown basic signal
f0 ∈ Lipn(L), and η(t) is a Lebesgue-measurable noise η(t).

Assumption 2: The noise η(t) is bounded, |η| ≤ ε0.
Whereas L, n are assumed known, ε0 ≥ 0 is unknown.
Differentiation problem [18], [19]: The task is to evaluate the
derivatives f0(t), ḟ0(t), ..., f

(n)
0 (t) in real time, robustly with

respect to small noises η(t), and exactly in their absence.
Theorem 1 ([27]): For any ε∗ > 0 there is t0 > 0 (also

∀t0 > 0 ∃ε∗ > 0) such that for any ε0, 0 < ε0 ≤ ε∗,
and any f0, f1 ∈ Lipn(L) the inequality supt≥0 |f1(t) −
f0(t)| ≤ ε0 implies inequalities supt≥t0 |f

(i)
1 (t)− f (i)0 (t)| ≤

Ki,n(2L)
i

n+1 ε
n+1−i
n+1

0 , i = 0, 1, ..., n, which turn into equal-
ities on certain functions. Here Ki,n ∈ [1, π/2] are the
Kolmogorov constants [17].

Let z0(t), z1(t), ..., zn(t) be the real-time estimations of
the derivatives f0(t), ḟ0(t), ..., f

(n)
0 (t) produced by a differ-

entiator that is exact on any input from Lipn(L) after a
finite-time (FT) transient. Then, taking f = f1 = f0 + η,
for η = f1 − f0, obtain that the best possible accuracy
guarantied for any f0 ∈ Lipn(L) satisfies inf sup |zi−f (i)0 | ≥

Ki,n(2L)
i

n+1 ε
n+1−i
n+1

0 . In particular, K1,1 =
√

2.
A differentiator is called asymptotically optimal [27], if

for some µi > 0 under Assumptions 1, 2 it in FT provides

the same accuracy |zi(t) − f (i)0 (t)| ≤ µiL
i

n+1 ε
n+1−i
n+1

0 , i =
0, 1, ..., n, for all inputs, noises and ε0 ≥ 0. Obviously, the
inequalities µi ≥ Ki,n ≥ 1 are always to hold.

The following is the asymptotically-optimal differentiator
[19] in its so-called non-recursive form:

ż0 = −λ̃nL
1

n+1 bz0 − f(t)e
n
n+1 + z1,

ż1 = −λ̃n−1L
2

n+1 bz0 − f(t)e
n−1
n+1 + z2,

...

żn−1 = −λ̃1L
n
n+1 bz0 − f(t)e

1
n+1 + zn,

żn = −λ̃0L sign(z0 − f(t)).

(1)

Here and further all differential equations are understood
in the Filippov sense [12]. Differentiator (1) is called ho-
mogeneous, since its error dynamics satisfy a FT-stable
homogeneous differential inclusion (DI).



Indeed, denote σi = (zi−f (i))/L. Now subtracting f (i+1)

from the both sides of the equation for zi, dividing by L and
taking into account f (n+1) ∈ [−1, 1] obtain the FT stable DI

σ̇0 = −λ̃nbσ0e
n
n+1 + σ1,

σ̇1 = −λ̃n−1bσ0e
n−1
n+1 + σ2,

...

σ̇n−1 = −λ̃1bσ0e
1

n+1 + σn,

σ̇n ∈ −λ̃0 sign(σ0) + [−1, 1],

(2)

where sign 0 = [−1, 1]. The homogeneity of (2) is due
to its invariance with respect to the transformation σi 7→
κn+1−iσi, t 7→ κt for κ > 0 (Appendix A).

Parameters λ̃i are most easily calculated using the parame-
ters λ0, ..., λn of the differentiator recursive form [19]: λ̃0 =
λ0, λ̃n = λn, and λ̃j = λj λ̃

j/(j+1)
j+1 , j = n− 1, n− 2, . . . , 1.

An infinite sequence of parameters ~λ = {λ0, λ1, ...} can be
built [19], providing coefficients λ̃i of (1) for all natural n.
In particular, ~λ = {1.1, 1.5, 2, 3, 5, 7, 10, 12, ...} suffice for
n ≤ 7 [26], [27]. The corresponding parameters λ̃i appear
in Table I.

TABLE I
PARAMETERS λ̃0, λ̃1, ..., λ̃n OF DIFFERENTIATOR (1) FOR n = 0, 1, ..., 7

0 1.1
1 1.1 1.5
2 1.1 2.12 2
3 1.1 3.06 4.16 3
4 1.1 4.57 9.30 10.03 5
5 1.1 6.75 20.26 32.24 23.72 7
6 1.1 9.91 43.65 101.96 110.08 47.69 10
7 1.1 14.13 88.78 295.74 455.40 281.37 84.14 12

In the presence of discrete measurements with the maximal
sampling time interval τ > 0 differentiator (1) in FT provides
the accuracy

|zi(t)− f (i)0 (t)| ≤ µiLρn+1−i, i = 0, 1, ..., n,
ρ = max[(ε0/L)1/(n+1), τ ]

(3)

for some µi > 0 [19]. Here the case τ = 0 formally
corresponds to continuous sampling. The same accuracy
asymptotics (with different constants µi) is maintained by
properly discretized differentiator [29], [26].

III. FILTERING DIFFERENTIATORS

Introduce the number nf ≥ 0 which is further called the
filtering order. The following filtering differentiator [24] is
further called “standard”:

ẇ1 = −λ̃n+nfL
1

n+nf+1 bw1e
n+nf
n+nf+1 + w2,

...

ẇnf−1 = −λ̃n+2L
nf−1

n+nf+1 bw1e
n+2

n+nf+1 + wnf ,

ẇnf = −λ̃n+1L
nf

n+nf+1 bw1e
n+1

n+nf+1 + z0 − f(t),

ż0 = −λ̃nL
nf+1

n+nf+1 bw1e
n

n+nf+1 + z1,
...

żn−1 = −λ̃1L
n+nf
n+nf+1 bw1e

1
n+nf+1 + zn,

żn = −λ̃0L sign(w1).

(4)

Formally define that for nf = 0 the first nf equations
disappear, and w1 = z0−f(t) is substituted for w1, yielding
the standard differentiator (1). Introduce the short notation
for (4):

ẇ = Ωn,nf (w, z0 − f, L,~λ), ż = Dn,nf (w1, z, L,~λ), (5)

where the parametric sequence ~λ is introduced in Section II.
Consider the filtering properties of differentiator (4).

A (noise) function ν(t), ν : [0,∞) → R, is called a
signal of the (global) filtering order k ≥ 0, if ν is a locally
integrable Lebesgue-measurable function, and there exists a
globally bounded solution ξ(t) of the equation ξ(k) = ν. Any
number exceeding sup |ξ(t)| is called the kth-order integral
magnitude of ν.

Assumption 3: Instead of Assumption 2 assume that the
input signal also contains possibly-unbounded noise compo-
nents, η(t) = η0(t) + η1(t) + ... + ηnf (t), where each ηk,
k = 0, ..., nf , is a signal of the filtering order k and the
kth-order integral magnitude εk ≥ 0.

The noise described in Assumption 2 is of the 0th filtering
order and the 0th order integral magnitude ε0. Thus, the
standard differentiator (1) is of the filtering order nf = 0,
and is robust to the noises η(t) of the filtering order 0 [19].

The following theorem shows that differentiators (4) of
the filtering order nf ≥ 0 are robust with respect to possibly
unbounded noises of the filtering orders not exceeding nf .

Theorem 2: Under Assumptions 1, 3 differentiator (4) in
FT provides for the accuracy

|zi(t)− f (i)0 (t)| ≤ µiLρn+1−i, i = 0, 1, ..., n,
|w1(t)| ≤ µw1Lρ

n+nf+1,

ρ = max[( ε0L )
1

n+1 , ( ε1L )
1

n+2 , ..., (
εnf
L )

1
n+nf+1 ],

(6)

where {µi}, µw1 only depend on the choice of {λl}, l =
0, ..., n+ nf .

Thus, differentiator (4) is asymptotically optimal for any
nf ≥ 0. Obviously, increasing the filtering order nf pre-
serves the accuracy asymptotics of the form (6) for noises
of lower filtering orders. Here and further proofs and proof
sketches appear in the Appendix.

The noise cos(ω∗t) features any filtering order k ≥ 0 with
the integral magnitude 2/ωk∗ . It follows from Theorem 2 that
the higher nf the better is the accuracy, provided ω∗ > 1.

A (noise) function ν(t), ν : [0,∞) → R, is called a
signal of the local filtering order k ≥ 0 if ν is a locally
integrable Lebesgue-measurable function, and there exist
numbers T, a1, ..., ak > 0, such that for any t1, t2, 0 ≤ t1 <
t2, t2 − t1 ≤ T , there exists a solution ξ(t), t ∈ [t1, t2],
of the equation ξ(k) = ν which satisfies |ξ(l)| ≤ al for
l = 0, ..., k − 1. Numbers al are called the local lth-order
integral magnitudes of ν.

Lemma 1: Any signal ν(t) of the local filtering order k ≥
0 from the above definition can be represented as ν = η0 +
η1 + ηk, where η0, η1, ηk are signals of the global filtering
orders 0, 1, k.

Fix any number ρ0 > 0. Then, provided ρ∗ ≤ ρ0 holds for
ρ∗ = max[a

1/k
0 , a

1/(k−1)
1 , ..., ak−1], the integral magnitudes



of the signals η0, η1, ηk are calculated as γ0ρ∗/T , γ1ρ∗, γkρk∗
respectively, where the constants γ0, γ1, γk > 0 only depend
on k and ρ0. In particular, in the important case k = 1
get ρ∗ = a0, ν = η0 + η1, and independently of ρ0 get
γ0 = 1, γ1 = 2, i.e. |η0| ≤ a0/T , and the first-order integral
magnitude of η1 is 2a0.

Remark 1: Lemma 1 provides sufficient conditions for
Assumption 3 and shows that the noise representation η =
η0+...+ηnf is not unique. Since the accuracy estimation (6)
holds for any such noise representation, the realized accuracy
inevitably corresponds to the best possible one.

Tracking filtering differentiators. Outputs zi(t) of differ-
entiators (1) and (4) are not Lipschitzian due to the fractional
powers on the right-hand sides of (1) and (4). Since in
the reality the SM z0 − f(t) = 0 is not kept ideally, also
żi 6= zi+1. One would like to ensure zi(·) ∈ Cn−i and
żi ≡ zi+1, i = 0, ..., n− 1, with zn being only Lipschitzian.

The corresponding differentiators have been introduced for
the identification of the practical relative degree in [21], [22],
[27]. The following tracking filtering differentiator is their
significantly improved version ready for application.

Let a homogeneous SMC u = αnψn+1(σ, σ̇, ..., σn) in
FT stabilize the DI σ(n+1) ∈ [−1, 1] + u for some αn >
0. Also assume |ψn+1| ≤ 1. Such controls are known
as (n + 1)th-order SM ((n + 1)-SM) controls, [7], [9],
[16], [20], [23]. The (n + 1)-SM homogeneity means that
ψn+1(σ, σ̇, ..., σn) ≡ ψn+1(κn+1σ, κnσ̇, ..., κσn) holds for
any κ > 0 and σ, σ̇, ..., σn ∈ R.

Then the tracking filtering differentiator is defined as

ẇ = Ωn,nf (w, ζ0 − z0 + f(t), L+ αnL,~λ),

ζ̇ = Dn,nf (w1, ζ, L+ αnL,~λ),
ż0 = z1, ..., żn−1 = zn,
żn = αnLψn+1(ζ/L).

(7)

Theorem 3: Under Assumptions 1, 3 differentiator (7) in
FT provides for the accuracy asymptotics (6). Also |ζi| ≤
µζiLρ

n+1−i are kept in the steady state for i = 0, ..., n. The
constants µi, µζi, µw1 only depend on the choice of {λl},
l = 0, ..., n+ nf , αn and ψn+1.

IV. DISCRETE FILTERING DIFFERENTIATORS

In modern practice a filter is a discrete dynamic system
obtaining a discretely sampled input f(t). Unlike Assump-
tion 2, Assumption 3 is very sensitive to sampling, which is
philosophically related to the Nyquist-Shannon sampling rate
principle. Indeed, a sampled high-frequency periodic signal
can become constant or slowly changing.

Let the sampling-times’ sequence t0, t1, ..., t0 = 0, feature
bounded sampling steps tj+1 − tj = τj ≤ τ . The upper
bound τ > 0 can be unknown. The admissible sequences tj
are assumed to exist for any τ > 0.
Notation. Denote δjφ = φ(tj+1) − φ(tj) for any sampled
vector signal φ(tj).

A discretely sampled signal ν : R+ → R is said to be a
signal of the (global) sampling filtering order k ≥ 0 and the
(global) kth order integral sampling magnitude a ≥ 0 if for

each admissible sequence tj there exists a discrete vector
signal ξ(tj) = (ξ0(tj), ..., ξk(tj))

T ∈ Rk+1, j = 0, 1, ...,
which satisfies the relations

δjξi = ξi+1(tj)τj , i = 0, 1, ..., k − 1,
ξk(tj) = ν(tj), |ξ0(tj)| ≤ a.

Assumption 4: The discretely sampled signals ηl(tj) are
of the sampling filtering order l and integral magnitude εl.

Assumptions 1, 3, 4 are proved to hold in the steady-state
SMs for the SMC u(t), the equivalent control ueq(t), f = u,
f0 = ueq , η = u− ueq , and nf = 1 [28].

In general one needs very small sampling steps to reveal
the small average value of the noise. The following alterna-
tive assumption is natural in filtering theory and guaranties
the stability of the average value with respect to sampling.

Assumption 5: Each noise ηl is absolutely continuous
with |η̇l| ≤ Lηl, Lηl > 0, l = 1, ..., nf .

Naturally, Lηl can be unknown and large. Similarly to
Remark 1, also here one does not need to check Assumptions
3,4,5 in order to use the differentiator.

The proposed homogeneous discretization of the standard
filtering differentiator (5) has the form

δjw = Ωn,nf (w(tj), z0(tj)− f(tj), L,~λ)τj ,

δjz = Dn,nf (w1(tj), z(tj), L,~λ)τj + Tn(z(tj), τj),
(8)

where the Taylor-like term Tn ∈ Rn+1 is defined by

Tn,0 = 1
2!z2(tj)τ

2
j + ...+ 1

n!zn(tj)τ
n
j ,

Tn,1 = 1
2!z3(tj)τ

2
j + ...+ 1

(n−1)!zn(tj)τ
n−1
j ,

...
Tn,n−2 = 1

2!zn(tj)τ
2
j ,

Tn,n−1 = 0, Tn,n = 0.

(9)

The proposed homogeneous discretization of the tracking
differentiator (7) has the form

δjw = Ωn,nf (w, ζ0 − z0 + f, L+ αnL,~λ)|t=tj · τj ,
δjζ = Dn,nf (w1(tj), ζ(tj), L+ αnL,~λ)τj ,
δjz = Ψn(tj)τj + Tn(z(tj), τj),
Ψn(tj) = (z1, ..., zn, αnLψn+1(ζ/L))T |t=tj .

(10)
Theorem 4: Under Assumptions 1, 3, 4 discrete differen-

tiators (8) and (10) provide the same accuracies as Theorems
2 and 3 respectively, but for

ρ = max[τ, max
0≤l≤nf

( εlL )
1

n+l+1 ] (11)

Formally define Lη0 = 1, then under Assumptions 1, 3, 5
the resulting accuracy (6) corresponds to

ρ = max[τ, max
0≤l≤nf

max
0≤k≤l

(
Lηl
L ( εl

Lηl
)
k+1
l+1 )

1
n+k+1 ]. (12)

Assumptions 4 and 5 can be combined producing ρ
calculated as the maximum of (11), (12). Similarly to Section
III a signal of the local sampling filtering order k is defined.
Also a lemma analogous to Lemma 1 holds.

Independent equally-distributed random sampling noises
ν(tj) of the zero mean value in practice feature the local



sampling filtering order 1 [24]. Harmonic noises cos(ω∗t)
feature any global and local sampling filtering order.

Also here arbitrarily increasing the filtering order pre-
serves the accuracy asymptotics for noises of lower filter-
ing orders, though the actual asymptotics’ coefficients can
change. One also has to take into account the influence of
the digital round-up errors for very small noises and sampling
intervals [27], [29].

V. SIMULATION RESULTS

Consider the noisy input signal

f(t) = f0(t) + η(t), f0(t) = sin(0.5t) + 0.5 cos t, (13)

η(t) = η1(t) + η2(t) + η3(t),
η1(t) = cos(10000t+ 1.237086),
η2(t) ∈ N(0, 0.52),

η3(t) = 0.001 d
dtbcos(100t)e

1
2

= −0.05 sin(100t)bcos(100t)e−
1
2 ,

(14)

where η1 is a high-frequency harmonic signal, η2 is the
random Gaussian signal of the standard deviation 0.5, and
η3 is an unbounded signal of the filtering order 1 and the
integral magnitude 0.001. Obviously |f (k)0 | ≤ 1 for all k.

Two filtering differentiators (4) of the same order n = 2
are applied with parameters L = 1, τj = τ = 10−6, using
the discretization (8), (9) with z(0) = 0, w(0) = 0. The first
differentiator has the filtering order nf = 3, whereas the
second has the filtering order nf = 5. Their coefficients are
taken from Table I from the lines 5 = 2 + 3 and 7 = 2 + 5
respectively.

The performance for the filtering order 3 is demonstrated
in Fig. 1. The performance for the filtering order 5 does not
differ neither visually nor even in the estimation accuracy.
The resulting accuracy for t ∈ [14, 20] is provided by the
component-wise inequality

(|w1|, |w2|, |w3|, |z0 − f0|, |z1 − ḟ0|, |z2 − f̈0|) ≤
(5.1 · 10−8, 7.0 · 10−6, 1.1 · 10−3, 6.6 · 10−3, 0.060, 0.27).

The high filtering order nf = 5 is beneficial for the high-
frequency extremely large composite harmonic noise

η(t) =
1500 cos(10000t) + 3000 sin(20000t) + 2000 cos(70000t).

(15)
Apply the second-order differentiator (8), (9) with n = 2,
nf = 5, L = 1 and τ = 10−5. Its performance is
demonstrated in Figs. 2a,b. The resulting accuracy for t ∈
[35, 40] is provided by the component-wise inequality

(|w1|, |w2|, |w3|, |w4|, |w5|, |z0−f0|, |z1− ḟ0|, |z2− f̈0|) ≤
(2.7 · 10−17, 1.7 · 10−13, 1.9 · 10−9, 2.0 · 10−5, 0.32,

9.0 · 10−5, 3.3 · 10−3, 0.063).

Now apply the tracking differentiator (10) with the same
parameters n = 2, nf = 5, L = 1, and α3 = 4, ψ3(ζ) =

− ζ32+bζ1e
3
2 +ζ0

|ζ2|3+|ζ1|
3
2 +|ζ0|

. Its performance is much worse than that

Fig. 1. Performance of differentiator (8), (9) with n = 2, nf = 3, L = 1,
τ = 10−6 for the input (13), (14). Estimations of f0, ḟ0 and f̈0 are shown.
The upper graph is cut from above and from below.

Fig. 2. Performance in the presence of extremely large noise (15) for
n = 2, nf = 5, L = 1, τ = 10−5. a: the input (13), (15); b: outputs of
filtering differentiator (8), (9); c: outputs of tracking differentiator (10).

of the standard filtering differentiator (8) due to the imposed
outputs’ smoothness task. Nevertheless, it still demonstrates
remarkable filtering qualities (Fig 2c) and the accuracies

(|w1|, |w2|, |w3|, |w4|, |w5|, |z0−f0|, |z1− ḟ0|, |z2− f̈0|) ≤
(3.0 · 10−17, 1.9 · 10−13, 1.9 · 10−9, 2.0 · 10−5, 0.33,

6.5 · 10−3, 0.043, 0.50).



VI. CONCLUSIONS

Proposed homogeneous filtering differentiators are capable
to filter out complicated noises of small average values.
The filtering capabilities of the differentiators are determined
by their filtering order. The higher the filtering order the
higher the differentiation accuracy in the presence of noises.
The accuracy asymptotics are calculated and the proposed
homogeneous discretization preserves them.

The proposed nth-order filters/differentiators (5), (7) with
fixed L > 0 and their discretizations feature the same
optimal accuracy asymptotics as their predecessors [19] in
the presence of bounded noises. In particular, in the absence
of noises they are exact on the inputs f0 ∈ Lipn(L).

The noise is assumed representable as a sum of a finite
number of noises of different filtering orders, whereas noises
of the filtering order 0 are just bounded measurable noises
of any nature. The calculated accuracy evaluation depends
on that noise expansion. Since the expansion is not unique,
due to Theorems 2, 3, 4 the actual accuracy corresponds to
the unknown best possible expansion.

The proposed homogeneous tracking differentiators and
their filtering modifications yield smooth derivative estima-
tions zk ≈ f (k)0 satisfying relations żk = zk+1 advantageous
in some signal-processing applications. Their other features
are the same as of the “standard” filtering differentiators.

APPENDIX

Recall that solutions of the differential inclusion (DI)

ẋ ∈ F (x), F (x) ⊂ TxRnx , (16)

are defined as locally absolutely continuous functions x(t),
satisfying the DI for almost all t. Here TxRnx denotes the
tangent space to Rnx at x ∈ Rnx .

We call the DI (16) Filippov DI, if the vector-set field
F (x) ⊂ TxRnx is non-empty, compact and convex for any
x, and F is an upper-semicontinuous set function. The latter
means that the maximal distance of the points of F (x) from
the set F (y) tends to zero, as x→ y.

Filippov DIs feature existence, extendability etc. of solu-
tions, but not their uniqueness [12]. The Filippov definition
[12] replaces a discontinuous vector field f(x) with a Filip-
pov DI.

A. Coordinate homogeneity basics

Introduce the weights m1, ...,mnx > 0 of the coordinates
x1, ..., xnx in Rnx , deg xi = mi, and the dilation [2]

dκ : (x1, x2, ..., xnx) 7→ (κm1x1, κ
m2x2, ..., κ

mnxxnx),

where κ ≥ 0. Recall [2] that a function g : Rnx → Rm is
said to have the homogeneity degree (HD) (weight) q ∈ R,
deg g = q, if the identity g(x) = κ−qg(dκx) holds for any
x ∈ Rnx and κ > 0.

Consider the combined time-coordinate transformation

(t, x) 7→ (κ−qt, dκx), κ > 0, (17)

where the number −q ∈ R might naturally be considered
as the weight of t. The DI ẋ ∈ F (x) and the vector-set

field F (x) are called homogeneous of the HD q, if the DI
is invariant with respect to (17), i.e. ẋ ∈ F (x)⇔ d(dκx)

d(κ−qt) ∈
F (dκx). The following is the formal definition.

Definition 1: [20] A vector-set field F (x) ⊂ TxRnx (DI
ẋ ∈ F (x)), x ∈ Rnx , is called homogeneous of the degree
q ∈ R, if the identity F (x) = κ−qd−1κ F (dκx) holds for any
x and κ > 0.

A system of differential equations (DEs) ẋi = fi(x),
i = 1, ..., nx, is a particular case of DI, when the set F (x)
contains only one vector f(x) and is reduced to deg ẋi =
deg xi − deg t = mi + q = deg fi [2]. Note that if f is
discontinuous, the DE is equivalent to the corresponding
homogeneous Filippov DI (16).

Note that the weights −q, m1, ...,mnx are defined up
to proportionality. The sign of the HD determines many
properties of DIs.

Any continuous positive-definite function of the HD 1 is
called a homogeneous norm. We denote it ||x||h.

It is proved in [20], [25] that if the HD of the DI (16) is
negative then it is asymptotically stable iff it is FT stable.
Moreover, in the presence of a maximal delay τ ≥ 0 and
noises of the magnitudes εi ≥ 0, i = 1, 2, ..., nx, all
extendable-in-time solutions of the disturbed DI

ẋ ∈ F (x(t− τ [0, 1]) + [−ε1, ε1]× ...× [−εnx , εnx ])

starting from some time satisfy the inequalities |xi| ≤ µiρmi
for some µi > 0 and ρ = max[ε

1/m1

1 , ..., ε
1/mnx
n , τ ].

In particular, the differentiator accuracy (3) is the result
of the homogeneity of dynamics (2) with the HD −1.

B. The proof sketches of the main results

Proof of Theorem 2. According to the filtering-order defini-
tion introduce the functions ξk(t), |ξk| ≤ δk, ξ(k)k (t) = νk(t).
Let

ω1 = w1 + ξnf , ω2 = w2 + ξ̇nf + ξnf−1, ...,

ωnf = wnf + ξ
(nf−1)
k + ...+ ξ̇2 + ξ1;

σi = zi − f i0, i = 0, ..., n.

(18)

Then f = f0 + η + ξ̇1 + ...+ ξ
(nf )
nf , and one can rewrite (4)

in the form

ω̇1 = −λ̃n+nfL
1

n+nf+1
⌊
ω1 − ξnf

⌉ n+nf
n+nf+1 + ω2 − ξnf−1,

ω̇2 = −λ̃n+nf−1L
2

n+nf+1
⌊
ω1 − ξnf

⌉n+nf−1

n+nf+1 + ω3 − ξnf−2,
...

ω̇nf−1 = −λ̃n+2L
nf−1

n+nf+1
⌊
ω1 − ξnf

⌉ n+2
n+nf+1 + ωnf − ξ2,

ω̇nf = −λ̃n+1L
nf

n+nf+1
⌊
ω1 − ξnf

⌉ n+1
n+nf+1 + σ0 + η,

σ̇0 = −λ̃nL
nf+1

n+nf+1
⌊
ω1 − ξnf

⌉ n
n+nf+1 + z1,

...

σ̇n−1 = −λ̃1L
n+nf
n+nf+1

⌊
ω1 − ξnf

⌉ 1
n+nf+1 + σn,

σ̇n ∈ −λ̃0L sign(ω1 − ξnf ) + [−L,L],
(19)

which is a perturbation of the FT stable homogeneous error
dynamics (2) of the standard (n + nf )th-order differentia-
tor (1) obtained by substituting n + nf for n. Obviously,



degωk = n+nf +2−k, deg zi = n+1−i, deg t = −q = 1,
the HD is −1.

It follows from [25] that sup |σi| = O(ρn+1−i),
sup |ωk| = O(ρn+nf+2−k). Now the accuracy of zi is
directly obtained from these relations. Taking into account
that sup |ω̇k| = O(ρn+nf+1−k−1) obtain the accuracy of wk
from (18). �
Proof of Theorem 3. First consider the case without noises.
Denote σ = (z0 − f0)/L, ζ̃ = ζ/L, w̃ = w/L and rewrite
(7) in the form

˙̃w = Ωn,nf (w̃, ζ̃0 − σ, 1 + αn, ~λ),
˙̃
ζ = Dn,nf (w̃1, ζ̃, 1 + αn, ~λ),

σ(n+1) ∈ αnψn+1(ζ̃) + [−1, 1].

(20)

It follows from |σ(n+1)| ≤ 1 + αn and Theorem 2 that in
FT obtain ζ̃ ≡ ~σ, where ~σ = (σ, ..., σ(n))T . Now due to the
choice of ψn+1(·) in FT get ~σ = 0. The observation that
(20) is homogeneous with the weights deg ζ̃i = deg σ(i) =
n+1−i, i = 0, 1, ..., n, deg w̃l = n+nf+2−l, l = 1, ..., nf ,
and the HD −1 implies the required accuracy due to the
above results from Appendix A for η1 = ... = ηnf = 0. In
the general case the proof is similar to Theorem 2. �
Proof of Lemma 1. Divide the time axis in the segments
of the length T . There is the corresponding solution ξj :

[jT, (j + 1)T ]→ R, ξ(k)j = ν, over each time interval.
First consider the case k = 1 (k = 0 is trivial). Then

ρ∗ = a0, |ξj | ≤ a0, and taking ξ(t) =
∫ t
jT
u(s)ds, u(t) =

(ξj+1((j + 1)T ) − ξj((j + 1)T ))/T for t ∈ [jT, (j + 1)T ]
proves the Lemma.

In the general case ξ is modified by a bounded shift
smoothly vanishing at the jth-interval end so that at the right
end the needed initial values of ξj+1 are obtained. �
Proof of Theorem 4. Consider the case of differentiator (8).
The case of the tracking differentiator is similar. The proof
is straightforward in the case of Assumption 4.

In the case of Assumption 5 each noise component ηl is
mapped to the bounded integral function ξl, |ξl| ≤ εl, ξ(l)l =

ηl, |ξ(l+1)
l | ≤ Lηl, l = 1, ..., nf . Due to Theorem 1 starting

from some moment inequalities |ξ(k)l | ≤
π
2L

k
l+1

ηl ε
l+1−k
l+1

l hold
for k = 0, ..., l + 1.

Similarly to (18) define

ω1(tj) = w1(tj) + ξnf (tj),
...,

ωnf (tj) = wnf (tj) + ξ
(nf−1)
nf (tj) + ...+ ξ̇2(tj) + ξ1(tj),

σi(tj) = zi(tj)− f (i)0 (tj), i = 0, 1, ..., n.

Now using Assumption 5 obtain the disturbed discrete error
system similar to (19). The rest of the proof is similar to that
from [29]. �
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